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Abstract— The objective characterization of human motion
is required in a variety of fields including competitive sports,
rehabilitation and the detection of motor deficits. Nowadays,
typically human experts evaluate the motor behavior. These
evaluations are based on their individual experience which
leads to a low inter- and intra-expert reliability. Standardized
tests improve on the reliability but are still prone to subjective
ratings and require human expert knowledge. This paper
presents a novel method to characterize the motor state of
Parkinson patients using full body motion capturing data based
on a combination of multiple metrics. Our approach merges
various metrics with a Random Forest and uses a probabilistic
formulation to compute a one-dimensional measure for the
performed motion. We present an application of our approach
to the problem of relating subject motion to different classes
like healthy subjects and Parkinson disease patients with deep
brain stimulation switched on or off. In the experimental session
we show that our measure leads to high classification rates and
high entropy values for real-world data. Besides, we show that
our method discriminates between Parkinson’s subjects (with
and without stimulation) and healthy persons as good as the
Unified Parkinson’s Disease Rating Scale (UPDRS).

I. INTRODUCTION

Human motion analysis is highly relevant in several ap-
plication domains including humanoid robotics, competitive
sports, rehabilitation and the detection of movement disabil-
ities. The motion of a human is heavily influenced by its
neurological and physiological condition. Especially certain
neurological disorders, such as Parkinson’s disease (PD)
cause movement impairments which need to be properly
assessed in order to achieve a proper diagnosis. A popular
way to analyze human motion is to rely on the visual
inspection and lifelong experience of experts. In the context
of PD, a therapy typically involves multiple estimates of the
current state of a patient. However, these evaluations depend
on previously collected knowledge and differ from one expert
to the other. To arrive at an objective measure, experts
nowadays evaluate a patient with the standardized Unified
Parkinson’s Disease Rating Scale (UPDRS) [11]. This rating
scale collects scores from different short exercises, which
typically cannot be executed correctly by PD patients. The
UPDRS includes tests of the muscle tone (rigor) of arms,
legs, and neck. Moreover, more complex movements (stand-
ing up) and the ability to perform fast repetitive movements
is incorporated. However, the UPDRS suffers from a low
inter- and intra-expert reliability (Richards et al. [14]) and,
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Fig. 1: The XSens motion capture suit and the visualized
skeleton.

thus, is subjective. In addition, the UPDRS covers only a
fraction of motion abnormalities.

In this paper, we deal with the problem of measuring the
performance of movements from PD patients using an XSens
Motion Capture suit such as the one depicted in Fig. 1. We
capture the motion of our subjects performing different tasks
including walking, getting up or pouring water from one
glass into another. All subjects belong either to the group
of Parkinson’s patients with deep brain stimulation, without
deep brain stimulation or to the healthy control group.

Deep brain stimulation (DBS) has become a useful tool
to reduce the motor impairments of PD patients. One can
think of it as a pacemaker for the brain. A few weeks after
the implantation of the electrodes, an expert activates the
stimulator for the first time and adjusts the parameters like
stimulus amplitude, frequency, or pulse width. However, up
to now, adjustments are done on a trial and error base while
getting feedback from a patient. The performance measure
presented in this paper compares the executed motion with
the one of healthy subjects and returns a score. Further-
more, our method detects the performance increase with an
activated stimulation. Our long-term goal is a closed-loop
system in which sensors give feedback to a control unit that
autonomously computes a new set of improved parameters.
The first step towards such a system is a performance metric
for the motion quality, which we present in this paper.



II. RELATED WORK

A performance measure has an important value during a
therapy. However, a lot of research focuses on classification
in a healthy and PD group or between various symptoms.
Stawarz et al. [16] and Boczarska et al. [2] recorded data
with a Motion Capture (MoCap) System and analyzed resting
tremor in limbs with different stimulation settings. They
compared patients with stimulation on/off and medication
on/off and found statistically significant differences between
various parameter settings. Ruzicka et al. [8] deploy a small
MoCap system that tracks the tips of two fingers during
a tapping test which is usually part of the UPDRS and
Lewek et al. [9] recorded the arm swing where they found
differences in the magnitude of the left and the right arm
swing among PD patients. There are several approaches
which use marker based MoCap data of PD patients to
evaluate the trajectory with several metrics and classify the
subjects in different groups ([4, 12, 13]).

In contrast to the previous approaches we make use of a
MoCap suit from XSens which tracks the motion through
inertial measurement units. Similar approaches with a Mo-
Cap suit are those of Giuberti et al. [6, 7] who investigate
the relation between leg motion and the UPDRS.

Overall, assigning scores to the performance quality of a
motion is the topic of this paper. Rincon et al. [15] calculated
four metrics on MoCap data and showed differences between
patients with cerebral palsy and healthy subjects. We deploy
various metrics from Balasubramanian et al. [1] where
the authors researched the movement smoothness of stroke
patients during their rehabilitation time. In combination with
our own metric which calculates the probability of a trajec-
tory to match a certain motion pattern (Fig. 2 shows three
patterns) we combine these single measures with an altered
Random Forest ([3]) into a global performance measure.

Mera et al. [10] showed that the UPDRS and quantitative
variables characterizing tremor relate to stimulation param-
eters. They argued that various settings might be necessary
to improve different motor tasks. Hence, we need a more
generalized method to improve agility more globally. With
our mixture of metrics we are able to compare PD patients
with and without DBS to healthy subjects and rank them
with a score similar to the UPDRS.

III. A HUMAN MOTION PERFORMANCE MEASURE

Human motion is influenced by a number of different
neurological and physiological factors and the challenge for a
performance metric lies in the generalization among various
different styles of motion like arm, leg or body movements.
Even healthy subjects tend to move distinct from one to the
other and they execute tasks in different ways.

A. Data

MoCap allows one to record the movement of the whole
body. We make use of the XSens MoCap suit which stores
the trajectory of a person by saving the position and orienta-
tion of each body segment in the global frame with 120Hz.
There are a total of 23 body segments and 22 joints. The

Condition Quantity
Healthy 25
PD w/o DBS, w/o med. 8
PD w DBS, w/o med. 7
PD w DBS, w med. 8
PD w and w/o DBS, w and w/o med. 6

TABLE I: The quantities of individuals in each condition
group.

distribution of the test group is given in Table I. The whole
testings involve timed up and go, functional reach, 10m
walk, 90 degree turn and a hand coordination task. However,
we chose the 10m walk which is a non-goal oriented whole
body movement task with major impact on life quality.

B. UPDRS

The disease state of PD subjects is usually measured
with the UPDRS. It represents the rating of a human expert
through a mainly visual examination. The score involves the
stiffness in muscles, the quality of repetitive motions and the
ability to perform multitasking with both hands. However,
this evaluation is subjective and, thus, an objective perfor-
mance measure is desirable, which is capable to identify the
severeness of the current condition of a subject.

C. Joint Activity Metric

The Joint Activity metric represents the distance between
a trajectory and a learned motion pattern. Each frame of
each body segment is a probability distribution. In Fig. 2 we
show distribution plots of normalized joint speeds during a
stride of one segment. The first plot is about healthy subjects,
the second one shows the group of PD with DBS and the
third one PD patients without DBS. The color depicts the
likelihood of a given speed at a certain frame during the
stride. Each group has a slightly different speed pattern
during walking. The result of the metric is the likeliness
to be the trajectory of a healthy subject. Hence, healthy and
PD subjects with DBS should achieve a high value while PD
patients without DBS get a low score.

We model the disease state of the subject by the random
variable S, which takes the values {h, pd} = {healthy,PD}.
In order to respect different walking speeds among the
subjects, we normalize the joint speeds as follows. We scale
the strides to equal length N and divide the joint speeds by
the maximum velocity inside of the corresponding stride. For
a given frame t and subject x let

{
vkx,t
}NS,x

k=1
be the set of

normalized joint speeds over all strides, where NS,x denotes
the number of strides.

In the following, we derive the probability of the subject
x to be healthy given the information at frame t. We assume
that all information is given by the set of normalized joint
speeds, modeled by the random variable V . Thus, we are
interested in the probability of the subject x to be healthy
given the set

{
vkx,t
}NS,x

k=1
of normalized joint speeds at fixed
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(a) Healthy subjects
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(b) PD with DBS
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(c) PD without DBS

Fig. 2: Normalized joint speeds during a stride at the foot segment. The stride length was normalized to N = 150 frames.
The color shows the likelihood of the speed over a frame where red is the highest likelihood and white zero. The left picture
depicts the profile of healthy subjects, the middle one the PD group with DBS and the right one the PD group without DBS.

frame t, which, according to Bayes theorem is

Pt

(
S = h | {vkx,t}

NS,x

k=1

)
=

Pt

({
vkx,t
}NS,x

k=1
| S = h

)
P (S = h)

Pt

(
NS,x∏
k=1

V =
{
vkx,t
}NS,x

k=1

) . (1)

We assume that the normalized joint speeds are independent
and that we have no prior knowledge of the probability distri-
bution Pt(V ). Thus, we assume it to be uniform distributed
in the interval [0, 1], which leads to

Pt

(
S = h |

{
vkx,t
}NS,x

k=1

)
= η

NS,x∏
k=1

Pt
(
vkx,t | S = h

)
, (2)

where η denotes a normalization factor. Next, we model the
probability distribution Pt

(
vkx,t | S = h

)
. For each healthy

subject j ∈ H we get a set
{
vij,t
}NS,j

i=1
of normalized joint

speeds over all NS,j strides. Thus, given the training set of
healthy subjects, the optimal probability distribution would
be given by a weighted sum of delta distributions

Pt (V | S = h) =
1

|H|
∑
j∈H

1

NS,j

NS,j∑
i=1

δvij,t(V ). (3)

To avoid overfitting the training data, we add some Gaussian
noise v through a convolution with a normal distribution with
zero mean and through experiments tuned variance σ. Thus,
we obtain the probability that at a given frame t the subject
x is healthy, by

Pt

(
S = h |

{
vkx,t
}NS,x

k=1

)
= η

NS,x∏
k=1

 1

|H|
∑
j∈H

1

NS,j

NS,j∑
i=1

N
(
vkx,t; v

i
j,t, σ

) . (4)

Let vk =
(
vk1 , . . . , v

k
N

)
be the vector of normalized joint

speeds of the k-th stride with N frames. Then the perfor-
mance measure of this stride is given by the mean over the
probabilities, i.e.,

L
(
vk
)
=

1

N

N∑
t=1

Pt
(
S = h | V = vkt

)
. (5)

In the following we combine the Joint Activity metric with
a variation of a Random Forest to obtain a probability
distribution for a subject to be healthy.

D. Random Forest with Probability Distributions

The Random Forest (Breiman et al. [3]) is a method
for classification and regression where multiple decision
trees evaluate their own decision and combine them in a
final step to a global prediction. Due to the nature of a
decision tree a single one would overfit the training data
whereas the Random Forest creates a good generalization.
One generalization idea is to reduce the training set for each
decision tree to a subset drawn with replacement from the
original data. A second step is to consider a subset of features
for each decision tree. One commonly takes the square root
of the total number of features. In our case the feature set is
given by M = T × B, where T is the set of various types
of metrics and B is the set of different body segments. For
each node of the decision tree the metric-body segment pair
which optimizes information gain is used to split the data
into two subsets.

The resulting decision tree has on every node a threshold
for a specific metric and body segment. All results, combined
in a majority count or mean, predict the class or a score.
However, we are not interested in the precision of the
classification but separation of data in each tree node. The
idea of a Random Forest with probability distributions is that
on each node the probability distribution of being a healthy
subject and being a PD w/o DBS are computed. Hence, the
probability of a data value xm of a metric-body segment pair
m to be of a healthy subject is

Pτ (S = h | xm) =
P (xm | S = h)P (S = h)∑

s∈{h,pd}

P (xm | S = s)P (S = s)
, (6)

where τ is one of the decision trees.
Given the data value xm of a stride of one person ĵ, we as-

sume the probabilities P (xm | S = h) and P (xm | S = pd)
to be normally distributed plus uniform noise. We use leave-
one-out cross-validation to compute the means (µHm

, µOm
)

and variances
(
σ2
Hm

, σ2
Om

)
of each normal distribution. Let

Hm = Hm,̂j be the values of healthy subjects and let
Om = Om,̂j be the values of PD subjects without Deep



Brain Stimulation for m, except all values which correspond
to person ĵ. For the computation of the variances we use the
corrected empirical variance, i.e.,

σ2
Hm

=
1

NHm
− 1

NHm∑
i=1

(
Hi
m − µHm

)2
, (7)

where NHm
is the number of elements in Hm. We calculate

the same for the set Om and obtain N (µHm
, σ2
Hm

) and
N (µOm , σ

2
Om

). Thus, we get

P (xm|S = h) ∝ αN
(
µHm

, σ2
Hm

)
+ (1− α)U(0, 1)

and P (xm|S = pd) ∝ βN
(
µOm , σ

2
Om

)
+ (1− β)U(0, 1),

where α, β ∈ [0, 1] denote weight parameter and U(0, 1)
is a uniform distribution in the interval [0, 1], which takes
movement outliers into account. In the experiments we
choose α, β = 2

3 . In each node n ∈ N the metric-body
segment pair m = m(n) = mn is chosen which optimizes
the information gain. Thus, one might assume that the metric-
body segment pair of a subsequent node is independent of
its root node. With this assumption we end up with

Pτ (S = h | x) =
P (S = h)

∏
n∈N

P (xmn
| S = h)

∑
s∈{h,pd}

(
P (S = s)

∏
n∈N

P (xmn
| S = s)

) ,

(8)
where x = (xk)k∈M denotes the total feature-vector.

Each decision tree τ computes an individual probability
Pτ (S = h | x). The mean over all probabilities yields the
final score for a stride

P (S = h | x) = 1

NT

NT∑
τ=1

Pτ (S = h | x), (9)

where NT denotes the number of decision trees.
As mentioned above we use the Joint Activity metric

as a feature set for our proposed variation of the Random
Forest. Besides this, we use several metrics defined by
Balasubramanian et al. [1] as underlying feature sets. This
includes the Spectral Arc Length, the Root Mean Square
Jerk, the Speed Arc Length, the Dimensionless Jerk, the
Log Dimensionless Jerk and finally the Normalized Mean
Absolute Jerk. Additionally, we apply the Random Forest
with probability distributions to the union of all the used
feature sets above. In the following, we call the obtained
combinations measures and denote them by the name of the
used metric.

IV. EXPERIMENTAL EVALUATION
In our context a good performance metric has to fulfill

multiple aspects. First, the metric has to be able to classify
each subject into its respective class. Second, the information
content of the metric should be high, and third, the metric
should be close to state of the art PD rating scales evaluated
by human experts like the UPDRS.

We first look at the classification results before we discuss
the quality of a measure to distinguish between healthy
subjects and PD patients without stimulation.

Metric Precision in % Recall in % F-Score in %
JA 91.5 85.5 88.4
SAL 98.5 95.9 97.2
RMSJ 87.3 86.1 86.7
SpAL 95.7 74.7 83.9
DJ 85.9 72.6 78.7
LDJ 85.9 71.7 78.2
NMAJ 95.7 73.1 82.9
Combined 100.0 91.0 95.9

TABLE II: Precision, recall and F-Score of all metrics
combined with a Random Forest and a Random Forest over
all metrics. Hereby, JA denotes the Joint Activity, SAL the
Spectral Arc Length, RMSJ the Root Mean Square Jerk,
SpAL the Speed Arc Length, DJ the Dimensionless Jerk,
LDJ the Log Dimensionless Jerk and NMAJ the Normalized
Mean Absolute Jerk.

A. Classification Rates

Fernandez et al. [5] compared various classification and
regression algorithms. The Random Forest came out to be the
best among all training sets. Table II displays precision, recall
and F-score for Random Forests trained on different metrics
as feature set. Each Random Forest is either trained on all
dimensions of a metric or all metrics combined and consists
of 100 trees without depth restriction where we train each
tree with 40 percent of the data and the square root of the
total number of features. Except for the Root Mean Square
Jerk, the Dimensionless Jerk and the Log Dimensionless Jerk
all other metrics have precision rates above 90% where the
Spectral Arc Length and the combination of all measures
have recall rates above 90%. The Spectral Arc Length has
with 97.2% the highest F-Score.

However, our main focus is not the classification but
the definition of a objective measure for the performed
movements. Overall, the metric should distinguish between
Parkinson subjects with and without stimulation while main-
taining a smooth transition between both groups.

B. Entropy

Our goal of a objective measure is not a binary classi-
fication but a one-dimensional measure which spreads over
the entire metric space. Not every subject inside a group
performs equally well. Hence, we want that the distribution
of metric values is spread over the entire interval to have the
possibility of a smooth transition between off and on state.
Fig. 4 shows the normalized entropy values

η = −
N∑
n=1

P (S = h | xn) logP (S = h | xn)
logN

(10)

for each metric over all samples (Parkinson patients with and
without stimulation and healthy subjects). Hereby, η = 1
would represent a uniform distribution and η = 0 a delta
distribution. On top of each bar is the F-Score and we
see that metrics with an high F-Score (bold) achieve a
higher normalized entropy than their classic Random Forest
counterparts. Overall, the variation of a Random Forest
creates a more distributed metric space than the classic one
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(0.875 against 0.821). The most uniform distributed metrics
are the Joint Activity with our variation of a Random Forest
and with the classic Random Forest.

This reveals that the combination of all metrics with a
Random Forest distributes all measures over the entire metric
space. Hence, it is possible to see meaningful differences
between stimulation activated and stimulation turned off.

C. Performance Improvement Between Off and On Condition

In Fig. 5 we see the performance increase among PD sub-
jects. For the Spectral Arc Length six out of six subjects show
an improvement, where the effect for one is negligible. Five
patients show an performance increase if we look at the Joint
Activity, the Root Mean Square Jerk and the combination
of all measures. The Speed Arc Length, Dimensionless Jerk,
Log Dimensionless Jerk and Normalized Mean Absolute Jerk
have patients with increased performance, too, but the values
are closer to each other.

Overall, the combination of all metrics with our altered
Random Forest and the classic Random Forest show the
correct shift of performance between off and on condition
as well as a data distribution over the entire interval.

JA

SAL

RMSJ

SpAL

DJ

LDJ

NMAJ

Combined

C-Combined
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

PD w/o DBS PD w DBS

Fig. 5: Shift of patients with both active (blue) and inactive
DBS (red). Overall, the performance increases with an active
stimulation. The measures are notated as in Table II.

D. Measure Scores

Fig. 3 displays the value distribution of each measure. It
contains four groups of points for each measure: one for
the healthy subjects (circles) and three for the PD patients
(crosses). Joint Activity, Spectral Arc Length and combined
show the expected outcome that PD subjects get a low score,
healthy subjects are close to one while PD patients with
DBS are somewhere in between. Root Mean Square Jerk’s
tendency is correct but distributes the healthy scores. The
other measures mix all four groups and are not reliable.

Fig. 6 shows the probabilities to be not healthy such
that a comparison to the UPDRS mean score is possible.
Joint Activity, Spectral Arc Length, Root Mean Square Jerk,
and combination of all measures compute for most healthy
subjects (black) a low probability and a high one for PD
subjects without DBS (blue). The mean UPDRS is 44, where
0 is a perfect score and 100 is the worst possible outcome.
However, 61 is the worst value in our data set. Hence,
we use it as a threshold in Fig. 6. Joint Activity, Spectral
Arc Length, Root Mean Square Jerk and the combination
behave similar to the UPDRS. Interestingly, PD subjects
with DBS (red) offer values between that of healthy subjects
and PD without DBS. In comparison, the mean UPDRS
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is 22.5. Hence, for both, the measures and UPDRS, the
performance increased from inactive to active stimulation.
Dimensionless Jerk, Log Dimensionless Jerk, Speed Arc
Length and Normalized Mean Absolute Jerk have slight
differences between the off condition and healthy subjects
and as such are not reliable.

The classic Random Forest behaves similar than our ver-
sion. The mean values for either Parkinson’s patient with and
without stimulation are close to the UPDRS value. However,
the mean value of healthy subjects is closer to zero than the
mean of the altered Random Forest.

We have seen that our combination of metrics with an
altered Random Forest delivers a possibility to separate data
of different subjects into their respective groups as well as
present a shift between different states like with and without
stimulation.

V. CONCLUSIONS
The paper proposes a new metric termed Joint Activity

to quantify the performance of a PD patient in comparison
to the motor behavior of healthy subjects. The Joint Activity
and multiple other metrics are the input for a Random Forest
where we exploit the tree structure to compute probability
distributions to be either a healthy subject or a PD patient.
Our results show that these probability distributions can be
used to form a performance measure to quantify the progress
during a therapy or to evaluate the efficacy of a set of DBS
stimulation parameters by comparing motions before and
after DBS is turned on. In contrast to the UPDRS our metric
is objective and not prone to intra- and inter-expert variability
errors. Furthermore, it is the first step towards a closed-loop
system to automatically adjust DBS parameters.
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