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Abstract— An objective performance measure for movement
tasks is widely regarded as having utmost relevance for the
therapy of movement disorders. Existing systems typically rely
on human experts, which is known to produce substantial
inter- and intra-rater variability. Present solutions are either
based on simple features or invasive motion capture techniques.
They typically work on a specific motion task only and fail
to generalize to other tasks. In addition, they often require
manual offline pre- and post-processing. In this paper we
present a novel approach to compute a continuous and objective
performance measure online during a patient session, without
tedious and time-consuming pre- or post-processing steps. Our
approach is able to generalize between different motion capture
devices and different motion tasks. It runs on live motion data
extracted with a non-invasive marker-less off-the-shelf vision-
based tracking system as well as on data extracted from an
inertial measurement unit suit. In the experiments we show
that our approach is competitive with an offline approach as
well as with the Unified Parkinson’s Disease Rating Scale. Our
approach is robust with respect to motion execution speed and
it outperforms the offline approach regarding movement task
generalization. We show promising results to track the current
state of a Parkinson’s subject online during a therapy session.

I. INTRODUCTION

In the first few years of our life we have tediously learned
and optimized first simple and later more and more complex
motions. We extended our skill database by additional motion
patterns like swimming, biking or dancing. However, the
older we get the more of our abilities we lose. Besides other
reasons this might be caused by neurological disorders.

In this work we have a closer look at subjects who are
influenced by the neurological disorder Parkinson’s disease
(PD) which typically starts to develop at the age of 60
and can lead to severe motor impairments. However, due
to therapy, medication and other interventions, like Deep
Brain Stimulation, the quality of life can be improved again.
Affected people undergo many therapies which involve
continuous performance tracking. The disease progression
is currently qualified using various tests like the Unified
Parkinson’s Disease Rating Scale (UPDRS) [11], where the
Parkinson’s patients perform full body motion tasks. An
expert is measuring the decline in stiffness, smoothness
and agility in each limb and body part which creates the
UPDRS measure to keep track of the movement capabilities.
However, each human expert has a subjective view on each
patient due to a distinct experience and diverse knowledge
base. The state-of-the-art performance measure in Kuhner et
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Fig. 1. The commercial The Captury system extracts the trajectory of a
subject and our algorithm computes an online performance measure where
a high value represents movement similar to a healthy subject. The pictures
show the computed skeletons of a Parkinson’s patient (left) and a healthy
subject (right) in one of the camera frames. The respective graphs below
the pictures depict the course of the motion quality during the exercise
timed-up-and-go on the way back to the chair.

al. [8] does not require any human rater and, as such, is
objective. The method is capable to distinguish between
subjects with and without Parkinson’s and gives a real valued
performance score. Unfortunately, the algorithm in Kuhner et
al. [8] requires tedious and time-consuming pre- and post-
processing of the motion data. Thus, the therapy process and
the progression of Parkinson’s disease can not be tracked
online. Furthermore, the algorithm does not generalize well
to other tasks than walking.

In this paper we present an online performance measure,
which does not require any offline pre- or post-processing of
the data and generalizes well over different motion tasks.
We developed a system which consists of two parts: In
an offline step we train our machine learning algorithm on
motion capture data and in the online part we compute the
performance measure continuously from a tracked subject.
Our experimental evaluation shows, that the trained algo-
rithm produces a reliable measurement score independent
of the used motion capture device. We test this with two
different motion capture systems, the commercial vision-
based marker-less motion capture system Captury Live from
The Captury (www.thecaptury.com, [16]) and the XSens
motion capture suit.

In Fig. 1 we see a Parkinson’s patient (left) and a healthy
subject (right) being tracked with Captury Live and their
respective live performance measures below each picture.



II. RELATED WORK

Online tracking of movement quality is quite complex.
Therefore, many studies have been conducted on the feasi-
bility of tracking systems involving a minimal amount of
sensors. Gonzáles et al. [7] evaluated two systems: The
first with two acceleration sensors mounted on the ankles
and, the second, an RGB-D camera with 3D pointcloud
processing. They compared both systems with the GaitRite
electronic walkway. Their aim was to track the inherent gait
variability among ten test subjects and found that the inertial
units can be competitive while the vision-based system lacks
some consistency among subjects. Parisi et al. [14] and
Chang et al. [4] deploy inertial measurement units to extract
gait parameters and analyze them with various techniques.
Lebel et al. [9] focuses on joint orientations and the usability
of their raw signal produced by inertial measurement units.
By training an artificial neural network on the data of
20 subjects they classified good from bad joint orientation
sequences with a sensitivity and specificity above 83%. All
of the just mentioned competitive approaches use a small
number of inertial measurement units. In contrast, we deploy
full body capture devices to track the skeleton motion of
the whole body which enables us to qualify the complete
movement and to compute a one dimensional score.

Gait detection is crucial in order to evaluate the state of
a subject. Papageorgiou et al. [13] tackles this problem with
a walker for elderly people equipped with a Hokuyo laser
scanner to extract the foot motion. Data combined with a
Hidden Markov model enables the estimation of different
gait parameters. Altilio et al. [1] takes a closer look on
feature selection which is important for motion evaluation.
They compared multiple machine learning techniques with
different feature subsets. Their findings show that step length,
swing speed as well as cadence and stride provide non
redundant data. Their main focus lies on classification. Our
approach is not restricted to gait and proposes a real valued
score instead of a binary classification value.

Systems based on inertial measurement units are always
obtrusive and a patient might feel restricted. To circumvent
this, Cunha et al. [5] deploys a Microsoft Kinect to track
the movement of a subject to analyze relevant events, which
is completely non-invasive. Funaya et al. [6] investigates
the accuracy of the Microsoft Kinect SDK to apply the
device in studies of balance disorders and observes that the
precision of the system fulfills the requirements of standard
balance tests. Okada et al. [12] tries to improve posture
among Parkinson’s patients while using the Microsoft Kinect
for visual feedback. The aim was to increase the bending
flexibility in the anterior angle which was achieved with
significant improvements. Along that line we developed a
system which relies solely on a marker-less vision-based
system (Captury Live) to track the motion of a subject
through space. This system uses up to 12 RGB Cameras
and thus allows to capture complicated motion tasks with
occlusions.

III. SYSTEM

Therapists have to continuously rate patients. However,
the inter- and intra-rater consistency is not very high due to
different knowledge bases. To overcome this limitation we
employ a system which tracks a person with a motion capture
device and computes an objective performance measure
without offline pre- or post-processing of the data.

First, in Sec. III-A we describe the advantages of using
a vision-based motion capture device in the context of
medical studies. In Sec. III-B we describe the randomized
architecture of our algorithm. In Sec. III-C we elaborate on
the matching of data from different motion capture devices.
Finally, we present the live system which is capable to track
the performance quality of a subject.

A. Marker-less Motion Capture System

Typically, patients are burdened with many diagnostic
examinations and therapeutic interventions during a hospital
stay and, depending on the disease, are weakened due to drug
regimens. Hence, a non-invasive system is desirable.

Motion tracking is a wide research field with different
approaches. So far, the most promising results came from
systems which either use inertial measurement units or attach
highly reflective markers to subjects. However, both systems
are tedious to set up. For marker-based systems which have
been automatized over the last years, see [10, 15], the
attachment of markers to patients is still invasive while suit
systems require sensors across the whole body.

Marker-less vision-based systems overcome the limitation
of the previously mentioned motion capture devices by
working on RGB data without the use of any sensor which
makes the system less obtrusive.

In this work we use a marker-less vision-based motion
capture system. The commercial system from The Captury
is a good solution due to its easy setup time and its accuracy
allows medical studies. We installed the system in a room
to get a tracking volume of roughly 28m2 where a patient
can execute a couple of exercises like timed-up-and-go, a
circular walk and functional reach. After an initialization
gesture the subject can easily be tracked. The system uses
12 RGB cameras which run with a frequency of 120 Hz.
The setup involves calibrating each single camera (intrinsic
calibration), the cameras to each other (extrinsic calibration)
and the extraction of the background. Those calibrations can
be stored and used later which makes the system perfect for
a static hospital environment. A patient steps into the system
and, after a short skeleton calibration, one can either record
or use the data in an online fashion.

The following section explains the improved performance
measure.

B. Randomized Architecture

Therapists of motion disorder diseases track the movement
quality state of a patient during motion. However, this
introduces inter- and intra-rater variability due to different
experience and leads to a subjective opinion. To solve this



challenge we invented an objective performance measure in
[8].

In Balasubramanian et al. [2] the center out motion task of
stroke patients was analyzed with several smoothnes metrics.
This includes the Normalized Mean Absolute Jerk, Speed
Arc Length, Root Mean Square Jerk, Dimensionless Jerk,
Log Dimensionless Jerk and Spectral Arc Length. We use
all of them together with the Joint Activity from Kuhner et
al. [8] which represents the distance between two motion
trajectories and combine them using a Random Forest [3]
with probability distributions.

Besides, the performance measure should also be appli-
cable for full body motion tasks. It is well known that
the structure of a Random Forest and its Decision Trees
can heavily influence the generalization capabilities of the
algorithm. Hence, we applied two enhancements to the
construction of Decision Trees in Kuhner et al. [8]. Therein,
each Decision Tree received a randomly chosen subset of the
training data S, consisting of a randomly chosen subset of
features F . To decide which feature was used in a respective
node the best separating threshold δbesti was calculated for
all present feature fi ∈ F and the overall best feature with
the corresponding threshold was chosen. In our approach
we change two parts: First, we do not compute the best
separating threshold but sample a threshold δrandi from a
uniform distribution in the range of [δmini , δmaxi ]:

δrandi ∼ U(δmini , δmaxi ). (1)

Second, we choose the feature fi in a node which maximizes
the information gain:

IG(Si) = H(Si)−
∑

v∈{L,U}

|Mv|
|Si|

·H (Mv), (2)

where Si is the set of samples of feature fi and H(Si)
represents the entropy:

H(Si) = −
∑
c∈C

|Sci |
|Si|
· log |S

c
i |
|Si|

, (3)

with the class index c ∈ C = {h, pd} = {healthy, Parkin-
son’s patient}, Sci is the set of samples of feature fi and of
class c and ML, MU are defined by

ML = {x < δi|x ∈ Si},
MU = Si \ML.

In the experiments we show that these changes allow for
better generalization and allow to score motions which the
algorithm has not seen before.

The following section presents our live system which is
capable to track the performance quality of a patient online.

C. Live System

A motion performance measure requires robustness with
respect to the used motion capture device. Therefore, we
need an automatic pre-processing method which matches
motion trajectories from different devices. In the experiments
we align data from the vision-based to data from an inertial
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Fig. 2. Offline step: We first use motion capture training data to learn
our Random Forest and compute the probability distributions. Online step:
After a pre-processing smoothing step, we compute the metrics on the live
data, then, propagate the metrics through the trained Random Forest with
probability distributions, which leads to the final performance measure.

measurement suit. Anyhow, our alignment is not restricted
to data from these devices. The motion data from The
Captury is typically noisier than our motion capture suit data.
We take this into account through an online smoothing as
preprocessing step. We use Gaussian smoothing

x̂i =

N∑
j=−N

wjxi+j , (4)

where xi is motion data of frame i, N denotes the window
size and wj are normally distributed weights

wj ∼ N
(
0, σ2

)
, (5)

with standard deviation σ. We optimize the parameters N
and σ by comparing motion capture suit data to the vision-
based data. Let

errσ,N =
1

|X|
∑
x∈X

∣∣P (S = h | xsuit)− P (S = h | x̂visσ,N )
∣∣,
(6)

be the error between both systems depending on our perfor-
mance metric P (S = h | x): The likelihood to be healthy
given the motion data. Thereby, X is the set of subject
samples. We minimize this term with a breadth search over
the parameter space.

In Fig. 2 we see an overview of the system and its two
components. First, in the offline step, we compute the Ran-
dom Forest and its respective probability distributions with
segmented timed-up-and-go data from our motion capture
suit. A whole sequence of such a try is split into its standing
up, forward walking, turning, walking back and sitting down
phase. We choose this kind of task because this set of
different motion patterns represent everyday movements.

Yet, to avoid any offline pre-processing we do not segment
the motion data during the online performance tracking. To
compute the current performance we take the last n frames
of data, smooth it accordingly and calculate the performance
measure. Hence, our performance metric has to generalize
sufficiently to deal with distinct motion patterns.
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Fig. 3. Performance tracking for a healthy subject (left) and a Parkinson’s patient (right). High values correspond to a healthy subject while low values
represent Parkinson’s patients. Different segment lengths are compared to each other. The test subject does not move during start and end of the motion.
Hence, the performance measure drops to low values.

Healthy PD w/o Stim. PD w Stim.

# of TUG Subjects 25 14 20
# of TUG Data Sets 97 56 137

# of FR Subjects 26 12 19
# of FR Data Sets 26 12 36

# of HC Subjects 26 15 20
# of HC Data Sets 155 81 219

TABLE I. The number of subjects and data sets. We have for each subject
at most 4 data sets of a timed-up-and-go (TUG), 6 of a functional reach
(FR) and 1 of a hand coordination task (HC). However, Parkinson’s patients
with stimulation can be present in different stimulation settings and each
Parkinson’s patient can be both in the stimulated and non-stimulated set. We
take for training only the group of healthy subjects and Parkinson’s patient
without stimulation.

IV. EVALUATION

Our system has two main components. The first one is the
offline part where we train our Random Forest with motion
capture data. Here, we use data from the motion capture
suit because of its higher precision compared to the vision-
based system. Our training dataset consists of 59 recording
sessions. See Table I for more information. The data from
the motion capture suit is first segmented into smaller
sequences which represent important everyday movements
like standing up, walking, turning or sitting down. These
sequences compose the training data on which our Random
Forest is finally trained. However, this introduces several
challenges for the online part: First, in a pre-processing step,
we segment our offline data into sequences while our online
data is continuous. Hence, the system has to be robust against
different kind of unknown motions. Second, in the case we
use live data from the marker-less vision-based system we
need to apply the smoothing described in Sec. III-C.

A. Performance Improvement

In the first experiment we compare our approach to Kuh-
ner et al. [8] where we enhanced the structure of the Random
Forest to better generalize over different motions. In Fig. 4
one sees the comparison. We improved the separation quality
in the walking as well as functional reach task and correctly
score healthy subjects during the hand coordination task with

 0

 20

 40

 60

 80

 100

Kuh
ne

r 2
01

6  
    

 

Our 
App

roa
ch

    
  

Kuh
ne

r 2
01

6  
    

 

Our 
App

roa
ch

    
  

Kuh
ne

r 2
01

6  
    

 

Our 
App

roa
ch

    
  

UPDRS    
   0

 12

 24

 36

 48

 60
Walking Func. Reach Hand Coord.

M
ea

n 
Pr

ob
ab

ili
ty

 in
 %

Healthy PD w/o stim, w/o med PD w stim, w med

Fig. 4. The graph shows the comparison of Kuhner et al. [8] to our
approach on the same data set (Table I). We compare three motion tasks
(walking, functional reach and hand coordination) and take the mean over
all subjects in each group (healthy, Parkinson’s patient without stimulation
and medication and Parkinson’s patient with stimulation and medication).
The Unified Parkinson’s Disease Rating Scale (UPDRS) verifies our results.

a lower performance measure than Parkinson’s patients with
stimulation which Kuhner et al. [8] does not.

B. Segment Length

The first challenge to deal with is the used time segment
length to compute each metric. In the offline case we have
segments of data which represent everyday movements.
However, we deploy a live system and continuously track
the performance of a subject. Therefore, waiting for a
meaningful segment is not applicable. Thus, we compute our
performance measure on a fixed time interval.

In this experiment we focus on the optimal segment length.
In Fig. 3 we see two example graphs from a healthy subject
(left) and a Parkinson’s patient (right) with different lengths
of segments. Overall, we reach the most promising results
with 200 frames which corresponds to the mean segment
length of the training samples. Here, the healthy subject
reaches a score around 75 while the Parkinson’s patient is
around 45 which is the biggest gap between both subjects.

This section was about one of three parameters to choose.
The next section deals with consistency among different
systems. Therein two smoothing parameters are chosen.
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Subject Suit Data Vision-Based System Diff.
µ± σ µ± σ µ± σ

H 84.5 ± 3.81 75.4 ± 2.91 9.05 ± 1.11
PD 36.2 ± 1.99 41.2 ± 2.62 5.06 ± 0.67
PD DBS 59.5 ± 1.02 59.3 ± 0.14 0.72 ± 0.17

TABLE II. Evaluation of different motion capture systems: The XSens
motion capture suit and the vision-based system The Captury. We compare
three subjects. A healthy subject (H) and a Parkinson’s patient with
(PD DBS, UPDRS of 20) and without (PD, UPDRS of 50) Deep Brain
Stimulation. The mean of both systems are close to each other with an
overall mean difference of 4.94 and standard deviation of 0.65.

C. Consistency over Different Systems

We deploy two systems to record data: For training we
use motion capture suit data due to its higher precision
and for live tracking we collect data from a marker-less
vision-based system which is less invasive. Typically, this
data is noisier than data from the suit. To deal with this
challenge we apply a smoothing parameter optimization to
transform the data from the vision system into a similar
motion capture suit data shape. Fig. 5 shows results of
the optimization over the parameter space. We compute the
error by comparing simultaneously recorded data from both
motion capture suit and vision-based system. Typically, short
smoothing windows and low standard deviations generate a
high error and lead to an identity function: xpost = xpre.
On the other hand, a high standard deviation and a long
smoothing window eliminates each interesting feature of the
signal. The best results (black values) were achieved with
a standard deviation of σ = 3.8 and a overall smoothing
window length of 11 = 2N + 1, hence, N = 5. In
Table II we show the results of a direct comparison between
motion capture suit and vision-based system with optimized
parameters. The overall mean difference between suit and
vision-based system is 4.94 with a standard deviation of 0.65.
Summarized, both systems map the current state of a subject
to appropriate and similar values without the need to offline
pre- or post-process the used data.

The next section describes how the continuous measure
compares to segmented data.

Subject Seg.
Performance

Cont.
Performance Diff.

µ± σ µ± σ µ± σ

H1 90.4 ± 1.01 90.2 ± 0.56 1.23 ± 0.42
H2 89.7 ± 0.98 85.5 ± 0.83 4.21 ± 0.98
H3 83.7 ± 1.57 82.3 ± 2.89 1.34 ± 1.33
H4 86.7 ± 1.98 90.2 ± 0.77 3.52 ± 1.53
PD1 44.5 ± 3.02 50.1 ± 2.86 5.62 ± 0.65
PD1 59.8 ± 2.96 55.2 ± 10.1 7.21 ± 3.36
PD2 39.6 ± 2.23 53.6 ± 1.68 14.0 ± 3.23
PD2 DBS 74.5 ± 2.11 78.2 ± 1.67 3.74 ± 1.23

TABLE III. Performance measure of various subjects from segmented data
as well as continuous data. All values are in the interval [0, 100] where
0 represents a very bad Parkinson’s patient and 100 a healthy subject.
H1 to H4 represent healthy subjects while PD1 and PD2 are Parkinson’s
patients.The UPDRS of the first day for PD1 is unknown. At the second
day the patient had an UPDRS score of 51.5. PD2 was measured once with
stimulation (PD2 DBS, UPDRS 20) and one time without (PD2, UPDRS
50), where both measurement were taken within 20min. Shown are mean
and standard deviation values of the performance and difference between
segmented and continuous data.

D. Segmented Data vs. Continuous Data

In an offline scenario one can manually pre-process data
to find interesting segments like standing up or walking. In
the online case we have to continuously compute the perfor-
mance measure on data generated in the last few seconds. As
shown in Sec. IV-B, n = 200 is a suitable number of back-
tracked frames. We recorded the exercise timed-up-and-go
which consists of different everyday movements where the
continuous data starts with standing up and ends with sitting
down. In between, we calculate a continuous performance
measure and, to compare both variants with each other, take
mean and standard deviation from both. Table III shows the
results. The difference between segmented and continuous
data is smaller for healthy subjects than Parkinson’s patients.
Overall, we have a mean error of 5.1 with a standard
deviation of 4.2. The performance measure is in both cases
verifiable through the UPDRS where low UPDRS values
correspond to high values of our performance measure.

E. Performance Measure Robustness

In the following we want to show that our proposed per-
formance measure is robust to the variance in the movement
execution. Therefore, we ask the subjects to increase their
movement speed during a circular walk. We can show that
the performance score is not only influenced by changes
in speed, which is an important aspect in the diagnoses of
Parkinson’s disease, but by other features as well. Fig. 6
shows the performance and speed change. We see that
increasing the speed increases the performance measure as
well. However, even while walking at the same speed the
healthy person has a higher score compared to the Parkin-
son’s patient. Fig. 7 shows the same results. We removed
the start and end segment to avoid data without movement.
Parkinson’s patients have a lower score even with the same
mean speed. In the overlapping region between 0.8m/s and
0.95m/s, healthy subjects get roughly a score of 82 while
Parkinson’s subjects get roughly a value of 70.
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The results show that we can transfer data from the vision-
based system to the motion capture suit and that the system
can compute a live and continuous performance measure.

V. CONCLUSIONS

In this paper we proposed a novel live system without
tedious and time-consuming pre- or post-processing of data
to objectively track the performance of Parkinson’s patients.
Our approach is able to generalize over different motion
tasks and motion capture devices. In the experiments we
show that we can track the current state of a Parkinson’s
subject online during a therapy session. This is a further
step towards a closed loop system to adjust parameters of
a deep brain stimulator for Parkinson’s patients which, well
tuned, improves the motion abilities to a former state.
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