
Closed-Loop Robot Task Planning Based on Referring Expressions

D. Kuhner J. Aldinger F. Burget M. Göbelbecker W. Burgard B. Nebel

Abstract— Increasing the accessibility of autonomous robots
also for inexperienced users requires user-friendly and high-
level control opportunities of robotic systems. While automated
planning is able to decompose a complex task into a sequence
of steps which reaches an intended goal, it is difficult to
formulate such a goal without knowing the internals of the
planning system and the exact capabilities of the robot. This
becomes even more important in dynamic environments in
which manipulable objects are subject to change. In this paper,
we present an adaptive control interface which allows users to
specify goals based on an internal world model by incrementally
building referring expressions to the objects in the world.
We consider fetch-and-carry tasks and automatically deduce
potential high-level goals from the world model to make them
available to the user. Based on its perceptions our system can
react to changes in the environment by adapting the goal
formulation within the domain-independent planning system.

I. INTRODUCTION

Service robotics is a field which has received rising interest
over the past years. However, many systems are limited
regarding the different tasks they can execute and thus are
typically applied to specific tasks such as cleaning the floor
or mowing the grass. With increasing flexibility, robotic
service assistants require various components. In addition
to techniques for robot motion generation and perception,
they need to be able to determine appropriate high-level
plans that split the given task into executable sub-tasks.
Furthermore, they require a communication layer that is
easy to understand, even for non-expert users, to enable
the interaction between the user and the task and motion
planning (TAMP) algorithms controlling the robot.

In this paper, we introduce a novel framework that com-
bines components from robotics, planning, computational
linguistics and user interface design in order to build a
system that allows non-expert users to control a complex
robotic system. Fig. 1 depicts the central components of our
framework: a non-expert user (left) interacts with an intuitive
graphical user interface (GUI, middle) to control the robotic
system (right). The focus of this work is the development of
a dynamic menu-driven user interface, which assists the user
in selecting possible goals. It acts as an abstraction layer
between natural language and the TAMP algorithms. The
interface adapts available menu entries based on the current
world state to close the control loop.

High-level task planning provides an intuitive interface for
specifying desires and goals to the service assistant. Whereas

All authors are with Albert-Ludwigs-Universität, Institut für Informatik,
79110 Freiburg, Germany. {kuhnerd, aldinger, burgetf, goebelbe, burgard,
nebel}@informatik.uni-freiburg.de. This research was supported by the
German Research Foundation (DFG, grant number EXC 1086)

User Interaction Goal Selection Motion Execution

Fig. 1: A user (left) interacts with the goal formulation interface (middle)
to control a robotic system (right).

high-level planner actions such as drop or move are typically
presented in a human readable fashion, objects are usually
assigned internal expressions, such as ID3185 instead of
human readable references, e.g., red cup on the shelf. The
problem of generating referring expressions [1] to objects
that can be understood by both, human and machine, is
studied in the field of natural language generation (NLG) [2].
Recently, Göbelbecker [3] proposed the foundations for gen-
erating references to objects in the context of assisting human
users in specifying the goal of a planning task. Following
this approach, human operators can express desires such as
bring me a glass of water to the task planner without the
need of knowing the underlying system. Our communication
goal has a simple structure, namely the action to be executed
complemented with an object in the world for each parameter
of the action. Therefore, we do not rely on a full natural
language component and are satisfied with formal language
which is comprehensible for non-expert users. We opt for
a menu-driven goal formulation interface which only offers
applicable actions and feasible objects to the user. Such an
interface is even suitable for control by brain signals decoded
from an EEG-cap as shown in our previous work [4]. We
evaluate the proposed approach in a real world pick and place
scenario and substantiate our system in a user study.

II. RELATED WORK

When humans communicate goals to other humans, they
identify objects in the world by referring expressions (e.g., a
red cup on the shelf). The generation of referring expressions
has been subject to computational linguistics research for
years as one part of natural language generation [5]. With
recent advances in natural language processing, computer
vision and the rise of neuronal networks, it is nowadays
possible to identify objects in images by building referring
expressions generated from features [6]. Spatial references
can be used to discriminate similar objects [7]. Robotic
systems can furthermore not only be controlled by natural
language, they can even learn more complex tasks composed
of several primitive actions [8]. NLG has been approached
with planning techniques [9] where the goal of the planning

problem is the generation of natural language. However, such
systems usually lack knowledge about the actions that can
be executed and the objects that can be manipulated.

The output of our goal formulation component is a task
plan, and we assume that high-level actions (tasks) can be
refined to trajectories (motions) of the robot, if the task plan
is consistent with the world model in the knowledge base.
There are different approaches to solve the TAMP problem,
and most of them could be integrated into our framework.
Common to most TAMP approaches is a hierarchical de-
composition of the problem into task and motion planning
layers. Due to the high dimensionality of the TAMP problem
the decomposition can be understood as a way to guide
the low-level planners based on the high-level plan solution
and vice versa. For example, Kaelbling et al. [10, 11]
propose an aggressively hierarchical planning method. Such
a hierarchical decomposition allows to handle problems with
long horizons efficiently. De Silva et al. [12] show an
approach based on Hierarchical Task Networks (HTNs) to
reason on abstract tasks and combines them with a geometric
task planner which works in a discrete space of precomputed
grasp, drop and object positions. Recently, Dantam et al. [13]
introduce the probabilistically-complete Iteratively Deepened
Task and Motion Planning (IDTMP) algorithm, which uses
a constrained-based task planner to create tentative task
plans and sampling-based motion planners for feasibility
tests. Srivastava et al. [14] focus on a planner-independent
interface layer between task and motion planners. Lozano-
Pérez et al. [15] postpone the decision on motion plans
to avoid expensive backtracking due to restrictions which
might happen, if the low-level planner is queried too early.
Instead, they generate a ”skeleton” high-level plan and a set
of constraints, which need to be satisfied to achieve the goals
of the high-level planner. Dornhege et al. [16] integrate task
and motion planning by extending the TFD task planner [17]
with semantic attachments, i.e., modules which check the
feasibility of motion plans on demand to ensure that task
plans can be refined to motion plans.

III. HIGH-LEVEL GOAL FORMULATION PLANNING

Our approach adopts domain-independent planning for
high-level control of the robotic system. Whereas automated
planning seeks to find a sequence of actions to reach a certain
goal, the intended goal of the robotic system is determined
by the user. Specifying goals directly requires insight into
the internal representation of objects in the knowledge base.
In our framework, the knowledge base maintains a world
model depending on, e.g., perception input automatically.
This obstructs direct user access to the objects. Instead, we
allow referring to objects by their type and attributes. Our
automatic goal formulation assistant incrementally creates
references to feasible goals in a menu-driven GUI.

A. Domain-Independent Planning

Automated planning is used to transfer a system into
a desired goal state by sequentially executing high-level
actions. A planning task consists of a planning domain and

(: o b j e c t s cup01 cup02 − cup
s h e l f 0 1 s h e l f 0 2 − s h e l f
omnirob − r o b o t)

(: i n i t (arm−empty omnirob)
(a t omnirob s h e l f 0 2)
(p o s i t i o n cup01 s h e l f 0 2)
(c o n t a i n s cup01 w a t e r))

Fig. 2: Left: The red cup in the real world, referred to by cup01. Right:
Exemplary PDDL problem description with objects and their initial state.

a problem description. The former describes the object types
and predicates. Furthermore, it specifies the preconditions
and effects of actions available to manipulate them. The latter
models the objects, their initial state and the desired goal. In
our experiments, the domain contains a type hierarchy, where
for example furniture and robot are of super-type base, and
bottle and cup are of super-type vessel . Furthermore, the
planning domain specifies relations between objects, e.g.,
position is a relation between objects of type vessel and
base. Finally, the domain also defines the actions, e.g., grasp
and move . The problem description, on the other hand,
specifies object instances, such as cup01 of type cup and
shelf02 of type shelf as well as relations between them, e.g.,
the position of cup01 is shelf02 , as illustrated in Fig. 2.

B. Human and Machine Understandable References

A major challenge when trying to communicate goals
to the user is the limited shared vocabulary between the
user and the planning system, whose world is described
by a PDDL planning task. The planner’s most concise
representation of the cup in Fig. 2 might be cup01, which
is not sufficiently clear for the user if there are multiple
cups. To solve this problem, the goal generation and selection
component uses a set of basic references shared between
planner and user. These shared references can be combined
to create referring expressions to objects or sets of objects in
the world [1, 3]. Generally, a referring expression φ is a logi-
cal formula with a single free variable. We say that φ refers to
an object o if φ(o) is valid in our PDDL domain theory, e.g.,
φ(x) ≡ cup(x) ∧ contains(x,water) refers to cup01 . We
restrict ourselves to references that are conjunctions of facts.
This is preferable for computational reasons and also allows
us to incrementally refine references by adding constraints,
e.g., adding contains(x,water) to cup(x) restricts the set
of all cups to the set of cups containing water. A reference
is unique iff it refers to exactly one object. However, it is
usually sufficient to create references to sets of objects, e.g.,
if the user wants a glass of water it might not be necessary
to refer to a specific glass as long as it contains water.

To reference objects in planning domains, we need to
specify the components that are required to create shared
references. We distinguish three fundamental reference types.
Individual references describe objects that can be iden-
tified by their name, e.g., the content objects water or
apple-juice, and the omniRob robot. Additionally, type-
name references are used to specify objects by their type.
They allow referring to unspecific objects as a shelf or cup.
With relational references we can refer an object using

Fig. 3: Graphical user interface of the goal formulation planner: The
parameters of a previously selected action are refined step by step to get a
final goal.

a predicate in which the object occurs as an argument. In
our scenario, most relational references are binary attribute
relations whose first parameter is the object that is referred
to, and the second parameter is an object in the domain of
attribute values. In the example above, a cup can be described
using its content by the binary relation contains(x,water).

The most natural way for the planner to represent a goal
is a conjunction of predicates, e.g., cup(x) ∧ shelf (y) ∧
position(x, y) to put a cup on a shelf. This, however, is a
rather unnatural way to refer to goals for humans. We found
that it is more natural to use the action that achieves the
goal than the goal itself, e.g., action(put , x, y) ∧ cup(x) ∧
shelf (y). Therefore, we include action references, a macro
reference for all predicates in the action’s effect, as additional
building blocks to create references to objects in the world
and allow the users to specify their goals.

C. Adaptive Graphical Goal Formulation Interface

In our aim for a flexible yet user-friendly control method
to set the robot’s goals, we use the object references to create
a dynamic, menu-driven goal formulation user interface
which is depicted in Fig. 3. After the initial selection of
a goal type, e.g., drop, we have to determine objects for
all parameters of the selected goal. We start by populating
the goal with the most specific reference that still matches
all possible arguments, e.g., omniRob, transportable(x) and
base(y), assuming that omniRob is an individual reference
and transportable and base are type-name references (Fig. 3,
left). The current goal reference is displayed in the top row
of the GUI. The user interface then provides choices to the
user for further refinement of the argument. In our example,
the first argument omniRob is the only object in the world
that fits the parameter type robot which is why it does not
have to be refined any further. Therefore, we start by offering
choices for refining the second argument transportable(x)
which yields the selections cup(x), bottle(x), glass(x) and
vase(x). This continues until the argument is either unique,
it is impossible to further constrain the argument or any
remaining option is acceptable for the user. In the example,
we refine the first choice bottle(x) based on its content
(Fig. 3, right) by adding a relation contains(x , o) to the
referring expression, where o is an object of type content .
This procedure is repeated for all parameters of the goal,
which will finally result in a single goal or set of goals (if
the references are not unique) that are sent to the planner.

Some features cannot be used to partition the remaining

Fig. 4: An exemplary scenario as used in our user experiments with four
rooms, a garden, two humans, a robot and multiple objects.

objects for one parameter (e.g., not all objects have the
attribute color), in which case an entry for all other objects
can be chosen. Additionally, we allow to skip the refinement
of the current parameter and use an arbitrary object for
it. Finally, we provide an entry to go back to the previous
refinement step.

The decision on which feature to use for refining the
current selection is based on maximizing the resulting par-
tition’s information content, which is similarly computed as
in decision tree learning [18]. This strategy prefers to split
the remaining objects in a way that reduces the total number
of refinement steps. Moreover, the method allows to split
the referable objects more equally, thus offering the user
a meaningful choice at every step. During the refinement
process, we only offer choices that can result in an achievable
goal, where goal reachability is efficiently approximated by
delete relaxation [19]. For example, if all cups were out of
reach of the robot, the choice cup(x) would be removed
from the selection above. This might result in a completely
different selection being preferred, e.g., one that uses the
transportable’s color or position for distinction. If several
objects can satisfy the specified goal, the planner resolves
this ambiguity by picking an arbitrary object among them.

IV. EXPERIMENTS

In the following, we present the evaluation of our planning
framework regarding its performance and user compliance on
several virtual scenarios of varying complexity and a fetch-
and-carry task carried out by a robot in the real world.

A. Implementation

We employ the robotic operating system ROS [20] to
connect the central knowledge base, which stores the current
world state, to the proposed menu-driven user interface. The
back-end of the goal formulation GUI uses Fast Downward
[21] to determine a task plan for the selected goal. Changes
in the knowledge base automatically trigger updates of the
front-end. Furthermore, the user controls the front-end by
keyboard or mouse but is not restricted to these [4].

B. Scenario Setup

We created a virtual scenario with five rooms as depicted
in Fig. 4: a kitchen with a dining table, a living room with
a couch table, a pantry with two shelves, a bathroom with
one shelf and a garden containing a flowerbed. Bottles, cups,

0s

50s

100s

150s

200s

 20 40 60 80 100

Number of Objects

Exploration
Root Menu

 20 40 60 80 100
0s

1s

2s

3s

4s

5s

Number of Objects

1st
2nd
3rd

Fig. 5: Evaluation of the computation time for different numbers of objects
in the environment averaged over random actions. Left: The plot shows the
mean and standard deviation of building the menu structure at the beginning
and includes initial exploration and root menu creation. Right: Refinements
of a goal can be done efficiently. It shows the mean and positive standard
deviation times of the first three refinements.

glasses and vases are distributed among the furniture. There
are three types of flowers (e.g., rose), seven drinking contents
(e.g., red -wine), five colors (e.g., red) for cups and vases and
three for flowers and finally, four glass shapes (e.g., balloon).
Flowers can be put into vases but may also be placed directly
on furniture. A robot (omniRob) has the ability to move
between the rooms and serve the two persons (me and
friend). Finally, the available actions are: arrange a flower
in a vase, pick a flower out of a vase, grasp a transportable
object, drop a transportable object on a furniture, give a
transportable object to a human, pour a liquid from one
vessel to another, drink to assist a human with drinking
a drink, move the robot between rooms and approach a
furniture or human for further interaction.

C. Goal Formulation Performance

In our first experiment we evaluated the performance of
the goal formulation interface. We used a scenario gen-
erator which randomly creates instances of the planning
problem with an increasing number of objects. To assess
the performance, we measured the time required to start the
user interface and select parameters of random actions. The
experiment was repeated 100 times and averaged to retrieve
reliable results. Fig. 5 illustrates the run times needed for
several operations as a function of the number of objects
present in the world. The most time-consuming component
is given by the initial object exploration, where potentially
reachable goals are determined based on relaxed exploration
(left, red). Another computationally expensive operation is
the root menu generation, where initial partitions are cho-
sen for all actions (left, green). In contrast, the reference
refinements for the current parameter of an action requires in
average less than 2 s even for scenarios containing numerous
objects (right). However, this assertion only holds as long as
the world and thus the references do not change. Considering
dynamic environments, changes of the world are frequently
triggered by actions taken by the robotic service assistant or
other robotic and human agents. For example, when the robot
has grasped a cup, the system should no longer refer to the
cup as the cup on the table. Instead, the reference must be
rebuilt given the updated environment state yielding the cup
at the robots gripper. For simplicity, our approach rebuilds

all object references when an environment change has been
detected. In the future, only obsolete references should be
recomputed in order to scale well on larger scenarios.

Finally, as we shown in [4] the system is adaptive to
other tasks and environments. To improve practicability of
implementing new robotic behavior we could apply learning
strategies to our system, e. g., [22].

D. Usability Study

With this preliminary investigation we want to assess the
user-friendliness and intuitiveness of the system and how
humans use references to objects.

a) Participants: A total of 20 participants (3 female,
17 male, 25 – 45 years) took part in the user study and gave
their consent for the anonymized processing of the collected
data. The participants were students in computer science and
administrative employees of the university. They used our
system the first time and were not familiar with it.

b) Data Collection and Measures: The participants had
to use our system to accomplish tasks in five simulated sce-
narios, which were generated beforehand to get comparable
results. The five scenarios with increasing complexity were:
(S1) Move the robot to the garden, (S2) Drink beer using
a beer mug, (S3) Arrange a red flower in a red vase, (S4)
Place a red rose on the couch table, and (S5) Give a red
wine glass with red wine to your friend. After introducing
the user interface by explaining the individual components
of the system, the participants had to accomplish the five
tasks using the GUI. Since there were no time constraints
and sub-optimal strategies were allowed, all users managed
to reach the requested goal states. We counted the number
of steps the participants required to finish the predefined
tasks successfully, where a step is either a refinement of an
attribute or the selection of the back entry in the menu.

For each scenario the participants had to rate if the
displayed control opportunities offered by the user interface
comply to their expectations in a questionnaire, where the
compliance levels ranged from 1 (unreasonable) to 5 (fully
comply). Moreover, we asked the participants to rate the
overall intuitiveness of the GUI in the range of 1 (not intu-
itive) to 5 (excellent). We then asked whether the participants
prefer to describe objects using references or via internal
names (e.g., v2). Additionally, we evaluated the subjective
quality of object references ranging from 1 (not prefer at
all) to 5 (highly prefer). We proposed four references to
objects depicted in Fig. 4 and let the users rate how well
each of those references describes the corresponding object.
Moreover, subjects were asked to generate references to these
objects in natural language themselves in the way they would
tell a friend to find an object. In particular, we considered the
green vase with the red rose located in the pantry (v2) and
the glass, filled with red wine (g6), located on the couch
table in the living room. The proposed references ranged
from under-determined to over-determined descriptions, e.g.,
the green vase vs. the green vase located in the right shelf
in the pantry which contains a red rose.

S1 S2 S3 S4 S5

2
4
8
16
32
64

2

6
4 4

20

St
ep

s
Optimal

Fig. 6: The box plots illustrate the number of steps required by our
participants to achieve a given goal in five different scenarios S1-S5 (optimal
number of steps indicated in red, numbers denote the median)

c) Result: Fig. 6 shows the quantitative result of the
user study. We counted the number of steps performed by
each of the participants to achieve the predefined tasks
successfully. The figure shows box plots for each scenario.
Additionally, the plot contains the optimal number of steps
which are required to successfully achieve the goal.

Most of the participants were able to find a near-optimal
strategy to solve the task. The outliers in the first four
scenarios are mainly caused by the user exploring the possi-
bilities of the user interface. The increased number of steps
in the last scenario can be traced back to the following
reasons. First, the scenario required two actions to be able
to achieve the task: fill a balloon shaped glass with red wine
and give this glass to the friend. Only a few users were
able to determine this fact at the beginning. Therefore, the
participants had to correct their decisions which results in
a higher number of steps in the fifth scenario. Second, the
pour action as defined in our scenarios required to specify
three parameters: the vessel to pour from, the vessel to pour
to and the liquid that is poured. Our system usually refers
to the first vessel by its content, so the redundant refinement
of the liquid as last parameter is not intuitive to the users.
Finally, we split a partition based on its information content
to reduce the number of refinements. This strategy can lead
to unexpected refinements of object attributes since the user
might prefer these in a different order.

Fig. 7 shows the results on how well the choices offered
by the high-level planning GUI actually comply with the
expectations of the users. A large percentage of them comply
with the refinements provided by the GUI in the scenarios S1
to S4. Due to the previously mentioned problems however,
S5 has been rated worse. A short training period of the users
to get familiar with the interface might help to improve the
compliance in S5. Overall, 80% of the participants rated
the GUI as intuitive, i.e., according to the aforementioned
metric they rated the intuitiveness with at least 3 (acceptable).
In particular, 85% of the participants preferred referring to
objects by incremental referencing over internal names (e.g.,
green vase on the couch table vs. v1).

In the last user experiment, we evaluated the subjec-
tive quality of object references. According to our results,
preferred references highly depend on whether the spatial
context of the agents in the world is considered or not.
One group of users only preferred references that uniquely
identify the objects independent from the location of the
agents. This group preferred references such as the vase

S1 S2 S3 S4 S5
0

20

40

60

0 0 0 00 00C
om

pl
ia

nc
e

% 1 (bad) 2 3 4 5 (good)

Fig. 7: Compliance of the offered choices with the users’ expectation for
five tasks in different scenarios. The participants had to select compliance
levels from 1 (unreasonable) to 5 (fully comply).

containing a rose or occasionally also the vase in the right
shelf for v2 and the red wine glass on the couch table for
v6 . Another group preferred under-determined references as
they considered the spatial context of the agents. This group
preferred references such as the green vase for v2 and the
red wine glass for v6 . Interestingly, the capability of users to
impersonate the acting agent has also a strong influence on
the references preferred by the second group. For referring to
v2 , some users of the second group additionally specified the
room or the content of the vase, assuming that the assisting
agent is also located in the living room and therefore requires
a more detailed object description, while they preferred
under-specified references for objects on the couch table.
Detailed over-specified references were refused by all parti-
cipants, but more firmly by the second group. Summarizing,
our evaluation revealed that incrementally building object
references is suitable to describe objects precisely. Room
for improvement was identified in updating object references
that change during plan execution and in the consideration
of temporal and spatial context.

E. Real World Experiments

In order to evaluate our framework in real world experi-
ments, we consider the environment depicted in Fig. 8 (left)
which contains two shelves and a table as potential locations
for pick and place actions. An omniRob omnidirectional
mobile manipulator platform by KUKA Robotics is used
as an autonomous service assistant that supports the human
operator in fetch-and-carry tasks. The robot needs to be able
to execute the following actions autonomously: (1) approach
a location, (2) grasp an object, and (3) drop an object. For
that, we employ sampling-based motion- and manipulation-
planning techniques based on rapidly-exploring random trees
[23] and probabilistic roadmaps. To be able to react to
changes in the environment, as adding or removing objects,
we use two statically mounted RGBD cameras. They observe
the shelves and report detected changes to the knowledge
base using the simtrack object detection framework [24]. In
addition, the robot carries an on-board camera which is used
to perform collision checks in manipulation planning.

We performed the experiments in a way that unexpected
world changes may occur at any time through actions taken
by another unknown agent. In practice, this agent could refer
to a human taking actions that directly affect the execution of
the current high-level plan. Therefore, we initially placed a
cup on one of the shelves and queried the goal formulation
assistant to generate a sequence of actions leading to the

Table

Robot

ShelfShelf

Camera

Object Location

Fig. 8: Left: The experimental environment with a service assistant, two
shelves and a table. Right: Snapshots of the actions approach and grasp.
Top row: user interface, bottom row: real world.

goal state cup on table, i.e., approach(shelf with cup),
grasp(cup), approach(table), drop(cup). Once the robot
arrived at the corresponding shelf in the execution phase
of the plan, a human agent took the cup while the robot
was about to grasp it and transferred it to the other shelf.
In order to obtain quantitative results on the performance of
our framework in such a scenario, we run this experiment 10
times with different initial cup placements and evaluated its
ability to generate the goal state in the real world despite
the external disturbance introduced by the human agent.
For all runs, our perception system correctly updated the
information on the cup in the knowledge base, in turn
triggering the goal formulation assistant to perform a re-
planning step. The updated action sequence always contained
two additional actions, namely moving to the shelf where the
human agent dropped the cup and grasping the cup. In total,
59 out of 60 (98.33%) scheduled actions were successfully
executed and thus 90% of the runs succeeded in generating
the goal state despite the disturbance. Only one run failed in
the action execution phase due the inability of the low-level
motion planning algorithm to generate a solution path for the
mobile base within the prescribed planning time. On average,
our system required an overall time of 258.7±28.21s SD for
achieving the goal state in the real world.

V. CONCLUSIONS

In this paper, we presented a novel system unifying high-
level task planning, low-level motion planning and percep-
tion of the environment with an intuitive graphical user
interface to enable non-expert users to formulate feasible
goals based on object references to command a robotic ser-
vice assistant. As shown in the experiments, our referencing
system is capable of dealing with environments populated
by numerous objects. Moreover, the provided graphical user
interface and the navigation therein has been perceived as
intuitive and compliant with respect to the users’ expectation.
This observation is also reflected by the low number of steps
required by users in the GUI in order to command complex
tasks to the robotic service assistant. Furthermore, we proved
that our system is capable of reliably accomplishing the
desired goal states in the real world.

REFERENCES

[1] R. Dale and E. Reiter, “Computational interpretations of the gricean
maxims in the generation of referring expressions,” Cognitive science,
vol. 19, no. 2, pp. 233–263, 1995.

[2] E. Reiter and R. Dale, Building Natural Language Generation Systems.
Cambridge, UK: Cambridge University Press, 2000.

[3] M. Göbelbecker, “Assisting with Goal Formulation for Domain In-
dependent Planning,” in KI 2015: Advances in Artificial Intelligence.
Springer, 2015, pp. 87–99.

[4] F. Burget, L. Fiederer, D. Kuhner, M. Völker, J. Aldinger, R. T.
Schirrmeister, C. Do, J. Boedecker, B. Nebel, T. Ball, and W. Burgard,
“Acting thoughts: Towards a mobile robotic service assistant for users
with limited communication skills,” in Proc. of the IEEE European
Conference on Mobile Robotics (ECMR), Paris, France, 2017.

[5] E. Krahmer and K. Van Deemter, Computational generation of refer-
ring expressions: A survey., 2012.

[6] M. Shridhar and D. Hsu, “Grounding spatio-semantic referring ex-
pressions for human-robot interaction,” CoRR, vol. abs/1707.05720,
2017.

[7] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg, “Modeling
context in referring expressions,” CoRR, 2016.

[8] P. Lindes, A. Mininger, J. R. Kirk, and J. E. Laird, “Grounding
Language for Interactive Task Learning,” 2017.

[9] A. Koller and R. P. Petrick, “Experiences with planning for natural
language generation,” Computational Intelligence, vol. 27, 2011.

[10] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2011, pp. 1470–1477.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” I. J. Robotics Res., vol. 32, no. 9-10, pp.
1194–1227, 2013.

[12] L. De Silva, A. K. Pandey, M. Gharbi, and R. Alami, “Towards
combining HTN planning and geometric task planning,” CoRR, vol.
abs/1307.1482, 2013.

[13] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “In-
cremental task and motion planning: A constraint-based approach,” in
Proceedings of Robotics: Science and Systems, AnnArbor, Michigan,
2016.

[14] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 639–646.

[15] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method
for solving sequential manipulation planning problems,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2014, pp. 3684–3691.

[16] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic Attachments for Domain-independent Planning Systems,”
in Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS), 2009.

[17] P. Eyerich, R. Mattmüller, and G. Röger, “Using the Context-enhanced
Additive Heuristic for Temporal and Numeric Planning,” in Proceed-
ings of the 19th International Conference on Automated Planning and
Scheduling (ICAPS 2009), 2009, pp. 130–137.

[18] J. Quinlan, “Induction of decision trees,” Machine Learning 1, pp.
81–106, 1986.

[19] B. Bonet, G. Loerincs, and H. Geffner, “A Robust and Fast Action Se-
lection Mechanism for Planning,” in Proceedings of the 14th National
Conference on Artificial Intelligence and 9th Innovative Applications
of Artificial Intelligence Conference (AAAI 1997/ IAAI 1997), July 27–
31 1997, pp. 714–719.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[21] M. Helmert, “The Fast Downward Planning System,” Journal of
Artificial Intelligence Research 26 (JAIR 2006), pp. 191–246, 2006.

[22] T. Welschehold, C. Dornhege, and W. Burgard, “Learning mobile
manipulation actions from human demonstrations,” in Proceedings
of the International Conference on Intelligent Robots and Systems
(IROS), Vancouver, Canada, 2017.

[23] F. Burget, M. Bennewitz, and W. Burgard, “BI2RRT*: An efficient
sampling-based path planning framework for task-constrained mobile
manipulation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 2016.

[24] K. Pauwels and D. Kragic, “Simtrack: A simulation-based framework
for scalable real-time object pose detection and tracking,” in IROS,
Hamburg, Germany, 2015.

