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Abstract— Three-dimensional digital terrain models are of
fundamental importance in many areas such as the geo-sciences
and outdoor robotics. Accurate modeling requires the ability to
deal with a varying data density and to balance smoothing against
the preservation of discontinuities. The latter is particularly
important for robotics applications, as discontinuities that arise,
for example, at steps, stairs, or building walls are important
features for path planning or terrain segmentation tasks. In this
paper, we present an extension of the well-established Gaussian
process regression technique, that utilizes non-stationary covari-
ance functions to locally adapt to the structure of the terrain
data. In this way, we achieve strong smoothing in flat areas and
along edges and at the same time preserve edges and corners. The
derived model yields predictive height distributions for arbitrary
locations of the terrain and therefore allows us to fill gaps in the
data and to perform conservative predictions in occluded areas.

I. I NTRODUCTION

The modeling of three-dimensional terrain has been widely
studied across different research areas like the geo-sciences or
robotics. Important applications in the latter case include mo-
bile robotics for agriculture, search and rescue, or surveillance.
In these domains, accurate and dense models of the three-
dimensional structure of the environment enable the robot to
estimate the traversability of locations, to plan its path to a goal
location, or to localize itself using range sensor measurements.
Building a digital terrain model means to transform a set of
sensory inputs, typically a 3D point cloud or the raw range
sensor readings, to a function mapping 2-dimensional pose
coordinates to elevation values. While geological applications
often operate on a larger spatial scale, where local terrain
features can be neglected, autonomous robots greatly rely
on distinct structural features like edges or corners to guide
navigation, localization, or terrain segmentation. We therefore
have two, at the first glance contradicting requirements for
terrain models: First, raw sensory data needs to be smoothed
in order to remove noise and to be able to perform elevation
predictions at all locations and, second, discontinuitiesneed to
be preserved as they are important features for path planning,
localization and object recognition.

In this paper, we present a novel terrain modeling approach
based on an extended Gaussian process formulation. Our
model uses non-stationary covariance functions as proposed
by Pacioreket al. [7] to allow for local adaptation of the
regression kernels to the underlying structure. This adapta-
tion is achieved by iteratively fitting the local kernels to

the structure of the underlying function using local gradient
features and the local marginal data likelihood (see Figure1
for an illustration). Indeed, this idea is akin to adaptive image
smoothing studied in computer vision, where the task is to
achieve de-noising of an image without reducing the contrast
of edges and corners [14, 6]. Although these approaches from
the computer vision literature are not specifically designed for
dealing with a varying density of data points or with potential
gaps to fill, they nevertheless served as an inspiration for our
kernel adaptation approach.

Fig. 1. A hard, synthetic regression problem (left). The continuous regions
should be smoothed without removing the strong edge feature. Our approach
achieves this by adapting local kernels to the terrain data (right).

The paper is structured as follows. We first discuss related
work in the next section. In Section III, we formalize the ter-
rain modeling problem using Gaussian processes and introduce
our approach to non-stationary adaptive regression. Section IV
presents our experimental results on real and simulated terrain
data sets.

II. RELATED WORK

A broad overview over methods used for modeling terrain
data is given by Hugentorp [5]. Elevation maps have been
used as an efficient data structure for representing dense
terrain data [1, 8] and have later been extended to multi-
level probabilistic surface maps [16]. Früh et al. [4] present
an approach to filling local gaps in 3D models based on local
linear interpolation. As their approach has yielded promising
results in city mapping applications, we compare its modeling
accuracy to our approach in Section IV.

Gaussian processes (GPs) have a long tradition in the geo-
sciences and statistics literature [11]. Classical approaches for
dealing with non-stationarity include input-space warping [12,
13] and hierarchical modeling using local kernels [7]. The
latter approach provides the general framework for this work.



Recently, GPs have become popular in robotics, e.g., for
learning measurement models [2] or model-based failure de-
tection [9]. To deal with varying target function properties
in the context of perception problems, Williams [17] uses
mixtures of GPs for segmenting foreground and background in
images in order to extract disparity information from binocular
stereo images. Rasmussen and Ghahramani [10] extend ideas
of Tresp [15] and present an infinite mixture of experts model
where the individual experts are made up from different GP
models. A gating network assigns probabilities to the different
expert models based completely on the input. Discontinuities
in wind fields have been dealt with by Cornfordet al. [3].
They place auxiliary GPs along the edge on both sides of the
discontinuity. These are then used to learn GPs representing
the process on either side of the discontinuity. In contrastto
our work, they assume a parameterized segmentation of the
input space, which appears to be disadvantageous in situations
such as depicted in Figure 1 and on real-world terrain data sets.

The problem of adapting to local structure has also been
studied in the computer vision community. Taketaet al. [14]
perform non-parametric kernel regression on images. They
adapt kernels according to observed image intensities. Their
adaptation rule is thus based on a nonlinear combination of
both spatial and intensity distance of all data points in the
local neighborhood. Based on singular value decompositions
of intensity gradient matrices, they determine kernel modi-
fications. Middendorf and Nagel [6] propose an alternative
kernel adaptation algorithm. They use estimates of gray value
structure tensors to adapt smoothing kernels to gray value
images.

III. D IGITAL TERRAIN MODELING

Data for building 3-dimensional models of an environment
can be acquired from various sources. In robotics, laser range
finders are popular sensors as they provide precise, high-
frequency measurements at a high spatial resolution. Other
sensors include on-board cameras, which are chosen because
of their low weight and costs, or satellite imagery, which
covers larger areas, e.g., for guiding unmanned areal vehi-
cles (UAVs) or autonomous cars. After various preprocessing
steps, the raw measurements are typically represented as 3D
point clouds or are transformed into a 3D occupancy grid or
elevation map [1]. In this work, we introduce a technique for
constructing continuous, probabilistic elevation map models
from data points, that yield predictive distributions for terrain
elevations at arbitrary input locations.

The terrain modeling problem can be formalized as follows.
Given a setD = {(xi, yi)}

n
i=1

of n location samplesxi ∈ R
2

and the corresponding terrain elevationsyi ∈ R, the task is to
build a model forp(y∗|x∗,D), i.e., the predictive distribution
of elevationsy∗ at new input locationsx∗. This modeling task
is a hard one for several reasons. First, sensor measurements
are inherently affected by noise, which an intelligent model
should be able to reduce. Second, the distribution of available
data points is typically far from uniform. For example, the
proximity of the sensor location is usually more densely

sampled than areas farther away. Third, small gaps in the data
should be filled with high confidence while more sparsely sam-
pled locations should result in higher predictive uncertainties.
To illustrate the last point, consider an autonomous vehicle
navigating in off road terrain. Without filling small gaps, even
single missing measurements may lead to the perception of
an un-traversable obstacle and consequently the planned path
might differ significantly from the optimal one. On the other
hand, the system should be aware of the increased uncertainty
when filling larger gaps to avoid overconfidence at these
locations. As a last non-trivial requirement, the model should
preserve structural elements like edges and corners as they
are important features for various applications includingpath
planning or object recognition.

In this paper, we propose a model to accommodate for all
of the above-mentioned requirements. We build on the well-
established framework of Gaussian processes, which is a non-
parametric Bayesian approach to the regression problem. To
deal with the preservation of structural features like edges
and corners, we employ non-stationary covariance functions
as introduced by Paciorek and Schervish [7] and present a
novel approach to local kernel adaptation based on gradient
features and the local marginal data likelihood.

In the following, we restate the standard Gaussian process
approach to non-parametric regression before we introduceour
extensions to local kernel adaptation.

A. Gaussian Process Regression

As stated in the previous section, the terrain modeling task
is to derive a model forp(y∗|x∗,D), which is the predictive
distribution of terrain elevationsy∗, called targets, at input
locations x∗, given a training setD = {(xi, yi)}

n
i=1

of
elevation samples. The idea of Gaussian processes (GPs) is
to view any finite set of samplesyi from the sought after
distribution as being jointly normally distributed,

p(y1, . . . , yn | x1, . . . ,xn) ∼ N (µ,K) , (1)

with meanµ ∈ R
n and covariance matrixK. µ is typically

assumed0 and K is specified in terms of a parametric
covariance functionk and a global noise variance parameter
σn, Kij := k(xi,xj) + σ2

nδij . The covariance functionk
represents the prior knowledge about the target distribution
and does not depend on the target valuesyi of D. A common
choice is the squared exponential covariance function

k(xi,xj) = σ2

f exp

(

−
1

2

2
∑

k=1

(xi,k − xj,k)2

ℓk

)

, (2)

whereσf denotes the amplitude (or signal variance) andℓk are
the characteristic length-scales of the individual dimensions
(see [11]). These parameters plus the global noise varianceσn

are called hyperparameters of the process. They are typically
denoted asΘ = (σf , ℓ, σn). Since any set of samples from
the process is jointly Gaussian distributed, the prediction of a
new target valuey∗ at a given locationx∗ can be performed
by conditioning then + 1-dimensional joint Gaussian on the



known target values of the training setD. This yields a
predictive normal distributiony∗ ∼ N (µ∗, v∗) defined by

µ∗ = E(y∗) = kT
(

K + σ2

nI
)−1

y , (3)

v∗ = V (y∗) = k∗ + σ2

n − kT
(

K + σ2

nI
)−1

k , (4)

with K ∈ R
n×n, Kij = k(xi,xj), k ∈ R

n, kj = k(x∗,xj),
k∗ = k(x∗,x∗) ∈ R, and the training targetsy ∈ R

n.
Learning in the Gaussian process framework means finding the
parametersΘ of the covariance functionk. Throughout this
work we use a conjugate gradient based algorithm [11] that
fixes the parameters by optimizing the marginal data likelihood
of the given training data set. Alternatively, the parameters
could be integrated over using parameter-specific prior distri-
butions, which results in a fully Bayesian model but which is
also computationally more demanding as one has to employ
Markov-Chain Monte Carlo sampling for approximating the
intractable integral.

The standard model introduced so far already accounts for
three of the requirements discussed in the previous section,
namely de-noising, dealing with non-uniform data densities,
and providing predictive uncertainties. As a major drawback,
however, by using the stationary covariance function of Equa-
tion (2), which depends only on thedifferencesbetween input
locations, one basically assumes the same covariance struc-
ture on the whole input space. In practice, this significantly
weakens important features like edges or corners. The left
diagram of Figure 1 depicts a synthetic data-set which contains
homogenous regions which should be smoothed, but also
a sharp edge that has to be preserved. Our model, which
is detailed in the next section, addresses this problem by
adapting a non-stationary covariance function to the local
terrain properties.

B. Non-Stationary Covariance Functions

Most Gaussian process based approaches found in the
literature use stationary covariance functions that depend on
the difference between input locationsx − x′ rather than on
the absolute valuesx andx′. A powerful model for building
non-stationary covariance functions from arbitrary stationary
ones has been proposed by Paciorek and Schervish [7]. For
the Gaussian kernel, their non-stationary covariance function
takes the simple form

k(xi,xi) = |Σi|
1

4 |Σj |
1

4

∣

∣

∣

∣

Σi + Σj

2

∣

∣

∣

∣

−
1

2

· (5)

exp

[

−(xi − xj)
T

(

Σi + Σj

2

)

−1

(xi − xj)

]

,

where each input locationx′ is assigned an individual Gaus-
sian kernel matrixΣ′ and the covariance between two targets
yi andyj is calculated by averaging between the two individual
kernels at the input locationsxi andxj . In this way, the local
characteristics at both locations influence the modeled covari-
ance of the corresponding target values. In this model, each
kernel matrixΣi is internally represented by its eigenvectors

and eigenvalues. Paciorek and Schervish build a hierarchical
model by placing additional Gaussian process priors on these
kernel parameters and solve the integration using Markov-
Chain Monte Carlo sampling. While the model presented in [7]
provides a flexible and general framework, it is, as also noted
by the authors, computationally demanding and clearly not
feasible for the real world terrain data sets that we are aiming
for in this work. As a consequence, we propose to model
the kernel matrices in Equation (5) as independent random
variables that are initialized with the learned kernel of the
corresponding stationary model and then iteratively adapted
to the local structure of the given terrain data. Concretely,
we assign to every input locationxi from the training set
D a local kernel matrixΣi, which in turn is represented by
one orientation parameter and two scale parameters for the
length of the axes. Given these parameters, the evaluation
of Equation (5) is straightforward. In the following section,
we will discuss in detail, how the kernel matricesΣi can be
adapted to the local structure of the terrain.

C. Local Kernel Adaptation

The problem of adapting smoothing kernels to local struc-
ture has been well studied in the computer vision community.
It is therefore not surprising that, although image processing
algorithms are typically restricted to dense and uniformly
distributed data, we can use findings from that field as an
inspiration for our terrain adaptation task. Indeed, Midden-
dorf and Nagel [6] present a technique for iterative kernel
adaptation in the context of optical flow estimation in image
sequences. Their approach builds on the concept of the so
called grey-value structure tensor (GST), which captures the
local structure of an image or image sequence by building
the locally weighted outer product of grey-value gradientsin
the neighborhood of the given image location. Analogously to
their work, we define the elevation structure tensor (EST) for
a given locationxi as

EST (xi) := ∇y(∇y)T (xi) , (6)

where y(x) denotes the terrain elevation at a locationx
and · stands for the operator that builds a locally weighted
average of its argument according to the kernelΣi. For two-
dimensionalxi, Equation (6) calculates the locally weighted
average of the outer product of∇y = ( ∂y

∂x1

, ∂y
∂x2

)T . This
local elevation derivative can be estimated directly from the
raw elevation samples in the neighborhood of the given input
location xi. We cope with the noise stemming from the
raw data by averaging over the terrain gradients in the local
neighborhood.

Equation (6) yields a tensor, representable as a2× 2 real-
valued matrix, which describes how the terrain elevation
changes in the local neighborhood of locationxi. To get an
intuition, what EST (xi) encodes and how this can guide
the adaptation of the local kernelΣi, consider the following
situations. Letλ1 andλ2 denote the eigenvalues ofEST (xi)
and β be the orientation angle of the first eigenvector. Ifxi

is located in a flat part of the terrain, the elevation gradients



∇y are small in the neighborhood ofxi. This results in two
equally small eigenvalues ofEST (xi). In contrast, ifxi was
located in an ascending part of the terrain, the first eigenvalue
of EST (xi) would be clearly greater than the second one and
the orientationβ would point towards the strongest ascent.

Intuitively and as discussed in more detail by Middendorf
and Nagel [6], the kernelΣi describing the extent of the local
environment ofxi should be set to the inverse ofEST (xi). In
this way, flat areas are populated by large, isotropic kernels,
while sharp edges have long, thin kernels oriented along the
edge directions. Corner structures, having strong elevation
gradients in all dimensions, result in relatively small local
kernels. To prevent unrealistically large kernels, Middendorf
and Nagel describe how this inversion can be bounded to
yield kernels, whose standard deviations lie between given
valuesσmin andσmax. Based on their findings, we give three
concrete local adaptation rules that have been compared in our
experimental evaluation. To simplify notation, we introduce
λk = λk/(λ1 + λ2), k = 1, 2 and the re-parameterization

Σi = R−T

(

α1 0
0 α2

)

R−1 (7)

whereα1 and α2 scale in orthogonal directions andR is a
rotation matrix specified by the orientation angleθ.

1) Direct Inverse Adaptation: Σi = EST (xi)
−1

2) Bounded Linear Adaptation:

αk = λk σ2

min + (1− λk) σ2

max , k = 1, 2

3) Bounded Inverse Adaptation:

αk =
σ2

maxσ2

min

λk σ2
max + (1− λk) σ2

min

, k = 1, 2

The twoboundedadaptation procedures prevent unrealisti-
cally small and large kernels. TheBounded Inversestrongly
favors the larger eigenvalue dimension and produces more
pronounced kernels (larger difference between semiaxes) while
the Bounded LinearLinear tends to produce more balanced
and larger kernels. This is whyBounded Linearperforms
better in the presence of sparse data as it is less vulnerableto
overfitting. In this work, the boundsσmin andσmax are esti-
mated empirically. We are currently working on determining
optimal values with respect to the marginal data likelihood.

So far, we have described how to perform one local
adaptation step for an arbitrary kernelΣi. As the complete
learning and adaptation procedure, which is summarized in
Algorithm 1, we propose to assign to each input locationxi

of the training setD a kernel matrixΣi, which is initialized
with a global parameter vectorΘ, that in turn has been learned
using standard GP learning with the corresponding stationary
covariance function. The local kernels are then iteratively
adapted to the elevation structure of the given terrain data
set until their parameters have converged. To quickly adapt
the kernels at locations where the regression error is high
(relative to the given training data set), we propose to makethe
adaptation speed for eachΣi dependent on the local data fit
df(xi), which is the normalized observation likelihood of the

correspondingyi from the training set relative to the current
predictive distribution (see Equation (III-A)), and the kernel
complexity approximated asci = 1/|Σi|. Both quantities are
used to form a learning rate parameter calculated by means
of a modified sigmoid function,ηi = sigmoid(−df(xi) · ci; δ),
where the additional parametersδ are determined empirically.
Intuitively, we get a high adaptation speed when the data-fit
relative to the kernel size is small. Algorithm 1 summarizes
the adaptation procedure.

Algorithm 1 Local Kernel Adaptation
Learn global parametersΘ for the stationary squared expo-
nential covariance function.
Initialize all local kernelsΣi with Θ.
while not convergeddo

for all Σi do
Estimate the local learning rateηi

Estimate EST(xi) according toΣi

Σ∗

i ← ADAPT(EST(xi))
Σi ← ηiΣ

∗

i + (1− ηi)Σi

end for
end while

IV. EXPERIMENTAL EVALUATION

The goals of the experimental evaluation presented in this
section are (a) to show that our terrain modeling approach is
indeed applicable to real data sets, (b) that our model is able
to remove noise while at the same time preserving important
structural features, and (c) that our model yields more accurate
and robust elevation predictions at sparsely sampled input
locations than an alternative approach to this problem.

As an evaluation metric, we use the mean squared error
MSE(X ) = 1

m

∑m
i=1

(yi − y∗

i )
2 of predicted elevationsy∗

i

relative to ground truth elevationsyi on a set of input locations
X = {xi}

m
i=1

.

A. Evaluation on Artificial Terrain Data

The first set of experiments was designed to quantify the
benefits of local kernel adaptation and to compare the three
different adaptation rules. As a test scenario, we took the
artificial terrain data set depicted in Figure 2 consisting of
441 data points, which contains uniform regions as well as
sharp edges and corners, which are hard to adapt to locally.
Note, for example, that the edge between the lowest and the
second lowest plateau has a curvature and that three different
height levels can be found in the local neighborhood of the
corner in the middle of the diagram. We setσmin = 0.001
andσmax = 5.0 for the bounded adaptation rules.

To generate training data sets for the different experiments
reported on here, we added white noise of a varying stan-
dard deviationσ to the true terrain elevations and randomly
removed a portion of the samples to be able to assess the
model’s predictive abilities.

Figure 4 visualizes a complete adaptation process for the
case of a data set generated using a noise rate ofσ = 0.3.



(a) All data points given. (b) 15% of the data points removed. (c) 30% of the data points removed.

Fig. 3. Prediction accuracy for the scenario depicted in Figure 4 with (a) all data points available, (b) 15% of the data-points randomly removed and (c)
30% randomly removed. Each figure plots the mean squared error ofelevation predictions for a varying level of added white noise. The values are averaged
over 10 independent runs per configuration. (In the case of (c), the error ofDirect Inversewas always greater than 4.0).

(a) Terrain (b) Convergence

Fig. 2. An artificial terrain data set used in the experimentalevaluation, that
exhibits several local features that are hard to adapt to (a). Test data sets are
generated by adding white noise and randomly removing a portion of the data
points. The mean squared error (MSE) of predicted elevationsconverges with
an increasing number of adaptation steps (b). Iteration0 gives the MSE for
the learned standard GP. Values are averaged over ten independent runs.

On average, a single iteration per run took 44 seconds on this
data-set using a PC with a 2.8 GHz CPU and 2 GB of RAM.
Figures 4(c)-4(f) show the results of standard GP regression
which places the same kernels at all input locations. While
this leads to good smoothing performance in homogeneous
regions, the discontinuities within the map are also smoothed
as can be seen from the absolute errors in the third column.
Consequently, those locations get assigned a high learningrate,
see right column, used for local kernel adaption.

The first adaptation step leads to the results depicted in
Figures 4(g)-4(j). It is clearly visible, that the steps andcorners
are now better represented by the regression model. This has
been achieved by adapting the kernels to the local structure,
see the first column of this row. Note, how the kernel sizes
and orientations reflect the corresponding terrain properties.
Kernels are oriented along discontinuities and are small in
areas of strongly varying elevation. In contrast, they have
been kept relatively large in homogeneous regions. After three
iterations, the regression model has adapted to the discontinu-
ities accurately while still de-noising the homogeneous regions
(Figures 4(k)-4(n)). Note, that after this iteration, the local
learning rates have all settled at low values.

Figure 2 gives the convergence behavior of our approach
using the Bounded Linearadaptation rule in terms of the

mean squared prediction error for different amounts of points
removed from the noisy data set. After at most6 iterations,
the errors have settled close to their final value.

In a different set of experiments, we investigated the pre-
diction performance of our approach for all three adaptation
rules presented in Section III-C. For this experiment, we added
white noise of a varying noise level to the artificial terrain
given in Figure 2. The diagrams in Figure 3 give the results
for different amounts of points removed from the noisy data
set. When no points are removed from the test set, theBounded
Inverseadaptation rule performs best for small noise values.
For large noise values,Bounded Linearand Direct Inverse
achieve better results. In the case of 15% and 30% data
points removed,Direct Inverseand Bounded Inverseare not
competitive. In contrast,Bounded Linearstill achieves very
good results for all noise levels.

Thus, Bounded Linearproduces reliable predictions for
all tested noise rates and data densities. This finding was
supported by experiments on other real data sets not presented
here.

B. Evaluation on Real Terrain Data

In order to demonstrate the usefulness of our approach on
real data sets, we acquired a set of 3D scans of a scene
using a mobile robot equipped with a laser range finder,
see Figure 5(a). We compared our prediction results to an
approach from the robotics literature [4] that has been applied
successfully to the problem of 3-dimensionally mapping urban
areas. We employed theBounded Linearadaptation procedure
for our learning algorithm where we setσmin = 0.25 and
σmax = 4.0. Figure 5 gives the results of this experiment. An
obstacle, in this case a person, is placed in front of the robot
and thus occludes the sloped terrain behind.

We evaluated our approach for the situation depicted in
the figure as well as for three similar ones and compared
its prediction accuracy to the approach of Früh et al. [4],
who perform horizontal linear interpolation orthogonallyto
the robot’s view. These scenarios used are actually rather easy
ones for [4], as the large gaps can all be filled orthogonally to



(a) Test data set (Noise:σ = 0.3) (b) Local errors

(c) Local kernels (iter. 0) (d) Regression without kernel adaptation (e) Local errors (f) Learning rate

(g) Local kernels (iter. 1) (h) Regression after first iteration (i) Local errors (j) Learning rate

(k) Local kernels (iter. 3) (l) Regression after third iteration (m) Local errors (n) Learning rate

Fig. 4. The local kernel adaptation process on an artificial terrain data set: the original data set, depicted in Figure 2,exhibits several local features that are
hard to adapt to. The test data set (a) was generated by addingwhite noise, resulting in the errors shown in (b). The secondrow of diagrams gives information
about the initialization state of our adaptation process, i.e. the results of standard GP learning and regression. The following two rows depict the results of
our approach after the first and after the third adaptation iteration respectively. In the first column of this figure, we visualize the kernel dimensions and
orientations after the corresponding iteration. The second column depicts the predicted means of the regression. The third column gives the absolute errors
to the known ground truth elevations and the right-most columngives the resulting learning ratesηi for the next adaptation step resulting from the estimated
data likelihoods.



the robot’s view, which is not the case in general. To estimate
the kernels at unseen locations, we built a weighted average
over the local neighborhood with an isotropic two-dimensional
Gaussian with a standard deviation of 3 which we had found
to produce the best results. Table I gives the results. In all
four cases, our approach achieved higher prediction accuracies,
reducing the errors by 30% to 70%. Figure 5(b) depicts the
predictions of our approach in one of the situations. In contrast
to Früh et al., our model is able to also give the predictive
uncertainties. These variances are largest in the center ofthe
occluded area as can be seen in Figure 5(c).

In a second real-world experiment illustrated in Figure 6,
we investigated the ability of our terrain model approach to
preserve and predict sharp discontinuities in real terraindata.
We positioned the robot in front of a rectangular stone block
such that the straight edges of the block run diagonally to
the robot’s line of view. A person stood in between the robot
and the block, thereby occluding parts of the block and of
the area in front of it. This scenario is depicted in 6(a). The
task is to recover the linear structure of the discontinuityand
fill the occluded area consistent with the surrounding terrain
elevation levels. The adaptation procedure converged already
after two iterations. The learned kernel structure, illustrated in
Figure 6(c), enables the model to correctly represent the stone
blocks as can be seen from the predicted elevations visualized
in 6(d). This figure also illustrates the uncertainties of these
predictions, corresponding to the variances of the predictive
distributions, by means of two contour lines. This indicates
that a mobile robot would be relatively certain about the
block structure within the gap although not having observedit
directly. In contrast, it would be aware that it cannot rely upon
its terrain model in the occluded areas beyond the blocks: there
are no observations within a reasonable distance and thus, the
predictive variances are large.

To show that our approach is applicable to large, real-world
problems, we have tested it on a large data-set recorded at
the University of Freiburg campus1. The raw terrain data was
preprocessed, corrected, and then represented in a multi-level
surface map with a cell size of 10cm× 10cm. The scanned
area spans approximately 299 by 147 meters. For simplicity,
we only considered the lowest data-points per location, i.e.,
we removed overhanging structures like tree tops or ceilings.
The resulting test set consists of 531,920 data-points. To speed
up computations, we split this map into 542 overlapping
sub-maps. This is possible without loss of accuracy as we
can assume compact support for the local kernels involved
in our calculations (as the kernel sizes in our model are
bounded). We randomly removed 20% of the data-points per
sub-map. A full run over the complete data-set took about 50
hours. Note that the computational complexity can be reduced
substantially by exploiting the sparsity of our model (due to
the bounded kernels) and by introducing additional sparsity
using approximative methods, e.g., sparse GPs. Table II gives

1Additional material for the campus experiment can be found at
http://www.informatik.uni-freiburg.de/ plagem/rss07terReg

Scenario Linear Interp. [4] Adapted GP Improvement
1 (Fig. 5) 0.116 0.060 48.3%

2 0.058 0.040 31.0%
3 0.074 0.023 69.9%
4 0.079 0.038 51.9%

TABLE I

PREDICTION PERFORMANCE IN TERMS OFMSE RELATIVE TO A SECOND,

NOT OCCLUDED SCAN.

Adaptation procedure MSE
Standard GP 0.071
Direct Inverse 0.103
Bounded Linear 0.062
Bounded Inverse 0.059

TABLE II

PREDICTION PERFORMANCE ON A LARGE CAMPUS ENVIRONMENT.

the results of this experiment for the different adaptation
rules. TheBounded Linearand theBounded Inverseadaptation
procedures outperform theStandard GPmodel where kernels
are not adapted, whileDirect Inverse is not competitive.
Together with the results of the other experiments, this leads
to the conclusion thatBounded Linearis an adequate choice
as an adaptation rule in synthetic and real-world scenarios.

V. CONCLUSIONS

In this paper, we propose an adaptive terrain modeling
approach that balances smoothing against the preservation
of structural features. Our method uses Gaussian processes
with non-stationary covariance functions to locally adaptto
the structure of the terrain data. In experiments on synthetic
and real data, we demonstrated that our adaptation procedure
produces reliable predictions in the presence of noise and
is able to fill gaps of different sizes. Compared to a state-
of-the-art approach from the robotics literature we achieve a
prediction error reduced by approximately 30%-70%.

In the future, we intend to evaluate our approach in
online path planning applications for mobile robots. Since
our approach retrieves terrain properties in terms of kernels,
its application to terrain segmentation is promising. Another
direction of further research are SLAM techniques where the
trajectory of the robot is also unknown and the model has to be
updated sequentially. We also intend to evaluate our approach
on typical test cases in computer vision and to compare it
with the algorithms of this community. Finally, we work on
an analytical derivation for optimal kernels based solely on
data likelihoods and model complexity.
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(a) The first test scenario (b) Observations (points) and predicted means (lines) (c) Predictive uncertain-
ties (white: zero)

Fig. 5. A real-world scenario, where a person blocks the robot’s view on an inhomogeneous and sloped terrain (a). Figure (b) gives the raw data points as
well as the predicted means of our adapted non-stationary regression model. Importantly, our model also yields the predictive uncertainties for the predicted
elevations as depicted in Figure (c).

(a) The second test scenario (b) Observed elevations (c) Adapted kernels at observed (red)
and occluded locations (green)

(d) Predicted elevations

Fig. 6. A real-world scenario where a person blocks the robot’s view on a stone block, i.e., a sharp linear discontinuity (a). Figure (b) visualizes the kernels
that have adapted to the observed block edges illustrated in(c). Figure (d) illustrates the predicted terrain elevations and two contour lines for two different
predictive uncertainty thresholds.
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