
Incremental Updates of Configuration Space Representations for
Non-Circular Mobile Robots with 2D, 2.5D, or 3D Obstacle Models

Boris Lau Christoph Sprunk Wolfram Burgard

Abstract— This paper presents techniques to incrementally
update collision maps, distance maps, and Voronoi diagrams in
the configuration space of non-circular mobile robots. Compared
to previous work, our approach only updates the cells affected
by changes in the environment. Thus, it is applicable in large
workspaces and in the presence of unknown or moving obstacles.
The c-space collision maps allow for performing highly efficient
collision checks in dynamically changing environments, for 2D,
2.5D, and 3D representations of robots and obstacles. By using the
proposed c-space distance maps, long trajectories can efficiently
be checked for collisions. Finally, our c-space Voronoi diagrams
allow effective and complete path planning in narrow spaces. Our
algorithms are easy to implement, benefit from parallelization
on multi-core CPUs, and can be integrated with state-of-the-art
path planners. Experiments demonstrate the effectiveness of our
methods and show their applicability to real-world scenarios.

I. INTRODUCTION

Efficient collision checks are a crucial ability for many
online systems in autonomous mobile robotics: simulators,
path planners, and trajectory optimizers alike need to check
for every considered pose for collision. For plain 2D obstacle
representations and circular approximations of the robot’s
footprint, these collision checks are easy to perform.

For non-circular robots in passages narrower than their
circumcircle, however, circularity is too crude an assumption,
and collisions have to be checked for in the three-dimensional
configuration space (c-space) of robot poses. Also, even for
robots moving on a plane as considered in this paper, 3D
obstacles and collisions can be important: applications like
robotic transporters, wheelchairs, or mobile manipulators can
require the robot to partially move underneath or above
obstacles as shown in Fig. 1. In these cases, collision checks
can easily become a dominant part of the computational effort.

Naive collision checks on 2D occupancy grid maps require
one lookup per grid cell in the area occupied by the robot.
For 3D obstacle representations like multi-layer surface maps
or full 3D maps [1], the effort depends on the robot’s volume.
However, by convolving a map with the discretized shape of
the robot, one can precompute a collision map that marks all
colliding poses. With such a map, a collision check requires
just a single lookup, even for 3D obstacle representations.

From these c-space maps one can derive c-space distance
maps that encode the distance to the closest colliding robot
pose. Based on this, checking a trajectory for collisions can
be made more efficient by extending the intervals of collision

All authors are with the Department of Computer Science at the University
of Freiburg, Germany, {lau, sprunkc, burgard}@informatik.uni-freiburg.de.

This work has partly been supported by the European Commission under
FP7-248258-First-MM, FP7-248873-RADHAR, and FP7-260026-TAPAS.

Fig. 1. For some applications, representing obstacles and robots by their
2D footprints can be sufficient (top-left). For overhanging parts of robots,
their load, or obstacles, 2.5D representations are needed (bottom), whereas
interaction tasks can also require actual 3D obstacle and robot models (top-
right). Robot discretizations as used in our experiments are depicted in blue.

checks from one cell to the respective local collision distance.
Similarly, in contrast to regular 2D Voronoi maps that can be
used for complete motion planning of circular robots, c-space
Voronoi maps can be employed for non-circular robots as well.

Early work on c-space obstacle representations assumes
static environments [2]. More recent approaches are often
motivated by dynamic obstacles, but mostly try to improve the
efficiency with the goal to execute the entire computation on
every sensor update. This paper presents methods to incremen-
tally update collision, distance, and Voronoi grid maps in the
configuration space of non-circular mobile robot poses. Our al-
gorithms only update cells affected by changes, which greatly
reduces the computational costs. We consider all obstacle types
shown in Fig. 1 and thus provide means for efficient collision
checking in real-world applications. The algorithms are easy to
implement and benefit from parallelization on multiple cores.

After discussing related work, we describe dynamic c-space
collision, distance, and Voronoi maps in Sects. III and IV,
and their application to path planning in Sect. V. Finally, we
present extensive experiments in Sect. VI.

II. RELATED WORK

Algorithms for efficient collision checking in 3D continue
to be an active area of research. For example, Tang et al. [3]
recently proposed a connection collision query algorithm that

detects collisions of triangle meshes moving between given
states. Thus, it can be used for sampling-based path planning.
For online feasibility, Pan et al. use multi-core GPUs for
collision queries [4]. Still, the cost per collision check depends
on the number of polygons used to represent the tested objects.

Schlegel precomputes collision distances for circular arcs
as a function of relative obstacle location and curvature [5].
Thus, the kinematic analysis is done offline, and collision
distances can be obtained with one lookup per obstacle.
Precomputing c-space representations instead further reduces
the online effort for collision checks to a single lookup.
Since Lozano-Perez’s 1983 paper on c-space planning among
static polyhedric obstacles, many approaches were proposed to
reduce the cost for computing c-space obstacles [2]. Because
of the relevance of this problem, researchers still work on
improving the efficiency [6].

Convolving a gridmap of a robot’s environment with an
image of its footprint yields a discrete c-space map. To always
reflect the current state of previously unknown or moving
obstacles, these maps need to be updated regularly. Kavraki
proposed to use the fast Fourier transform (FFT) to reduce the
computational cost of the convolution [7], and Therón et al.
added parallelization as a further speed-up [8]. Later, the same
group proposed a multi-resolution approach to reduce memory
and computational load in large workspaces [9]. To speed
up path planning for autonomous cars, Ziegler and Stiller
decompose the shape of the robot into circular discs [10].

As a first dynamic approach for changing enviroments, Wu
et al. precompute colliding robot poses for each potentially oc-
cupied cell in the work space of a manipulator [11]. Taking the
union of the colliding poses for a given set of occupied cells
yields the c-space obstacle map without further recomputation.
For mobile robots, however, the size of the operational area can
make the database storage and the online computation of the
union infeasible. In contrast, our method for updating c-space
collision maps is truly incremental: it executes a regular map
convolution in an offline phase, and during online application
only updates the cells affected by changes in the environment.

In our previous work we presented algorithms to incre-
mentally update two-dimensional Euclidean distance maps and
Voronoi diagrams [12]. For path planning with circular robots,
2D Voronoi diagrams are appealing roadmaps since they cover
all topologically different paths in a map with a small number
of cells. For rectangular robots however, 2D Voronoi planning
looses its completeness property, and one has to repair paths
in narrow areas where following the Voronoi diagram leads
to collisions, e.g., by using RRTs as proposed by Foskey et
al. [13]. In this paper we combine the dynamic distance and
Voronoi maps proposed in [12] with our novel incrementally
updatable c-space collision maps. In this way, we overcome the
aforementioned problem and can perform complete Voronoi
planning in the configuration space of non-circular robots.

Although we use A� planning as an example application,
our approach can be combined with other planners, e.g.,
D� Lite [14], or rapidly-exploring random trees (RRT) with
Voronoi-biased sampling [15].

 ñ

1
1

1

1
2
11

1
1

0
0 0
0

00

00 0

Mpx, yq S0� pi, jq C0� px, yq

 ñ

2
2

0

0
00

0
0

0
1 0
1

01

10 1
Mpx, yq S

�90� pi, jq C
�90� px, yq

Fig. 2. Convolving a map Mpx, yq with a representation of the robot’s shape
Sθpi, jq for a given orientation θ yields a collision map Cθpx, yq, according
to Eq. (1). Each cell xx, yy in Cθ counts the cells in the robot footprint that
collide with occupied cells in M , given the robot is at pose xx, y, θy.

 ñ

1
1

1

1
2
11

1
1

0
1 1
0

10

00 0

Mpx, yq S0� pi, jq C0� px, yq

 ñ

2
2

0

0
10

0
0

0
2 0
2

01

10 1
Mpx, yq S

�90� pi, jq C
�90� px, yq

Fig. 3. A newly occupied cell in the map M (red) increments the collision
count C for all robot poses that cause a collision at the location of the
new obstacle. In this way, the collision map is updated (red cells) without
recomputing the values for unaffected (gray) cells. Alg. 1 implements this
procedure as well as the corresponding case for newly emptied cells.

III. DYNAMIC C-SPACE COLLISION MAPS

This section presents a method to incrementally update c-
space collision maps for non-circular mobile robots moving on
a plane. It can be applied to all obstacle types shown in Fig. 1.
For the sake of clarity we start with the 2.5D representation
with overhanging obstacles shown in Fig. 1 (bottom-right),
and discuss the adaptation to the other obstacle models later.

Let Mpx, yq be a grid map that represents the vertical
clearance, i.e., the height of free space above the floor, with
zeros for completely occupied cells. Consider a robot moving
on the floor with continuous orientation θ̃ with respect to the
map coordinate system. We represent the discretized shape of
the robot for a given orientation θ̃ by a map Sθ̃pi, jq, that
stores the height of the robot for every cell of its footprint. Sθ̃
has the same resolution and orientation as the grid map M ,
whereas its origin Sp0, 0q is located at the robot’s center.

A convolution-type conjunction of M and Sθ̃ yields a count
map Cθ̃px, yq as shown in Fig. 2. Each cell xx, yy in Cθ̃ stores
the number of cells the robot collides with when located there:

Cθ̃px, yq �
¸

i

¸
j

eval

Mpx�i, y�jq ¤ Sθ̃pi, jq

(
, (1)

where evalptrueq�1 and evalpfalseq�0. If we discretize θ̃ and
stack the Cθpx, yq for all discrete θ, we obtain the robot’s c-
space map Cpx, y, θq for M . Clearly, by testing Cpx, y, θq¡0
we can check if the discretized pose xx, y, θy is colliding.

A. Discretization of Orientations

An appropriate discretization of θ̃ ensures that if two adja-
cent poses xx, y, θiy and xx, y, θi�1y are collision-free accord-
ing to C, intermediate orientations θ̂ P rθi, θi�1s are collision-
free as well. Under this constraint we seek to discretize θ̃ as
coarse as possible to keep the number of θ-layers in C small.

In occupancy grid maps, the actual location of obstacles can
be anywhere in the cells they occupy. Therefore, one usually

Alg. 1 Dynamic Update of C-space Collision Map
function UpdateVerticalClearancepx, y, vnewq

1: vold ÐMpx, yq
2: Mpx, yq Ð vnew
3: for all θ do
4: for all xx1, y1yPtxx�i, y�jy |Sθpi, jq¡0u do
5: if vnew ¤ Sθpi, jq ^ vold ¡ Sθpi, jq then
6: Cpx1, y1, θq Ð Cpx1, y1, θq � 1
7: if Cpx1, y1, θq � 1 then NewOccupiedpx1, y1, θq
8: else if vnew ¡ Sθpi, jq ^ vold ¤ Sθpi, jq then
9: Cpx1, y1, θq Ð Cpx1, y1, θq � 1

10: if Cpx1, y1, θq � 0 then NewEmptypx1, y1, θq

assumes an additional safety margin m around the robot, e.g.,
of m�1 pixel unit. With this, we can formulate a bound on
the angular resolution for the discretization of θ̃ as follows:
if the robot rotates from θi to θi�1, each point on the robot
moves along an arc. The maximum arc length occurs at the
outmost point of the robot, which is the radius r (in pixels) of
the circumcircle around its center. By choosing a resolution
of |θi � θi�1| � m{r, we ensure that even in the worst case
an obstacle collides only with the safety margin but not with
the actual robot. Depending on the shape of the robot, less
conservative bounds on the discretization can be formulated.

B. Incremental Update of the C-space Map

Unknown or moving obstacles cause changes in the envi-
ronmental representation of a robot. For the 2.5D obstacle
model, a change is given by an updated vertical clearance
vnew for a cell xx, yy in M . To refresh C incrementally rather
than computing it from scratch, we only update the affected
parts of the sum in Eq. (1) according to Alg. 1. See Fig. 3 in
comparison to Fig. 2 for an illustration.

The algorithm separately updates the θ-layers of C, and can
thus be parallelized (line 3). For each cell xi, jy of the robot
shape Sθpi, jq we visit the robot position xx1, y1y that lets xi, jy
fall on xx, yy (line 4). These cells can be efficiently selected
using standard drawing algorithms for rasterized images.

If the new vertical clearance vnew in xx, yy causes a collision
with Sθpi, jq while vold did not, the collision counter of xx1, y1y
is incremented (line 5), since this represents a new collision
candidate cell. Vice versa, if vnew is collision-free and vold
collides, the counter is decremented (line 8), since a collision
candidate was removed. Whenever the count changes from
0 to 1 or from 1 to 0, the pose xx1, y1, θy is newly occupied
(line 7) or emptied (line 10), respectively. These events can be
used to trigger further computation, e.g., to update the c-space
distance map and Voronoi diagram discussed in Sect. IV.

C. Adaptation to Other Kinds of Obstacles and Robots

Until here, we assumed overhanging obstacles and a robot
on the floor that can move underneath obstacles as in Fig. 1
(bottom-right). By reversing the comparisons of robot height
and vertical clearance in Eq. (1) and Alg. 1 (lines 5 and 8), this
can easily be adapted to obstacles elevating from the floor and

Fig. 4. C-space distance map (top) and Voronoi diagram (bottom) for
a rectangular robot, both obtained by stacking layers computed in 2D for
different robot orientations θ. For readability, only half of the layers are shown,
the other half is identical due to the robot’s symmetry. In the visualization at
the top, cells above the bottom layer have a different color scaling, and were
removed when exceeding a distance threshold.

robots with overhanging load or parts as in Fig. 1 (bottom-left).
For plain 2D robot and obstacle models, the heights vnew and
vold are binary values that encode occupied and free. The other
techniques presented in this paper apply without modifications.

For some applications, the obstacles and the robot have to
be represented in full 3D as in Fig. 1 (top-right). The height
comparisons in Alg. 1, lines 5 and 8, then have to consider
lists of obstacle heights. If the robot shape is approximated by
a set of vertical columns with a given upper and lower end
as in Fig. 1, one can also use a separate shape map for each
column. By only considering the affected columns in line 4,
the c-space collision map can be efficiently updated.

Robots with a symmetric shape with respect to their center
cause a part of the θ-layers in Cpx, y, θq to be redundant. For
example, a rectangular robot at orientation 180� causes the
same c-space obstacles as at 0�. Omitting the respective layers
when iterating over θ in Alg. 1 (line 3) saves a substantial part
of the computational effort and memory consumption.

IV. C-SPACE DISTANCE MAPS AND VORONOI DIAGRAMS

The cells of a distance map D measure the distance to their
closest obstacle in the map M . Given a three-dimensional c-
space collision map Cpx, y, θq as defined above, one could
consider a 3D distance map that uses a 3D distance measure
including the angle. As discussed by Canny [16], it is however
more desirable to employ 2D Euclidean distances per θ-layer.
Thus, we stack Euclidean distance maps Dθpx, yq computed
for every c-space map layer Cθpx, yq, yielding the c-space
distance map Dpx, y, θq as shown in Fig. 4 (top).

goal

start

goal goal

startstart

Connecting start and goal to the closest cell on the Voronoi graph

goalgoal goal

start start start

Our method: use bubble-like Voronoi areas at start and goal

Fig. 5. Connecting start and goal to the Voronoi graph (green) during
planning: using the shortest connection (top), the planned path (blue) can
change abruptly for small changes of the start configuration, even for sightline-
pruned paths (dashed). We create Voronoi bubbles around start and goal, and
use goal-directed search therein, which yields more stable paths (bottom).

In 2D, Voronoi graphs are the union of points whose two
closest obstacles are at the same distance. Similar to distance
maps, we compute a Voronoi diagram Vθpx, yq for every
Cθpx, yq. Stacking these Voronoi diagrams results in the c-
space Voronoi diagram V px, y, θq as shown in Fig. 4 (bottom).
If θ is discretized according to Sect. III-A, Voronoi lines in
neighboring layers connect to unbroken surfaces.

We update the layers of the c-space distance map Dθ and
Voronoi diagram Vθ incrementally as proposed for 2D in
our previous work [12]. The functions SetObstaclepx, yq and
RemoveObstaclepx, yq described therein are used to specify
newly occupied or freed cells. UpdateDistanceMap() performs
the update with a dynamic brushfire algorithm. The event
NewOccupiedpx1, y1, θq in Alg. 1 calls SetObstaclepx1, y1q for
the dynamic distance map Dθpx, yq, and NewEmptypx1, y1, θq
calls RemoveObstaclepx1, y1q. After the update of Cpx, y, θq,
we execute UpdateDistanceMap() in parallel for every Dθ,
which completes the update of Dpx, y, θq and V px, y, θq.

V. C-SPACE VORONOI PATH PLANNING

Given a c-space Voronoi map as described above, a goal-
directed graph search on the Voronoi cells is no different from
regular planning on 3D grids, except for the cyclic nature of
the orientation dimension. This section details on important
aspects of Voronoi planning in dynamic environments.

In general, the start and goal locations of a planning problem
are not on the Voronoi graph. Trivial approaches search for the
closest Voronoi cell at both locations, and connect them with
straight lines to the graph [17]. This is problematic in practice,
since a small change of the start pose can substantially change
the planned path as shown in Fig. 5 (top row). Our approach
tackles this problem by applying the following steps:

1) insert a virtual obstacle at the start and goal location,
2) update the Voronoi map for all layers,
3) use brushfire expansion to mark cells in Voronoi bubbles,
4) plan a path from start to goal,
5) undo the changes made by 1) and 2).

FR079

10 m FR101

Fig. 6. Maps of the environments we used to benchmark collision checks.

Through the virtual obstacles inserted at start and goal, these
locations get enclosed by the Voronoi graph which generates
a “bubble”-like area as shown in Fig. 5 (bottom row). For
all θ-layers in parallel, the brushfire expansion starts at the
start and at the goal position, and marks all visited cells while
expanding like wavefronts up to the enclosing Voronoi lines.

Then, a goal-driven A� search is initiated at the start
location. It is restricted to only consider Voronoi cells and
the ones in the start and goal bubble, marked by the brushfire
expansion. In this way, the search expands from the start onto
the Voronoi graph, follows Voronoi lines, and then connects
to the goal when reaching the goal bubble. Since the whole
path is the result of goal-directed graph search, the consecutive
paths planned for a moving robot are very similar to each other
and do not change abruptly (see Fig. 5).

The brushfire expansion has to be run for each θ-layer sep-
arately using a 4-connected neighborhood. This ensures that
the expansion is contained in the start and goal bubbles. Since
the update of the c-space representations is run separately for
the θ layers as well, the whole procedure can be parallelized
except for the actual planning routine in step 4).

VI. EXPERIMENTS

This section presents application examples and benchmarks
for our incrementally updatable c-space representations. We
performed tests on two sequences of 2D laser range data with
200 frames each. The data was recorded by a robot moving
in areas where walking people heavily affected the traversable
space, namely an office building (FR079) and a large foyer
(FR101). The algorithms were initialized with the gridmaps
shown in Fig. 6, using a resolution of 0.05 m per grid cell.
The maximum range of the laser scanner was limited to 5 m.
To get 2.5D and 3D obstacles, we augmented the laser data
with random height values between 0 m and the robot height.

In 2D, we assumed a medium sized rectangular robot
(0.85x0.45 m) and a large one (1.75x0.85 m). In 2.5D, we
modeled a wheelchair with a low front and a high rear part, as
in Fig. 1 (bottom-right). In 3D, the robot was modeled like a
Willow Garage PR2, with a frontal extension for the base and
the fixed arms (see Fig. 1 top-right). The C++ implementation
of our algorithms was executed on an Intel Core i7 2670 MHz,
using OpenMP for parallelization with up to 6 threads.

A. Collision Checks for Non-Circular Robots

The c-space collision map presented in Sect. III requires
computation of the incremental update in every time step, but
then, each collision check for the whole robot takes only a
single lookup. In the 2D model, we exploit the symmetry of
the rectangular robot as described in Sect. III-C.

0 50k 100k 150k

2

4

6

8

Ti
m

e
fo

r
20

0
fr

am
es

[s
]

2D
FR079
Medium Robot

2D Occupancy Map 2D Distance Map C-space Map

0 50k 100k 150k

2

4

6

8
2D
FR079
Large Robot

0 50k 100k 150k

2

4

6

8

#collision checks per frame

Ti
m

e
fo

r
20

0
fr

am
es

[s
]

2D
FR101
Medium Robot

0 50k 100k 150k

2

4

6

8

#collision checks per frame

2D
FR101
Large Robot

Fig. 7. Computation time for different collision checking routines for two
sequences and two robot models. The update required in every frame for
the c-space collision map pays off starting from 10,000 collision checks per
frame. The plot shows mean and standard deviations for 10 runs.

0 50k 100k 150k

2

4

6

8

10

#collision checks per frame

Ti
m

e
fo

r
20

0
fr

am
es

[s
]

C-space Map

2D (Medium robot) 2.5D (Wheelchair) 3D (PR2)

0 50k 100k 150k

2

4

6

8

10

#collision checks per frame

Grid Map

Fig. 8. Collision check performance for different robot and obstacle models,
using our updatable c-space collision map (left) vs. the straight-forward
occupancy gridmap approach (right). The costs for updating the c-space map
are remedied by the faster collision checks for 10,000 checks or more per
frame. The plot shows mean and standard deviations for 20 runs.

We compare our method to a previous collision checking
approach for rectangular robots that uses incrementally updat-
able 2D distance maps [18]. As a baseline, we also include a
straight-forward approach that checks every cell of the robot’s
footprint for collision using an up-to-date 2D occupancy map.

The results of this benchmark are shown in Fig. 7. The time
required for updating the distance and c-space maps is shown
by the first data point of each plot (zero collision checks). The
slopes of the curves depend on the cost per collision check.
In contrast to the distance map approach, the update time for
the c-space map grows with the size of the robot (right vs.
left column), but does not suffer from the open area in FR101
(bottom vs. top row). The update for the c-space collision map
pays off for 10,000 or more collision checks, which can easily
be required during path planning or trajectory optimization.
In comparison, the break-even point for a single disc-shaped

A
B

C

D

narrow
passages

1m

C-space Voronoi KPiece

Fig. 9. Map of a factory floor (9.5x15.4 m) with start location (A) and three
goals (B), (C), and (D). Example paths from (A) to (D) are shown for two
different planners. The sampling-based planner (right) is challenged by narrow
passages, while the performance of the Voronoi planner (left) is unaffected.

AÑB AÑC AÑD

0.001
0.01
0.1

1
10

100
1000

10000
Planning time [s]

C-space Voronoi
KPiece
RRT

AÑB AÑC AÑD
0

1000

2000

3000

4000
Path length [cells]

C-space Voronoi
KPiece
RRT

Fig. 10. Planning time and path length for three planners and the three
planning tasks in Fig. 9. The plot shows mean and min/max for 20 runs. In
contrast to the Voronoi planner, the sampling-based planners require several
orders of magnitude more planning time for each narrow passage in the path.

object was at 22,400 for the disc-decomposition method by
Ziegler et al., and 5 � 106 for the full c-space [10].

We repeat the experiment, but with 2.5D and 3D obstacles
and robots this time. Compared to the 2D rectangular robot
(dashed), the costs for the c-space update with 2.5D and 3D
are higher, since the robots are not symmetric anymore and
consist of two and three parts, respectively, see Fig. 8 (left).
However, the costs per collision check (slope of the plots) is
the same, as opposed to the curves for the straight-forward
occupancy grid map approach (right).

In all cases, the update of the c-space map takes less
than 15 ms per frame. Performing 150,000 collision checks
per frame additionally requires at most another 15 ms. This
corresponds to 10�106 collision checks per second for arbitrary
robot shapes, which clearly outperforms even modern GPU-
based approaches with 0.5 � 106 collision checks per second
for simple polygons [4].

B. Path Planning using C-space Voronoi Maps

The c-space Voronoi maps presented in this paper provide
means for complete grid map planning for non-circular om-
nidirectional robots using standard graph search algorithms

Fig. 11. Table-docking with a PR2 robot in a 3D map using Voronoi planning.

like A� or D� Lite [14]. With our algorithms for incremental
updates they are applicable in dynamic environments. This
experiment uses the Voronoi bubble technique proposed in
Sect. V.

We use A� to plan paths for the large robot model (see
above) on the grid map of the factory floor shown in Fig. 9.
The start pose is given by (A), and three possible goal poses
by (B), (C), and (D). Each of the consecutive goals requires
traversing another narrow passage. For comparison, we test our
method against the KPiece and RRT implementations available
in the Open Motion Planning Library [19]. All planners use
our c-space map for collision checking.

The average resulting planning times and path lengths for
20 runs per start-goal combination are shown in Fig. 10. Each
additional narrow passage requires several orders of magnitude
more planning time for the sampling-based planners, while the
time taken by the Voronoi planner grows roughly linearly with
the path length. Using per-cell collision checking rather than
the c-space collision maps for the sampling based planners
increases the computation times by a factor of 3.

As another application example, we plan the path of a PR2
robot using a c-space Voronoi map generated from real 3D
point cloud data (see Fig. 11). After a precomputation phase
of 0.5 s, planning a path on the incrementally updatable c-
space Voronoi map takes less than 2.5 ms.

Clearly, Voronoi planning is of advantage in narrow areas as
long as the grid resolution is fine enough. Our incrementally
updatable c-space Voronoi representation allows to apply this
idea to non-circular robots in dynamic environments, and
could also be used in Voronoi sampling routines of other path
planners [15].

VII. CONCLUSION

This paper presents incrementally updatable collision maps,
distance maps, and Voronoi diagrams for non-circular robots.
During initialization, these representations are computed using
a given grid map or point cloud. During online application, our
methods only update cells that are affected by changes in the
environment, and can thus be used in real-world scenarios with
unexpected or moving obstacles.

We consider different obstacle representations, namely a
robot moving on a plane with overhanging obstacles, or vice
versa, obstacles elevating from the ground, and a robot with
overhanging parts. Our approach is also applicable to 2D and
full 3D obstacle representations, and can exploit symmetries
in the robot shape.

In our experiments we showed that the presented methods
allow for a high number of collision checks and reliable path
planning in frame rates required for online real-world appli-
cations. To further increase the efficiency of our algorithms,
e.g., in higher-dimensional c-spaces of manipulators, one could
combine them with hierarchical decomposition as proposed by
Blanco et al. [9].

REFERENCES

[1] K. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: A probabilistic, flexible, and compact 3D map representation
for robotic systems,” in ICRA Workshop on Best Practice in 3D
Perception and Modeling for Mobile Manipulation, Anchorage, 2010.

[2] K. D. Wise and A. Bowyer, “A survey of global configuration-space
mapping techniques for a single robot in a static environment,” Interna-
tional Journal of Robotics Research, vol. 19, no. 8, pp. 762–779, 2000.

[3] M. Tang, Y. J. Kim, and D. Manocha, “CCQ: Efficient local planning us-
ing connection collision query,” in Algorithmic Foundations of Robotics
IX, ser. Springer Tracts in Advanced Robotics (STAR), 2011, vol. 68.

[4] J. Pan and D. Manocha, “GPU-based parallel collision detection for real-
time motion planning,” in Algorithmic Foundations of Robotics IX, ser.
Springer Tracts in Advanced Robotics (STAR), 2011, vol. 68.

[5] C. Schlegel, “Fast local obstacle avoidance under kinematic and dynamic
constraints for a mobile robot,” in Intl. Conf. on Intelligent Robots and
Systems (IROS), Victoria, Canada, 1998.

[6] E. Behar and J.-M. Lien, “A new method for mapping the configuration
space obstacles of polygons,” Department of Computer Science, George
Mason University, Tech. Rep. GMU-CS-TR-2011-11, 2010.

[7] L. E. Kavraki, “Computation of configuration-space obstacles using the
fast Fourier transform,” IEEE Transactions on Robotics and Automation,
vol. 11, no. 3, pp. 408–413, June 1995.

[8] R. Therón, V. Moreno, B. Curto, and F. J. Blanco, “Configuration
space of 3D mobile robots: Parallel processing,” in 11th Intl. Conf. on
Advanced Robotics, vol. 1–3, 2003.

[9] F. J. Blanco, V. Moreno, B. Curto, and R. Therón, “C-space evaluation
for mobile robots at large workspaces,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), Barcelona, Spain, April 2005.

[10] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in IEEE Intelligent Vehicles Symposium, San Diego,
CA, USA, June 2010.

[11] X. J. Wu, J. Tang, and K. H. Heng, “On the construction of discretized
configuration space of manipulators,” Robotica, vol. 25, pp. 1–11, 2006.

[12] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of Euclidean
distance maps and Voronoi diagrams,” in IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, October 2010.

[13] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), Maui, HI, USA, October 2001.

[14] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth National Confer-
ence on Artificial Intelligence (AAAI), 2002, pp. 476–483.

[15] L. Zhang and D. Manocha, “An efficient retraction-based RRT planner,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), Pasadena, 2008.

[16] J. Canny, “A Voronoi method for the piano-movers problem,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), March 1985.

[17] R. Geraerts and M. Overmars, “A comparative study of probabilistic
roadmap planners,” in Algorithmic Foundations of Robotics V, ser.
Springer Tracts in Advanced Robotics, 2004, vol. 7, pp. 43–58.

[18] C. Sprunk, B. Lau, P. Pfaff, and W. Burgard, “Online generation of
kinodynamic trajectories for non-circular omnidirectional robots,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai, 2011.

[19] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library (OMPL),” 2010. [Online]. Available: http://ompl.kavrakilab.org/

