
Efficient Grid-Based Spatial Representations
for Robot Navigation in Dynamic Environments

Boris Lau∗, Christoph Sprunk, Wolfram Burgard

Autonomous and Intelligent Systems, University of Freiburg, D-79110 Freiburg, Germany

Abstract

In robotics, grid maps are often used for solving tasks like collision checking, path planning, and localization. Many
approaches to these problems use Euclidean distance maps (DMs), generalized Voronoi diagrams (GVDs), or config-
uration space (c-space) maps. A key challenge for their application in dynamic environments is the efficient update
after potential changes due to moving obstacles or when mapping a previously unknown area. To this end, this paper
presents novel algorithms that perform incremental updates that only visit cells affected by changes. Furthermore, we
propose incremental update algorithms for DMs and GVDs in the configuration space of non-circular robots. These
approaches can be used to implement highly efficient collision checking and holonomic path planning for these plat-
forms. Our c-space representations benefit from parallelization on multi-core CPUs and can also be integrated with
other state-of-the-art path planners such as rapidly-exploring random trees.

In various experiments using real-world data we show that our update strategies for DMs and GVDs require sub-
stantially less cell visits and computation time compared to previous approaches. Furthermore, we demonstrate that
our GVD algorithm deals better with non-convex structures, such as indoor areas. All our algorithms consider actual
Euclidean distances rather than grid steps and are easy to implement. An open source implementation is available
online.

Keywords: Incremental algorithms, Voronoi diagrams, Distance maps, Configuration space, Collision checking,
Robot navigation

1. Introduction

Many approaches in robot navigation rely on occu-
pancy grid maps to encode the obstacles of the area sur-
rounding a robot. These maps can be learned from sen-
sor data, they are well suited to solve problems like path
planning, collision avoidance, or localization, and they
can easily be updated to reflect changes in the environ-
ment.

In the past, several grid-based spatial representations
have been developed that can be derived from grid
maps, e.g., distance maps, Voronoi diagrams, and con-
figuration space maps. These representations are im-
portant building blocks for many different robotic ap-
plications, since they can be used to speed-up algo-
rithms that solve the aforementioned problems. This

∗Corresponding author
Email address: lau@informatik.uni-freiburg.de (Boris

Lau)

paper proposes incremental update algorithms to facil-
itate the online use of these representations in dynamic
environments. We also apply our methods to update
distance maps and Voronoi diagrams in the configura-
tion space of non-circular robots, e.g., to speed-up path
planning or collision avoidance for these types of plat-
forms. This paper extends our previous work on these
topics [2, 3] and includes additional experiments for 3D
distance maps and incremental updates of distance maps
and Voronoi diagrams in the context of simultaneous lo-
calization and mapping (SLAM).

The generalized Voronoi diagram (GVD) is defined
as the set of points in free space to which the two clos-
est obstacles have the same distance [4]. It is a discrete
form of the Voronoi graph, which has been widely used
in various fields [5]. In the context of robotics, Voronoi
graphs are a popular cell decomposition method for
solving navigation tasks. Their application as roadmaps
is an appealing technique for path planning, since they
are “sparse” in the sense that different paths on the graph

Preprint submitted to Robotics and Autonomous Systems October 7, 2013

correspond to topologically different routes with respect
to obstacles. This significantly reduces the search prob-
lem and can be used for example to generate the n-
best paths for offering route alternatives to a user [6].
Also, moving along the edges of a Voronoi graph en-
sures the greatest possible clearance when passing be-
tween obstacles. When Voronoi graphs are discretized
and stored as a map, they can lose their sparseness prop-
erty due to erroneous interconnections between neigh-
boring Voronoi lines. Our method to compute GVDs
overcomes this problem with additional conditions that
ensure the sparseness of the generated GVDs.

The cells in a distance map (DM) encode the distance
to the closest cell that is occupied according to the cor-
responding occupancy map. Since a cell lookup only
requires constant time, DMs provide efficient means for
collision checks, to compute traversal costs for path
planning, and for robot localization with likelihood
fields [7]. Since the computation of this transform is
carried out without considering the shape of the robot,
direct application of plain DMs is restricted to circular
approximations of the robot’s footprint.

For non-circular robots in passages narrower than
their circumcircle, however, circularity is too crude an
assumption, and collisions have to be checked for in
the three-dimensional configuration space (c-space) of
robot poses. Also, even for robots moving on a plane
as considered in this paper, 3D obstacles and collisions
can be important: applications such as robotic trans-
porters, wheelchairs, or mobile manipulators can re-
quire the robot to partially move underneath or above
obstacles as shown in Fig. 1. In these cases, collision
checks easily become a dominant part of the computa-
tional effort in path planning. However, by convolving a
map with the discretized shape of the robot, one can pre-
compute a collision map that marks all colliding poses.
With such a map, a collision check requires just a single
lookup, even for 3D obstacle representations.

In changing environments, precomputed GVDs,
DMs, and c-space maps have to be updated regularly to
always reflect the current state of the corresponding oc-
cupancy map. These changes can be caused by moving
people or vehicles, newly explored areas during map-
ping, or when correcting a map after closing a loop in
SLAM.

In this paper, we present efficient methods to com-
pute and update these representations. Since our algo-
rithms perform all updates in an incremental way, i.e.,
recomputing only parts affected by changes, they can be
applied online even with large maps or with more than
two dimensions. In comparison to previous approaches,
our methods require less computational effort, are easy

Figure 1: For some applications, representing obstacles and robots by
their 2D footprints can be sufficient (top-left). For overhanging parts
of robots, their load, or obstacles, 2.5D representations are needed
(bottom), whereas interaction tasks can also require actual 3D obstacle
and robot models (top-right). Robot shape approximations as used in
our experiments are depicted in blue.

to implement, and work in both indoor and outdoor en-
vironments.

Additionally, we combine DMs and GVDs with c-
space collision maps, and propose distance transformed
c-space maps and c-space Voronoi diagrams. These can
be used for efficient collision checking and path plan-
ning of non-circular robots. With our algorithms de-
scribed in this paper, these representations can be up-
dated in an incremental way as well.

After discussing related work in Sect. 2, we describe
the brushfire algorithm in Sect. 3. It can be used to
compute static DMs, and it is an important foundation
for our dynamic DM and GVD algorithms proposed
in Sects. 4 and 5. Sect. 6 describes our dynamic c-
space collision maps, followed by the c-space DM and
c-space GVD in Sect. 7. Our experiments are presented
in Sect. 8 before we conclude our paper in Sect. 9.

2. Related Work

In the past, many different approaches have been pro-
posed to compute DMs, GVDs, and c-space collision
maps. With the goal of applying them online in dynamic
environments, a lot of effort has been spent on devel-
oping more efficient algorithms. However, unlike ours,
most of these approaches do not exploit the potential
of incremental updates. The remainder of this section
presents related work for the different spatial represen-
tations and discusses the contribution of our methods.

2

2.1. Distance Maps
Many different approaches have been proposed to

compute static two-dimensional DMs, e.g., linear im-
age traversal [8], dimensional decomposition [9], and
distance propagation with the brushfire algorithm [10].
We review the brushfire algorithm in Sect. 3. For a com-
parative review of other approaches please refer to the
survey by Fabbri et al. [9].

Whenever a cell in a grid map is newly occupied or
vacated, the corresponding DM has to be updated to
reflect this change. A trivial method is to recompute
distances for patches within d̂ around all changed cells,
where d̂ is an upper bound on the minimum obstacle dis-
tance in the environment. However, this method usually
updates substantially more cells than necessary, e.g., if
d̂ is high due to large open spaces or if the changed cells
cover a wide area. Furthermore, efficiently determin-
ing the minimal update area is not trivial, if the changes
affect the occupancy of several cells.

Kalra et al. proposed a dynamic brushfire algorithm
that incrementally updates DMs and GVDs by propa-
gating wavefronts starting at newly occupied or vacated
cells [11]. While their method is based on the incremen-
tal path planning algorithm D∗ by Stentz [12], the algo-
rithm proposed here is directly derived from the brush-
fire algorithm and requires substantially less computa-
tional time for the same task due to a considerably re-
duced number of cell visits.

The wavefronts of Kalra et al. accumulate 8-
connected grid steps to approximate obstacle dis-
tances [11]. This overestimates the true Euclidean dis-
tances by up to 8.0% [13], which for a robot implies ei-
ther a collision risk or overly conservative movements.
Scherer et al. adopted and corrected Kalra’s algorithm
for their DM update method [14]. They propagate ob-
stacle locations rather than grid step counts to determine
Euclidean distances, which reduces the absolute over-
estimation error below an upper bound of 0.09 pixel
units [13]. According to Cuisenaire and Macq, the
shortest distance at which this propagation error can oc-
cur is 13 pixels [15], which yields a maximum relative
error of 0.69%. Additionally, by propagating obstacle
references, our representations can provide the location
of the closest obstacle rather than just the distance to it,
which can be appealing for collision avoidance meth-
ods. In a recent publication, Scherer et al. build on our
original method for DM updates and combine it with
their approach to map scrolling [16].

This paper extends our DMs presented in [2] to 3D by
adding the possibility to limit the propagated distances
to maintain online feasibility in large open spaces and
outdoors as proposed by Scherer et al. [14].

Kalra et al. Our approach

Figure 2: GVD of an indoor map, computed by the approach of Kalra
et al. [11] and our method. The ellipses mark missing Voronoi lines,
see Sect. 2.2. Our approach generates thin Voronoi lines, such that dif-
ferent paths on the GVD correspond to topologically different routes.

Additionally, we describe how to further reduce the
number of visited neighbor cells, which increases the
efficiency for 3D DMs, and we present additional ex-
periments.

2.2. Voronoi Diagrams

Traditional Voronoi algorithms compute parametric
lines or curves that separate singular obstacle points or
line segments represented in continuous space. There
are approaches to update such Voronoi graphs, e.g., for
newly discovered obstacles during exploration [17, 18],
moving input points [19], or points that have been in-
serted or deleted [20]. However, analytic approaches are
not practical for use with grid maps, since they would
attach Voronoi lines between all pairs of occupied cells,
even for larger obstacles and walls.

Several approaches exist to incrementally construct
Voronoi diagrams, e.g., [21, 22]. However, most of
them are not suitable for dynamic environments or in-
cremental mapping with SLAM, since they do not sup-
port clearing previously occupied map cells, which is
necessary to handle dynamic environments and map
corrections caused by loop-closures in SLAM.

Tao et al. propose line fitting to overcome this prob-
lem for a SLAM application [17]. Their algorithm can
incrementally construct analytic Voronoi graphs during
exploration, which comprises the addition of obstacles,
but not their removal. Furthermore, one would have to
update the line fitting as well, which can cause sudden
changes in the Voronoi graph.

The approach for updating GVDs proposed by Kalra
et al. directly operates on grid maps, but introduces ob-
stacle identifiers that are uniquely assigned to a com-
pound of connected obstacle cells [11]. If two adja-

3

cent cells have different closest obstacles according to
their identifier, both cells are added to the GVD. This
condition however generates two-cell-wide lines that vi-
olate the sparseness property of the GVD. Addition-
ally, it does not generate Voronoi lines in the interior
of concave obstacle compounds like rooms or corridors
as shown in Fig. 2 (left). This destroys the connectiv-
ity of the GVD and is problematic for path planning,
especially in indoor environments. Furthermore, since
Kalra et al. use 8-connected step distances for the dis-
tance maps, the Voronoi lines also follow this metric and
thereby only approximate the GVD.

In this paper we describe our condition-based ap-
proach to incrementally update GVDs, first proposed
by Lau et al. [2]. It considers actual Euclidean dis-
tances and uses a new criterion that determines if a cell
is part of the GVD or not, without requiring obstacle
identifiers as the approach by Kalra et al. [11]. Fur-
thermore, our approach correctly handles indoor envi-
ronments and generates thin Voronoi lines that can be
used for the n-best computation of topologically differ-
ent paths as shown in Fig. 2. Additionally, it benefits
from the speed-up of our dynamic brushfire algorithm
described above.

2.3. Configuration Space Maps
Configuration space (c-space) maps encode if a given

robot pose leads to a collision with the environment
or not. Algorithms for efficient collision checking be-
tween three-dimensional objects continue to be an ac-
tive area of research. Being in an overlap area be-
tween motion planning and computer graphics, most
approaches represent the environment and the obsta-
cles with polygon meshes. For example, Tang et al.
recently proposed a connection collision query algo-
rithm that detects collisions of triangle meshes mov-
ing between given states [23]. Hence, it can be used
for sampling-based path planning. For online feasibil-
ity, Pan and Manocha use multi-core GPUs for collision
queries [24]. Still, the cost per collision check depends
on the number of polygons used to represent the tested
objects.

For a collision avoidance system, Schlegel proposed
to precompute collision distances for circular arc tra-
jectories as a function of relative obstacle location and
curvature [25]. Thus, the kinematic analysis is done off-
line and collision distances can be obtained with one
lookup per obstacle. Instead, precomputing c-space rep-
resentations further reduces the online effort for colli-
sion checks to a single lookup. Since the publication
of the seminal paper by Lozano-Perez on c-space plan-
ning among static polyhedric obstacles [26], many ap-

proaches were proposed to reduce the cost for comput-
ing c-space obstacles, see for example the survey by
Wise and Bowyer [27]. Linan and Zhenmin for example
proposed a method to incrementally grow polygonal c-
space obstacles for multiple robots, but did not consider
changes other than ongoing exploration [28]. Because
of the relevance of this problem, especially in dynamic
environments, researchers are still working on improv-
ing the efficiency [29].

Convolving a grid map of a robot’s environment with
an image of its footprint yields a discrete c-space map.
In order to reflect the current state of previously un-
known or moving obstacles at all times, these maps
need to be updated regularly. Kavraki proposed to use
the fast Fourier transform (FFT) to reduce the computa-
tional cost of the convolution [30], and Therón et al.
added parallelization for an additional speed-up [31].
Later, the same group proposed a multi-resolution ap-
proach to reduce memory and computational load in
large workspaces [32]. To speed up path planning for
autonomous cars, Ziegler and Stiller decompose the
shape of the vehicle into circular disks [33].

As a first dynamic approach for changing environ-
ments, Wu et al. proposed to precompute colliding
robot poses for each potentially occupied cell in the
workspace of a manipulator [34]: taking the union of
the colliding poses for a given set of occupied cells
yields the c-space collision map without further recom-
putation. For mobile robots, however, the size of the
operational area can render the database storage or the
online computation of the union infeasible. In con-
trast, our method for updating c-space collision maps
is truly incremental: it executes a regular map convo-
lution in an offline phase, and during online application
only updates the cells affected by changes in the envi-
ronment [3].

For path planning with circular robots, 2D Voronoi
diagrams are appealing roadmaps since they cover all
topologically different paths in a map with a small
number of cells. For rectangular robots however,
2D Voronoi planning loses its completeness property,
which requires repairing paths in narrow areas where
following the Voronoi diagram leads to collisions, e.g.,
by using rapidly-exploring random trees (RRTs) as pro-
posed by Foskey et al. [35]. In this paper we combine
dynamic distance maps and Voronoi diagrams with our
novel incrementally updatable c-space collision maps.
In this way, we overcome the aforementioned problem
and can perform complete Voronoi planning in the con-
figuration space of non-circular robots. Due to the abil-
ity to perform incremental updates, the resulting sys-
tems are suitable for online application in dynamic en-

4

Algorithm 1 Brushfire algorithm
computeDistanceMap()

1: for all s do
2: if M(s) = 1 then
3: D(s)← 0
4: obst(s)← s
5: insert(open, s, 0)
6: else D(s)← ∞
7: while open , ∅ do
8: s← pop(open)
9: lower(s)

10: return D

lower(s)
11: for all n ∈ Adj8(s) do
12: d ← ‖obst(s)−n‖
13: if d<D(n) then
14: D(n)← d
15: obst(n)← obst(s)
16: insert(open, n, d)

vironments.
Although we use A∗ planning as an example appli-

cation, our approach can be combined with other plan-
ners, e.g., D∗ Lite [36], or RRTs with Voronoi-biased
sampling [37, 38].

3. The Brushfire Algorithm

The brushfire algorithm, as described by Verwer
et al. computes static distance maps with a shortest
path search similar to Dijkstra’s algorithm with multi-
ple sources [10]. By using a priority queue that orders
the expansion of cells by the distance to their closest ob-
stacle, the propagation spreads in wavefronts that start
at the location of obstacles as shown in Fig. 3.

The pseudo-code of our algorithm is given in Alg. 1.
As discussed in Sect. 2, we have modified it to store the
location of the closest obstacle of each visited cell in
the obstacle reference map obst(s). Given a map M(s),
it initializes each free cell s of the distance map D(s)
with infinite distance (line 6). The occupied cells are
initialized with zero distances and then inserted into the
priority queue open: the function insert(open, s, d) in-
serts s into the queue with distance d, or updates the
priority if s is already enqueued (line 5).

As long as this queue contains cells, the algorithm it-
eratively calls the function pop(open) which returns the
cell s with the lowest enqueued distance and removes
it from the queue (line 8). It then updates the cells in
the 8-connected neighborhood Adj8(s) of s: if the dis-
tance d from a neighbor n to the closest obstacle of s
as specified by obst(s) is smaller than the current value
D(n) (line 13), the distance value and closest obstacle
of n are updated with the obstacle of s (lines 14–15).
Furthermore, each updated neighbor cell n is inserted
into the priority queue with its new distance value to
continue the propagation (line 16). Thus, each obstacle
induces a propagation wavefront that expands in circles,

and updates the distance values of the visited cells to the
Euclidean distance to the obstacle. Since this update can
only reduce the distance value associated with a cell, we
call this type of propagation a “lower” wavefront1.

If a wavefront cannot lower the distance of any neigh-
bor of the visited cells, no further cells are enqueued.
After all wavefronts came to a halt this way, the priority
queue is empty and the algorithm returns the distance
map.

The implementation of the priority queue can be done
with a complexity of O(1) for adding and removing el-
ements, as described in Sect. 4.2. Then, the brushfire
algorithm is in the same complexity class as a simple
image passing algorithm, i.e., O(n2) for an n×n input
map.

4. Dynamic 2D Euclidean Distance Maps

Movement, insertion, or deletion of objects causes in-
dividual cells in a binary occupancy grid map M to flip
their state from free (0) to occupied (1) or vice versa.
This section presents an approach to update Euclidean
distance maps to reflect such changes using a dynamic
variant of the brushfire method. After registering an ar-
bitrary set of newly occupied and newly freed cells, the
algorithm performs the update in an incremental way,
i.e., exploiting its previous results. As discussed in
Sect. 2, our approach is directly derived from the brush-
fire algorithm presented in Sect. 3, unlike the method by
Kalra et al. which is derived from D∗ Lite [11].

The example in Fig. 4 shows how the DM from Fig. 3
is updated after removing an obstacle and inserting a
different one. Frame (A) shows the initial state, which
is equivalent to the final state (D) of Fig. 3.

When performing the update, newly occupied cells
(blue outline) initiate “lower” wavefronts (B) that up-
date the closest obstacle distance of affected cells simi-
larly to the static variant of the algorithm. These wave-
fronts are propagated up to the point where a different
obstacle is closer (C). In addition, “raise” wavefronts
start at newly freed cells (red outline) and clear the dis-
tance entries of all cells whose closest obstacle was the
deleted one (B). When they come to a halt at cells with
a different closest obstacle, they initiate new “lower”
wavefronts that recompute the distances for the cleared
cells on the basis of the remaining obstacles (C).

Both the raise and lower wavefronts propagate them-
selves by enqueueing the neighbors of a processed cell
into the same priority queue. Since the queue sorts its

1This corresponds to the nomenclature by Kalra et al. [11].

5

A B C D

Figure 3: Computing a distance map with the static brushfire algorithm described in Sect. 3. The distance values are initialized with 0 (black)
for occupied and infinity (white) for empty cells (A). The occupied cells initiate wavefronts that propagate the increasing distances, denoted by
increasing brightness in (B) and (C). A wavefront stops if no further distance values can be lowered. After all wavefronts have stopped, the full
distance map is computed (D).

A

raise lower

B

lower
lower

C D

Figure 4: The dynamic brushfire algorithm presented in Sect. 4 is used to update the distance map shown in (A). To propagate the changes (B), a
raise wavefront starts to delete the invalid values for a removed obstacle (marked red), and a lower wavefront propagates the new distances for an
inserted obstacle (blue). Where the raise wavefront hits cells with a different (valid) closest obstacle, it halts and initiates a new lower wavefront to
restore the invalidated distance values (C). After all wavefronts came to a halt, the update is completed (D).

elements by distance, the processing of raise and lower
wavefronts is interwoven. After all wavefronts have
stopped, the queue is empty and the update is com-
pleted (D).

4.1. The Dynamic Brushfire Algorithm Explained

The pseudo-code of the dynamic brushfire algorithm
is given in Alg. 2.2.

The algorithm is initialized with a given distance
map D(s) and an obstacle reference map obst(s) for
a corresponding occupancy grid map M(s). If a cell
s is occupied according to M(s), it has a distance of
D(s) = 0 and refers to itself as the closest obstacle lo-
cation, i.e., obst(s) = s. Otherwise, D(s) is the dis-
tance value to the closest occupied cell, whose location
is stored in obst(s). A change in the occupancy of a cell
s is registered by calling the function setObstacle(s) or
removeObstacle(s), which updates s and inserts it into
a priority queue. Thereby, the function clearCell(s) re-
sets s to D(s) =∞ and obst(s) = cleared3. An additional
flag toRaise is used to ensure proper processing of cells
in the wavefronts, in particular where raise and lower
wavefronts meet. It indicates for each cell, whether it

2This corrects the typo in the original pseudo-code in [2] men-
tioned by Scherer et al. [16].

3Without a precomputed distance map, e.g., when mapping a new
area, the algorithm can also be initialized by clearing all cells and
registering occupied cells with setObstacle(s).

has to process its neighbors with a raise wavefront (true)
or not (false).

After registering a set of changes using setObstacle(s)
and removeObstacle(s), the priority queue open is
filled with the updated cells. Calling the function
updateDistanceMap() performs the update by propagat-
ing the changes to all affected cells. While the prior-
ity queue is not empty, it repeatedly retrieves the next
unprocessed cell s (lines 23–24). If s has still to prop-
agate a raise wavefront, the function raise(s) is called
(lines 25–26). If this is not the case and if s has a
valid closest obstacle, the function lower(s) is called to
propagate the lower wavefront (lines 27–29). The func-
tion isOcc(s) tests if a cell s is occupied by checking if
obst(s)= s.

The function raise(s) processes each cell n in the
8-connected neighborhood Adj8(s) of s that has not
been raised and still refers to a closest obstacle obst(n)
(lines 31–32).

The cell n is inserted into the priority queue with its
old distance value (line 33). If the cell referenced by
obst(n) is no longer occupied, n is cleared and marked
to propagate the raise wavefront (lines 34–36). Other-
wise, the raise wavefront comes to a halt at n, leaves n
unchanged, and propagates a lower wavefront, as shown
in Fig. 4 (C). After processing the neighbors, the raise
update of s is completed and toRaise(s) is set to false
(line 37).

The function lower(s) considers each cell n in the 8-

6

Algorithm 2 Pseudo-code for updating Euclidean distance maps
setObstacle(s)
17: obst(s)← s
18: D(s)← 0
19: insert(open, s, 0)

removeObstacle(s)
20: clearCell(s)
21: toRaise(s)← true
22: insert(open, s, 0)

updateDistanceMap()
23: while open , ∅ do
24: s← pop(open)
25: if toRaise(s) then
26: raise(s)
27: else if isOcc(obst(s)) then
28: voro(s)← false
29: lower(s)
30: return D

raise(s)
31: for all n ∈ Adj8(s) do
32: if (obst(n),cleared

∧¬toRaise(n)) then
33: insert(open, n,D(n))
34: if ¬isOcc(obst(n)) then
35: clearCell(n)
36: toRaise(n)← true
37: toRaise(s)← false

lower(s)
38: for all n ∈ Adj8(s) do
39: if ¬toRaise(n) then
40: d ← ‖obst(s)−n‖
41: if d<D(n) then
42: D(n)← d
43: obst(n)← obst(s)
44: insert(open, n, d)
45: else checkVoro(s, n)

connected neighborhood Adj8(s) of s. If a cell n is not
marked to be part of a raise wavefront (lines 38–39), it
is updated as in the static version of the algorithm: the
Euclidean distance from n to the closest obstacle of s
is compared to the current closest obstacle distance of n
(lines 40–41). If it is smaller, the values for distance and
closest obstacle of n are updated to reflect that obst(s) is
now the closest obstacle of n as well. Also, n is inserted
into the priority queue to propagate the lower wavefront
(lines 42–44). To avoid superfluous raise wavefronts
where they would overlap with lower wavefronts, the
condition in line 41 can be extended to also overwrite
cells with equal distance that refer to a deleted obstacle.
With this modification the line reads

if d < D(n) ∨ (d =D(n) ∧ ¬isOcc(obst(n)))
then.

The lines 28 and 45 are hooks to incrementally update
a Voronoi diagram on the fly during the update of the
distance map (see Sect. 5). If only distance maps are
required, these lines can be omitted.

4.2. Implementation Details
The distance map algorithm described above com-

putes and compares real-valued Euclidean distances
stored in D(s). As previously done by Scherer et al.
[14] and others, we resort to integer squared distances in
practice which saves the computational expenses for the
square-root. Due to the strict monotony of the square
root function for positive inputs, this does not change
the behavior of the algorithm.

A central data structure in our algorithm is the sorted
priority queue open. Such queues are often imple-
mented using search on a binary tree, which yields a
complexity of O(log n) for the insert operation where
n is the number of enqueued elements. Since the pro-
cessing of cells is ordered by distances and cells only
enqueue their direct neighbors, many elements in the
priority queue have identical distance values. We ex-
ploit this by implementing the queue using the bucket-
ing technique presented by Cuisenaire and Macq [15]. It

Algorithm 3 Improved expansion of neighbors for
lower wavefronts in 3D, replaces line 38 in Alg. 2
46: w← (s − obst(s))
47: for all n ∈ Adj26(s) do
48: ∆← (n − s)
49: if ∃c ∈ {x, y, z} : wc ·∆c < 0 then continue

pools cells with the same distance in unsorted lists and
keeps track of the next non-empty container. Thereby it
reduces the insertion costs from O(log n) to O(1).

To implement priority queues with unique entries
and increasable priorities, we actually insert the ele-
ments whenever they are updated, and carry a Boolean
flag toProcess for each cell s. It is set to true by
insert(open, s, d) and reverted to false by pop(open). The
function pop(open) iteratively dequeues elements until
it reached an s with toProcess(s) = true, and thus dis-
cards duplicated entries.

4.3. Extension to Higher Dimensions

In the context of robotics, distance transforms have
mostly been applied to two-dimensional maps. How-
ever, for flying robots or manipulators, 3D distance
maps are also very appealing. Our dynamic brushfire
algorithm can directly be extended to 3D. Obviously,
the obstacle locations, the obstacle reference map, and
the distance map itself have to be 3D vectors and arrays
in this case. Each cell on a three-dimensional grid has
26 neighbors, so Adj8 is replaced by Adj26.

Depending on the map size and the amount of
changes in the environment, maintaining a complete 3D
distance map may not be feasible even with an incre-
mental update algorithm. As proposed by Scherer et al.
we introduce an upper bound dmax on the distances that
we propagate. Whenever the increasing distances in a
lower wavefront reach this threshold, the propagation is
stopped. The appropriate value for dmax depends on the
application and the available computational resources.
Our experiment in Sect. 8.3 demonstrates on real data

7

4-connected 8-connected

Figure 5: Voronoi diagrams on 4- and 8-connected grids. The 8-
connected Voronoi lines (right) might appear thinner on visual inspec-
tion, but create interconnections (encircled) with multiple paths. In
the 4-connected GVD (left), different paths correspond to topologi-
cally different routes with respect to obstacles.

how the choice of dmax influences the required compu-
tation time of our algorithm. To implement the distance
bound in our algorithm, the condition d<dmax has to be
added as an additional requirement in line 41. During
initialization, the distance values in the empty cells are
set to dmax rather than infinity.

The efficiency of the lower wavefront can be im-
proved by reducing the size of the neighborhood that
is expanded for each cell s: the neighbors that lie in
the inverse direction of the wavefront’s propagation can
be skipped. The pseudo-code for this modification is
shown in Alg. 3. The direction of the wavefront at s
can be determined from s − obst(s) (line 46), and the
direction of the potential expansion to neighbor n by
n − s (line 48). If these vectors have opposing signs
in any component x, y, z, the expansion of n can be
skipped (line 49). In theory, this modification could be
applied in 2D as well. In this case, however, the compu-
tational overhead exceeds the benefit of the reduced cell
visits.

5. Dynamic 2D Voronoi Diagrams

In continuous space, a point is part of the Voronoi
graph if the distances to its two closest obstacles are
identical. For discrete GVDs, this condition cannot di-
rectly be applied to the discretized cell coordinates. In-
stead, the GVD is the set of cells that would contain
continuous Voronoi lines in their associated area. Fur-
thermore, the implicit grouping of occupied cells to ob-
stacles plays an important role: treating each occupied
cell as a single obstacle would cause the GVD to be clut-
tered, since a line would be inserted between each pair
of adjacent occupied cells. In contrast, treating all con-
nected occupied cells as a single obstacle causes miss-
ing Voronoi lines in indoor environments as shown in
Fig. 2 (left).

Voronoi graphs in continuous spaces consist of in-
finitely thin lines and curves. Since GVDs are repre-
sented on discretized grids, artifacts in the form of er-

Algorithm 4 Evaluation of the Voronoi condition
checkVoro(s, n)
50: if (D(s)>1 ∨ D(n)>1) ∧ obst(n),cleared

∧ obst(n),obst(s) ∧ obst(s) < Adj8(obst(n)) then
51: if ‖s−obst(n)‖ ≤ ‖n−obst(s)‖ then voro(s)← true
52: if ‖n−obst(s)‖ ≤ ‖s−obst(n)‖ then voro(n)← true

roneous connections can occur. Firstly, a pair of nearby
Voronoi lines that pass through adjacent cells becomes
connected and thus creates erroneous circles and inter-
connections in the graph. Secondly, a single Voronoi
line that lies between two discrete cell locations in con-
tinuous space causes double lines in the GVD. In both
cases, the GVD loses the sparseness property of the
Voronoi graph, i.e., the paths in the GVD no longer cor-
respond to topologically different routes with respect to
obstacles. When using an 8-connected grid model, the
GVD appears to be thinner by visual inspection. How-
ever, the additional connections often create additional
path variations in adjacent cells. Thus, 8-connected
GVDs often violate the sparseness condition, which is
not the case for 4-connected ones (see Fig. 5 for an ex-
ample).

We present a set of conditions to generate GVDs that
are fully connected, and at the same time have no neigh-
boring Voronoi lines that touch each other, as shown
in Fig. 2 (right). Although we focus on 4-connected
GVDs, our method can generate 8-connected ones as
well. An additional pruning step deals with artifacts due
to discretization, i.e., double lines and erroneous con-
nections, and thus ensures the sparseness of the GVD.
The algorithm is directly integrated with our method for
updating distance maps and is easy to implement.

We represent the GVD by a binary map voro(s),
which specifies for each cell s if it is part of the GVD
(voro(s) = true) or not (voro(s) = false). The update of
the GVD directly integrates with the update of DMs
given by Alg. 2 in Sect. 4: lower wavefronts remove
all visited cells from the GVD (line 28), and poten-
tially add the cells where they come to a halt. If the
lower wavefront propagated by a cell s finds an adja-
cent cell n whose distance cannot be lowered by adopt-
ing obst(s) as closest obstacle, both cells are candidates
for the GVD (line 45), and are potentially added after
checking our additional conditions in checkVoro(s, n)
according to Alg. 4. This function tests if at least one
of the neighboring candidate cells s and n is not adja-
cent to its closest obstacle (line 50). Furthermore, the
neighbor n has to have a valid closest obstacle that is
different and not adjacent to the closest obstacle of s. If
these conditions are fulfilled, a Voronoi line passes be-

8

0 1
1 s

P4
1

0
1 s 1

0
P4

2

1 0
0 s

P8
1

0
1 s 1

0
P8

2

1
1 s 1

1
P8

3

4-connected 8-connected

Figure 6: Image operator patterns used to test the connectivity of the
GVD. Arrows indicate application of rotated copies.

tween the centers of these cells in sufficient distance to
the next one, and both cells are candidates for the dis-
crete GVD.

To avoid double lines, the function only adds the cell
c ∈ {s, n} that violates the continuous Voronoi condition
to the lesser degree, i.e., the one with the smaller dis-
tance increase when switching from its own closest ob-
stacle to the one of the competing neighbor. If both have
the same increase, both cells are inserted (lines 51–52).
To obtain 8-connected GVDs, the “≤” in these lines are
replaced by “<” for diagonal neighbors s and n, since
then no cells need to be inserted in the case of equal
increase.

5.1. Pruning

As discussed before, different paths on the Voronoi
graph correspond to topologically different routes in
the environment. To preserve this property for GVDs
on grid maps, thin Voronoi lines, i.e., being one pixel
wide, are desired. Previous work on dynamic GVDs by
Kalra et al. however regularly generates Voronoi lines
that are two or three pixels wide. Our optional pruning
step erodes 2-pixel-wide Voronoi lines that occur where
a continuous Voronoi line would pass exactly between
two cells. Therefore, all new Voronoi cells are inserted
into a priority queue and processed by the pruning stage.

The image operator patterns shown in Fig. 6 match
whenever the center cell s provides connectivity for
one or more of its adjacent cells. The left side shows
the two patterns required for ensuring 4-connectedness,
the three patterns on the right side correspond to 8-
connectedness. In any pattern, a “1” matches voro(s) =

true, while “0” stands for voro(s) = false, and empty
fields are ignored. Where indicated by arrows, the same
pattern is applied in all unique 90 degree rotations.

In a first phase, the pruning algorithm merges Voronoi
lines that are erroneously connected due to the finite
map resolution. This is done using the matching pat-
tern P8

3, which detects cells that are enclosed by Voronoi
cells. If such a cell is free and not part of the GVD, it
is added at this point. This merges Voronoi lines that
are too close to be separated given the map resolution.
Together with the following pruning step, this prevents

goal

start

goal goal

startstart

Connecting start and goal to the closest cell on the Voronoi graph

goalgoal goal

start start start

Our method: use bubble-like Voronoi areas at start and goal

Figure 7: Connecting start and goal to the Voronoi graph (green) dur-
ing planning: using the shortest connection (top), the planned path
(blue) can change abruptly for small changes of the start configura-
tion, even for sightline-pruned paths (dashed). We create Voronoi
bubbles around start and goal, and use goal-directed search therein,
which yields more stable paths (bottom).

erroneous connections and ensures that the generated
GVD is sparse.

The second phase implements the actual pruning step.
In increasing order of distance, the enqueued cells are
iteratively popped from the priority queue. If such a
cell has more than one neighbor on the GVD and is not
required to keep the GVD connected, it can be removed
from the GVD without affecting its topology. Again,
this is tested using the image operator patterns: if none
of the connectivity patterns match at the cell location,
the cell is not required in the GVD.

5.2. Path Planning on Voronoi Diagrams

As mentioned before, a GVD is a cell decomposi-
tion method that is appealing for path planning. This
section details on important aspects of Voronoi plan-
ning in dynamic environments. In general, the start and
goal locations of a planning problem are not part of the
GVD. Straight-forward approaches search for the clos-
est Voronoi cell at both locations, and connect them with
straight lines to the graph [39]. This is problematic in
practice, since a small change of the start pose can sub-
stantially change the planned path as shown in Fig. 7
(top row). Starting a goal-driven search instead can eas-
ily expand a big part of the space that is not on the GVD.

Our approach given by Alg. 5 overcomes these prob-
lems. First, we insert virtual obstacles at the start and
goal location (lines 54–55). After updating the dis-
tance map and the GVD with our incremental algorithm
(line 56), these locations become enclosed by Voronoi
lines that form “bubble”-like areas as shown in Fig. 7
(bottom row). With a simple brushfire expansion, we

9

Algorithm 5 “Bubble”-technique for path planning on
a GVD
planPath(start, goal)
53: if M(start)=1 ∨ M(goal)=1 then return
54: setObstacle(start) // create Voronoi bubbles
55: setObstacle(goal)
56: updateDistanceMap()
57: brushfireMark(start) // mark bubbles as searchable
58: brushfireMark(goal)
59: push(astarqueue, start)
60: while astarqueue , ∅ do // A∗ on Voronoi and bubbles
61: s← pop(astarqueue)
62: if s = goal then
63: removeObstacle(start)
64: removeObstacle(goal)
65: updateDistanceMap()
66: return path from start to goal
67: for all n ∈ Adj4(s) do
68: if voro(n) = true ∨ marked(n) = true then
69: A∗ update for costs and heuristic of n
70: push(astarqueue, n)

brushfireMark(s)
71: push(unsortedqueue, s)
72: while unsortedqueue, ∅ do
73: s← pop(unsortedqueue)
74: marked(s) = true
75: for all n ∈ Adj4(s) do
76: if M(n)=1 then continue
77: if voro(n) = false ∧ marked(n) = false then
78: push(unsortedqueue, n)

mark all cells in the bubbles up to the enclosing Voronoi
lines (lines 57–58). Now we can start a goal-directed
search that is restricted to cells that are either marked
or belong to the GVD. In this way, the search expands
from the start onto the Voronoi graph, follows Voronoi
lines, and then connects to the goal when reaching the
goal bubble. Since the whole path is the result of goal-
directed graph search, the consecutive paths planned for
a moving robot are very similar to each other and do
not change abruptly (see Fig. 7). After the shortest path
is computed, we undo the changes to the GVD by re-
moving the virtual obstacles and performing another up-
date (lines 63–65).

In order for the algorithm to be truly incremental, the
markers should be stored in a hash map structure rather
than in a binary grid that has to be cleared after each
frame. Additionally, one can employ an incremental re-
planning algorithm like D∗ rather than A∗.

6. Dynamic C-Space Collision Maps

As discussed in Sect. 2.3, a configuration space (c-
space) grid map encodes for each discretized configu-
ration of a robot whether it causes a collision with ob-
stacles in the environment or not. Non-circular robots
moving on a plane have a three-dimensional c-space,
since their poses 〈x, y, θ〉 are given by their 2D position
on the ground and their orientation θ.

Computing a c-space map usually requires convolv-
ing a map with the shape of the robot for each ori-
entation. Recomputing these convolutions to reflect
changes in dynamic environments is often not feasible
at frame rates required for online applications. This sec-
tion presents a method to efficiently update c-space col-
lision maps with the obstacle models shown in Fig. 1.
For the sake of clarity, we first describe our algorithm
for a 2.5D representation with overhanging obstacles
(bottom-right), and discuss the adaptation to other ob-
stacle models later.

Let M(x, y) be a grid map that represents the vertical
clearance, i.e., the height of free space above the floor,
with zeros for completely occupied cells. Consider a
robot moving on the floor with continuous orientation θ̃
with respect to the map coordinate system. We represent
the discretized shape of the robot for a given orientation
θ̃ by a map S θ̃(i, j), that stores the height of the robot for
every cell of its footprint. S θ̃ has the same resolution
and orientation as the grid map M, whereas its origin
S θ̃(0, 0) is located at the center of the robot.

A convolution-type conjunction of M and S θ̃ yields a
count map Cθ̃(x, y) as shown in Fig. 8. Each cell 〈x, y〉
in Cθ̃ stores the number of cells the robot collides with
when located there:

Cθ̃(x, y) =
∑

i

∑
j

eval
{
M(x+i, y+ j) ≤ S θ̃(i, j)

}
, (1)

where eval(true) = 1 and eval(false) = 0. If we discretize
θ̃ and stack the Cθ(x, y) for all discrete θ, we obtain
the robot’s c-space collision count map C(x, y, θ) for M.
Clearly, by testing C(x, y, θ)>0 we can check if the dis-
cretized pose 〈x, y, θ〉 is colliding. By storing collision
counts instead of just binary values as in regular c-space
maps, we can update the c-space map incrementally as
described below.

6.1. Incremental Update of the C-space Map

Unknown or moving obstacles cause changes in the
environmental representation of a robot. For the 2.5D
obstacle model, a change is given by an updated verti-
cal clearance vnew for a cell 〈x, y〉 in M. To refresh C
incrementally rather than computing it from scratch, we

10

∗ ⇒
1
1

1

1
2
11

1
1

0
0 0
0

00

00 0

M(x, y) S 0◦ (i, j) C0◦ (x, y)

∗ ⇒
2
2

0

0
00

0
0

0
1 0
1

01

10 1

M(x, y) S −90◦ (i, j) C−90◦ (x, y)

Figure 8: Convolving a map M(x, y) with a representation of the
robot’s shape S θ(i, j) for a given orientation θ yields a collision map
Cθ(x, y), according to Eq. (1). Each cell 〈x, y〉 in Cθ counts the cells
in the robot footprint that collide with occupied cells in M, given the
robot is at pose 〈x, y, θ〉.

∗ ⇒
1
1

1

1
2
11

1
1

0
1 1
0

10

00 0

M(x, y) S 0◦ (i, j) C0◦ (x, y)

∗ ⇒
2
2

0

0
10

0
0

0
2 0
2

01

10 1

M(x, y) S −90◦ (i, j) C−90◦ (x, y)

Figure 9: A newly occupied cell in the map M (red) increments the
collision count C for all robot poses that cause a collision at the lo-
cation of the new obstacle. In this way, the collision map is updated
(red cells) without recomputing the values for unaffected (gray) cells.
Alg. 6 implements this procedure as well as the corresponding case
for newly emptied cells.

∗ ⇒
0
1

1

0
1
11

1
1

0
1 1
0

10

00 0

M(x, y) S 0◦ (i, j) C0◦ (x, y)

∗ ⇒
1
2

0

0
10

0
0

0
2 0
2

01

00 0

M(x, y) S −90◦ (i, j) C−90◦ (x, y)

Figure 10: A newly vacated cell in the map M (red) decrements the
collision count C for all robot poses that caused a collision at the loca-
tion of the former obstacle. The coordinates of cells whose collision
count reaches zero are configurations that become collision free.

Algorithm 6 Dynamic update of C-space collision
maps
updateVerticalClearance(x, y, vnew)
79: vold ← M(x, y)
80: M(x, y)← vnew

81: for all θ do
82: for all 〈x′, y′〉∈{〈x−i, y− j〉 | S θ(i, j)>0} do
83: if vnew ≤ S θ(i, j) ∧ vold > S θ(i, j) then
84: C(x′, y′, θ)← C(x′, y′, θ) + 1
85: if C(x′, y′, θ) = 1 then newOccupied(x′, y′, θ)
86: else if vnew > S θ(i, j) ∧ vold ≤ S θ(i, j) then
87: C(x′, y′, θ)← C(x′, y′, θ) − 1
88: if C(x′, y′, θ) = 0 then newEmpty(x′, y′, θ)

only update the affected parts of the sum in Eq. (1) ac-
cording to Alg. 6. See the sequence of Figs. 8-10 for an
illustration.

The algorithm separately updates the θ-layers of C,
and can thus be parallelized (line 81). For each cell
〈i, j〉 of the robot shape S θ(i, j) we visit the robot po-
sition 〈x′, y′〉 that lets 〈i, j〉 fall on 〈x, y〉 (line 82). These
cells can efficiently be selected using standard drawing
algorithms for rasterized images.

If the new vertical clearance vnew in 〈x, y〉 causes a
collision with S θ(i, j) while vold did not, the collision
counter of 〈x′, y′〉 is incremented (line 83), since this
represents a new collision candidate cell. Vice versa, if
vnew is collision-free whereas vold collided, the counter
is decremented (line 86), since a collision candidate
was removed. Whenever the count changes from 0 to
1 or from 1 to 0, the pose 〈x′, y′, θ〉 is newly occupied
(line 85) or emptied (line 88), respectively. These events
can be used to trigger further computation, e.g., to up-
date the c-space distance map and Voronoi diagram dis-
cussed in Sect. 7.

6.2. Discretization of Orientations

An appropriate discretization of θ̃ ensures that if two
adjacent poses 〈x, y, θi〉 and 〈x, y, θi+1〉 are collision-free
according to C, intermediate orientations in [θi, θi+1] are
collision-free as well. Under this constraint we seek to
discretize θ̃ as coarse as possible to keep the number of
θ-layers in C small.

In occupancy grid maps, the actual location of obsta-
cles can be anywhere in the cells they occupy. There-
fore, one usually assumes an additional safety margin m
around the robot, e.g., of m = 1 pixel unit. Given this
margin, we can formulate a bound on the angular reso-
lution for the discretization of θ̃ as follows: if the robot
rotates from θi to θi+1, each point on the robot moves
along an arc. The maximum arc length occurs at the

11

outmost point of the robot, which is the radius r (in pix-
els) of the circumcircle around its center of rotation. By
choosing a resolution of |θi−θi+1| = m/r, we ensure that
even in the worst case an obstacle collides only with the
safety margin but not with the actual robot. Depending
on the shape of the robot, less conservative bounds on
the discretization can be formulated.

6.3. Adaptation to Other Obstacle and Robot Models
Up to this point, we assumed overhanging obstacles

and a robot on the floor that can move underneath ob-
stacles as in Fig. 1 (bottom-right). By reversing the
comparisons of robot height and vertical clearance in
Eq. (1) and Alg. 6 (lines 83 and 86), this can easily be
adapted to obstacles elevating from the floor and robots
with overhanging load or parts as in Fig. 1 (bottom-left).
For plain 2D robot and obstacle models, the heights vnew
and vold are binary values that encode occupied (true)
and free (false). In that case, the conditions for deter-
mining newly occupied cells in line 83 are given by

“if vnew = true ∧ vold = false then”,

and for newly vacated cells in line 86 by

“if vnew = false ∧ vold = true then”.

For some applications, the obstacles and the robot
have to be represented in full 3D as in Fig. 1 (top-right).
The height comparisons in Alg. 6, lines 83 and 86 then
have to consider lists of obstacle heights. If the robot
shape is approximated by a set of vertical columns with
a given upper and lower end as in Fig. 1, one can also
use a separate shape map for each column. If line 82
is adapted to only consider the columns that potentially
collide with a given new obstacle, the c-space collision
map can be efficiently updated.

In applications like mobile manipulation or au-
tonomous transport, the shape of the robot and its pay-
load can vary over time. To use our method in these
cases, one can group the changing parts of the robot to
additional models, and maintain separate c-space maps
for them. Then, one can immediately switch between
different configurations of the robot by using different
sets of models in the collision check. If highly accurate
collision checks are required, one can also create shape
models for an inner and an outer approximation. Only
if the outer (larger) approximation collides while the in-
ner (smaller) one does not, more complex methods like
mesh queries are required. Otherwise, the approxima-
tions are sufficient.

Robots with a symmetric shape with respect to their
center cause a part of the θ-layers in C(x, y, θ) to be

Figure 11: C-space distance map (top) and Voronoi diagram (bottom)
for a rectangular robot, both obtained by stacking layers computed in
2D for different robot orientations θ. For readability, only half of the
layers are shown, the other half is identical due to the symmetry of the
robot. In the visualization at the top, cells above the bottom layer have
a different color scaling and were removed when exceeding a distance
threshold.

redundant. For example, a rectangular robot rotating
around its center causes the same c-space obstacles at
orientation 180◦ as at 0◦. Omitting the respective layers
when iterating over θ in Alg. 6 (line 81) saves a substan-
tial part of the computational effort and memory con-
sumption.

7. C-Space Distance Maps and Voronoi Diagrams

This section describes how to compute DMs and
GVDs presented in Sects. 4 and 5 for the c-space col-
lision map in Sect. 6. Since we provide incremental up-
date algorithms for all these representations, these com-
binations are suitable for online applications as well,
and thus open new possibilities for collision checking
and path planning in the configuration space of mobile
robots.

Given a three-dimensional c-space collision map
C(x, y, θ) as defined in the previous section, we can com-
pute a 3D distance map in this space that uses a 3D dis-
tance measure which combines Euclidean distances and
the angle of rotation. Therefore, one has to consider
the angle wrap-around of the θ component for the ex-
pansion of neighborhoods. The resolution of the θ dis-
cretization specifies how to balance Cartesian and angu-
lar distances. With the methods presented in Sect. 4.3,

12

such a c-space DM can be updated incrementally, and
can for example be used to efficiently perform collision
checks for non-circular robots on long trajectories.

As discussed by Canny [40], it is also appealing to
only consider 2D Euclidean distances per θ-layer of the
c-space map. Therefore, we stack Euclidean distance
maps Dθ(x, y) computed for every c-space map layer
Cθ(x, y), yielding the c-space distance map D(x, y, θ) as
shown in Fig. 11 (top).

In 2D, GVDs are the union of points whose two
closest obstacles are at the same distance. Just as for
the DMs, we compute a GVD voroθ(x, y) for every c-
space map layer Cθ(x, y). Stacking these Voronoi dia-
grams results in a c-space Voronoi diagram voro(x, y, θ)
as shown in Fig. 11 (bottom), which is fundamentally
different from computing the 3D generalized Voronoi
diagram for C(x, y, θ). If θ is discretized according to
Sect. 6.2, the Voronoi lines in neighboring layers join to
connected surfaces.

To update the layers Dθ and voroθ, we first up-
date the underlying c-space collision map. The
events newOccupied(x′, y′, θ) and newEmpty(x′, y′, θ)
in Alg. 6 are used to call setObstacle(x, y) and
removeObstacle(x, y) in the respective θ-layer to reg-
ister newly occupied or vacated cells. After the
update of the c-space map is completed, we call
updateDistanceMap() for each θ-layer, which completes
the update of the c-space DM and GVD. Since their lay-
ers are independent, this can be parallelized on multi-
core CPUs.

7.1. C-Space Voronoi Path Planning
Given a layered c-space GVD as described above,

one can perform deterministic and complete path plan-
ning for non-circular mobile robots without a non-
holonomic constraint. The search on the c-space GVD
is very similar to 2D Voronoi planning. The major dif-
ference is the added dimension of the orientation with
its cyclic nature, which has to be considered in the
neighborhoods during expansion. The bubble planning
method presented in Sect. 5.2 can easily be adapted for
these purposes. Therefore, the creation and brushfire
expansion of the Voronoi bubbles (lines 54–58) and the
corresponding removal (lines 63–65) have to be exe-
cuted for each θ-layer independently, which can be par-
allelized on multi-core CPUs. Obviously, the A∗ algo-
rithm has also to be modified to search the subspace
of the three-dimensional c-space, which is given by the
GVD and the start/goal bubbles.

When using 8-connected GVDs, the brushfire expan-
sion has to be run using a 4-connected neighborhood
to ensure that the expansion is contained in the start

FR079

10 m

Factory

FR101

Figure 12: Maps of the environments where our experiments on 2D
laser range data were carried out.

and goal bubbles. If the GVD is 4-connected as in
our examples, the brushfire expansion may also use 8-
connectedness.

8. Experiments

This section presents experiments conducted to test
our algorithms on real-world data. We analyze the com-
putational requirements and show examples of gener-
ated output. The tests were done using our C++ im-
plementation of the algorithms, running on an Intel R©

CoreTM i7 2670 MHz. The source code and a big part
of the employed datasets are available online [1].

8.1. 2D DMs and GVDs in Dynamic Environments
For this set of experiments we used a Pioneer robot

equipped with a SICK LMS291 laser range finder. To
record data, it was moving in environments where walk-
ing people heavily affected the traversable space (see
Fig. 12). The sequence “FR079” consists of 369 frames
recorded in an office building, and “FR101” contains
400 frames recorded in a large foyer space. The up-
date radius around the robot was only limited by the
maximum range of the laser scanner (80 m). Due to the
maximum room size in the environments, the maximum
closest obstacle distance in these two maps, i.e., the ra-
dius of the largest circular unoccupied area, is 29 cells
(1.45 m) and 97 cells (4.85 m), respectively. The 400
frames of “Factory” were simulated by randomly in-
serting 200 obstacles per frame into a grid map of a
large factory floor with a maximum obstacle distance
of 44 cells (2.2 m). Similar to Kalra et al. [11], the ran-
dom obstacles were placed within 5 m radius around a
moving center, which simulates a moving observer with
limited perception.

To demonstrate the computational benefit of dynami-
cally updatable DMs, we compared our algorithm with
state-of-the-art static methods implemented by Fabbri
et al. [9], namely the algorithms by Cuisenaire and
Macq [15] and Maurer et al. [41]. These approaches

13

0

0.04

0.08

FR079 FR101 Factory

M
au

re
r

C
ui

se
na

ir
e

Sc
he

re
r

O
ur

s
Time per frame [s]

0

0.15

0.3

FR079 FR101 Factory
E

V
G

-T
hi

n
K

al
ra

O
ur

s

Time per frame [s]
0.619

Figure 13: Performance of our algorithms for updating distance maps
(left) and Voronoi diagrams (right) compared to related work. The
plots show the average computation time per frame.

Table 1: Update performance of distance maps and Voronoi diagrams
Time per frame [s] Cell visits per frame

Map & Approach mean min max mean min max

D
is

ta
nc

e
M

ap
s

FR
07

9

Maurer 0.013 0.013 0.013 1,393,286 1,392,450 1,394,272
Cuisenaire 0.011 0.010 0.011 302,513 301,022 304,138
*Scherer 0.010 0.006 0.019 250,403 77,277 657,903
*Ours 0.003 0.001 0.005 99,761 29,340 190,998

FR
10

1

Maurer 0.032 0.032 0.033 3,299,105 3,296,201 3,302,497
Cuisenaire 0.021 0.021 0.021 572,345 562,474 581,158
*Scherer 0.082 0.026 0.148 3,338,297 792,054 6,190,219
*Ours 0.033 0.011 0.051 1,264,488 427,176 1,929,690

Fa
ct

or
y

Maurer 0.060 0.060 0.060 5,954,325 5,954,259 5,954,447
Cuisenaire 0.050 0.050 0.052 959,484 957,735 961,709
*Scherer 0.023 0.003 0.032 976,292 80,262 1,307,630
*Ours 0.008 0.002 0.011 319,871 80,262 423,315

Vo
ro

no
iD

ia
gr

am
s

FR
07

9 EVG-Thin 0.121 0.120 0.122 10,030,438 10,001,973 10,059,575
*Kalra 0.013 0.006 0.030 483,242 281,126 933,410
*Ours 0.005 0.003 0.008 113,803 31,824 215,131

FR
10

1 EVG-Thin 0.296 0.282 0.310 19,892,173 19,798,905 20,005,447
*Kalra 0.157 0.046 0.284 4,363,678 1,537,112 7,558,395
*Ours 0.044 0.018 0.066 1,372,060 475,163 2,087,083

Fa
ct

or
y EVG-Thin 0.619 0.592 0.632 35,540,331 35,525,379 35,551,489

*Kalra 0.050 0.005 0.068 1,462,930 167,553 1,970,182
*Ours 0.017 0.009 0.021 391,555 113,889 515,343

*dynamic method that only updates the affected parts of the map in each frame

are highly efficient, but recompute the whole distance
map in every frame. We further compared our method
to the recent approach by Scherer et al. [14]. Since no
source code was available, we implemented this algo-
rithm in C++ with the assistance of Scherer. Our GVD
approach is compared to the static EVG-Thin method
implemented by Beeson [42] and the dynamic approach
by Kalra et al. [11].

In the first frame of each sequence, the algorithms
were initialized with the corresponding grid map shown
in Fig. 12, using a resolution of 0.05 m per grid cell.
The performance is visualized in Fig. 13 and presented
by numeric results in Tab. 1. For each sequence, the
table provides the computation time and cell visits per
frame with their mean, minimum, and maximum values.
When repeating the measurements 10 times for each se-

quence, the standard deviations between the runs were
well below 1% of the reported means.

In general, the dynamic methods are considerably
faster than the static approaches by Cuisenaire and
Macq and Maurer et al., except for the distance maps
in the open space of FR101, where most updates af-
fect a large fraction of the map. In all frames of all
sequences, our dynamic distance map algorithm visits
60−70% fewer cells and requires 60−70% less compu-
tation time than the dynamic approach by Scherer et al.
[14]. This can be mainly attributed to the raise function
of their algorithm which expands the adjacent cells of
the neighbors of a cell s, whereas our algorithm tests
only the direct neighbors (line 38). Note that the cell
visits performed by the static methods are not directly
comparable to the dynamic ones due to the different
amount of computation per visit.

The comparison of the GVD update algorithms shows
similar results: the dynamic methods clearly outperform
the static method EVG-Thin in all tested environments.
In addition, our approach can reduce the runtime con-
siderably compared to the previous dynamic approach
by Kalra et al. [11], since this method uses the same
update strategy as Scherer’s approach for DMs and thus
visits more cells. In all tested environments, the average
frame rate achieved by our approaches was well above
20 fps which allows for online application of both dis-
tance maps and GVDs.

The distance maps generated by our method are equal
to the ones generated by the compared methods, up to
the inherent overestimation errors of 0.09 pixel units, as
discussed in Sect. 2.

Exemplary outputs of our 4-connected GVD algo-
rithm and the method by Kalra et al. [11] are shown in
Fig. 2: while Kalra’s GVD misses Voronoi lines inside
rooms and corridors, our approach captures the connec-
tivity of the floor plan completely. Furthermore, our
method generates thin Voronoi lines, such that different
paths between a given start and goal are topologically
different with respect to obstacles.

8.2. 2D DMs and GVDs during SLAM
To demonstrate the suitability of our incrementally

updatable DMs and GVDs for SLAM applications, we
used the GMapping SLAM package [43, 44] to con-
struct maps of the datasets “intel lab” (indoor) and
“fr campus” (outdoor) [1], with a resolution of 0.05 m
and 0.2 m per cell, respectively. We set the parameters
to integrate a new scan after the robot has moved 0.5 m
or rotated 0.5 radians, and used 100 particles. After each
integration step, we use the map associated with the cur-
rent best particle to determine the newly occupied and

14

person

tripod

laptop
on box

chair

wall

ceiling
structure

1m

Figure 14: Excerpt of the 3D map of the hall used for our experiments,
showing roughly 1/4 of the space. The color encodes the height of
each cell over ground. The gray planes are slices from the 3D distance
map of that space. Here, brighter cells denote increasing Euclidean
distance from obstacles.

Table 2: Performance of incremental 3D distance map updates
Data set dmax avg affected cells avg time update

Hall, moving: 693 frames 0.5 m 152,613 0.0734 s
size: 14.25×14.2×7.45 m3 1.0 m 267,097 0.1493 s

total cells 12,226,500 1.5 m 354,061 0.2174 s
avg flipped 347.0 2.0 m 396,937 0.2532 s
Hall, static: 1,443 frames 0.5 m 93,460 0.0482 s
size: 14.25×14.2×7.45 m3 1.0 m 180,178 0.1034 s

total cells 12,226,500 1.5 m 245,062 0.1479 s
avg flipped 214.8 2.0 m 285,867 0.1782 s
Lab, static: 1,618 frames 0.5 m 41,760 0.0231 s
size: 6.0×5.15×3.15 m3 1.0 m 48,231 0.0269 s

total cells 798,720 1.5 m 48,231 0.0275 s
avg flipped 164.7 2.0 m 48,231 0.0275 s

10 m

step 15 step 65 step 910

intel lab dataset

50 m

step 15 step 635 step 2008

fr campus dataset

Figure 15: Incremental construction of a distance map and a Voronoi
diagram during SLAM for two datasets. Pure local mapping only
causes changes if new parts of the map are uncovered. Loop-closures,
however, can affect large parts of the map, since individual parts often
move with respect to the map coordinate system.

0 500 1,000

0

0.2

0.4

0.6 intel lab

mapping step

Ti
m

e
pe

rm
ap

pi
ng

st
ep

[s
]

0 1,000 2,000

0

0.2

0.4

0.6 fr campus

mapping step

Our distance map and Voronoi diagram EVG-thin

Figure 16: Computation time required to perform the updates between
each mapping step for the datasets shown in Fig. 15. Our incremental
methods clearly outperform the computation of the full GVD in every
step as done by EVG-thin. The peaks in the computation time of our
method correspond to loop closures in the SLAM process.

freed cells with respect to the previous step. Based on
these changes, we incrementally update a DM and GVD
in every step as shown in Fig. 15.

The computation time taken by our algorithm to per-
form these updates is shown in Fig. 16. For comparison,
we also plot the computation required by EVG-thin to
compute a GVD approximation for the grid map of each
step.

Since the maps are incrementally growing during the
mapping process, the computational effort for EVG-thin
grows with increasing step numbers. The dynamic up-
dates of our algorithm are substantially faster, since the
number of changes between consecutive SLAM steps
is rather small. The curve shows peaks of increased
effort whenever the best particle changes, for example
after closing a loop. In our experiments, the average
computation time required to update the DM and GVD
per mapping step was below 0.002 s and never exceeded
0.2 s even after loop-closures, which allows frame rates
above 5 fps.

8.3. Three-dimensional DMs
For the experiments with three-dimensional DMs we

recorded 3D maps in a lab room and in a large hall us-
ing the depth measurements obtained from a Microsoft
Kinect 3D camera (see Fig. 14). The camera poses were
determined using a MotionAnalysis motion capture sys-
tem with 9 Raptor-E cameras.

The maps were constructed and stored with a reso-
lution of 0.05 m per voxel using the probabilistic occu-
pancy mapping routines in the OctoMap software pack-
age [45]. The map sizes and total number of cells are
given in the left column of Tab. 2.

After constructing the maps, we recorded three 3D
sequences of two walking people and continuously up-

15

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Maximum distance dmax [m]

Ti
m

e
pe

rf
ra

m
e

[s
] Hall, moving

Hall, static
Lab, static

Figure 17: Performance of incremental 3D distance map updates. The
plot shows the average computation time per frame for different se-
quences, depending on the maximum propagated distance dmax.

dated the pre-recorded maps using the same techniques.
When integrating a point cloud into the 3D map, the Oc-
toMap library can return a list of the cells that switched
from free to occupied or vice versa. In each frame,
we register any flipped cell s using setObstacle(s) or
removeObstacle(s), and then update the 3D distance
map as described in Sect. 4.

The number of frames per sequence and the average
number of flipped cells per frame are given in the left
column of Tab. 2. The resulting average of affected
distance map cells per frame and the required average
computation time is shown in the right column. In one
sequence, the camera was manually moved to follow a
person, in the others it was static. An excerpt of the
3D map of the hall and 2D slices of the corresponding
3D distance maps are shown for an example frame in
Fig. 14.

The average computation time per frame, depending
on the maximum propagated distance dmax, is shown in
Tab. 2 and the plot in Fig. 17. The error bars show
the standard deviation obtained by averaging over the
frames. These values are high, since the computational
requirements depend on the amount of changes in the
environment, which varies over time.

The average computation time per frame grows with
an increasing distance limit dmax, up to the point where
the update radius is naturally limited by the maximum
distances found in the environment.

For applications like path planning, collision avoid-
ance or localization, a distance limit dmax between 0.5 m
and 1.0 m is mostly sufficient. The maximum com-
putation times per frame under these conditions were
achieved in the large hall and corresponded to frame
rates between 2 and 5 fps, with average frame rates be-
tween 4 and 13 fps. For the smaller lab environment,
the update rates do not fall below 10 fps. Note that these
numbers consider the computation time required by our
algorithms, but not the occupancy mapping by the Oc-
toMap.

0 50k 100k 150k

2

4

6

8

Ti
m

e
fo

r2
00

fr
am

es
[s

]

2D
FR079
Medium Robot

2D Occupancy Map 2D Distance Map C-space Map

0 50k 100k 150k

2

4

6

8
2D
FR079
Large Robot

0 50k 100k 150k

2

4

6

8

#collision checks per frame
Ti

m
e

fo
r2

00
fr

am
es

[s
]

2D
FR101
Medium Robot

0 50k 100k 150k

2

4

6

8

#collision checks per frame

2D
FR101
Large Robot

Figure 18: Computation time for different collision checking routines
for two sequences and two robot models. The update required in every
frame for the c-space collision map pays off starting from 10,000 col-
lision checks per frame. The plots show mean and standard deviations
averaged over 10 runs.

8.4. C-space Obstacle Maps and Collision Checks

This section benchmarks our incrementally updatable
c-space representations on the 2D laser data sequences
described in Sect. 8.1. For the updates, the maximum
range of the laser scanner was limited to 5 m. To simu-
late 2.5D and 3D obstacles, we augmented the laser data
with random height values between 0 m and the robot
height.

In 2D, we assumed a medium sized rectangular robot
(0.85x0.45 m) and a large one (1.75x0.85 m). In 2.5D,
we modeled a wheelchair with a low front and a high
rear part, as in Fig. 1 (bottom-right). In 3D, the robot
was modeled like a Willow Garage PR2, with a frontal
extension for the base and the fixed arms (see Fig. 1 top-
right). To speed up our algorithms, we used OpenMP
for parallelization with up to 6 threads.

The c-space collision map presented in Sect. 6 re-
quires computation of the incremental update in every
time step, but then, each collision check for the whole
robot only requires a single map lookup. In the 2D
model, we exploit the symmetry of the rectangular robot
as described in Sect. 6.3.

We compare our method to a previous collision
checking approach for rectangular robots that uses re-
cursive distance queries on incrementally updatable 2D
distance maps [46]. As a baseline, we also evaluate a
straight-forward approach that checks every cell of the
robot’s footprint for collision using an up-to-date 2D oc-

16

0 50k 100k 150k

2

4

6

8

10

#collision checks per frame

Ti
m

e
fo

r2
00

fr
am

es
[s

]

C-space Map

2D (Medium robot) 2.5D (Wheelchair) 3D (PR2)

0 50k 100k 150k

2

4

6

8

10

#collision checks per frame

Grid Map

Figure 19: Collision check performance for different robot and obsta-
cle models, using our updatable c-space collision map (left) vs. the
straight-forward occupancy grid map approach (right). The costs for
updating the c-space map are remedied by the faster collision checks
for 10,000 checks or more per frame. The plots show mean and stan-
dard deviations averaged over 20 runs.

cupancy map.

The results of this benchmark are shown in Fig. 18.
The time required for updating the distance and c-space
maps is shown by the first data point of each plot (zero
collision checks). The slopes of the curves depend on
the cost per collision check. In contrast to the dis-
tance map approach, the update time for the c-space
map grows with the size of the robot (right vs. left col-
umn), but does not suffer from the open area in FR101
(bottom vs. top row). The update for the c-space colli-
sion map pays off for 10,000 or more collision checks,
which can easily be required during path planning or
trajectory optimization. In comparison, the break-even
point for a single disk-shaped object was at 22,400 for
the disk-decomposition method by Ziegler and Stiller,
and 5 · 106 for the full c-space [33].

We repeat the experiment, but with 2.5D and 3D ob-
stacles and robots this time. Compared to the 2D rect-
angular robot (dashed), the costs for the c-space update
with 2.5D and 3D are higher, since the robots are not
symmetric anymore and consist of two and three parts,
respectively, see Fig. 19 (left). However, the costs per
collision check (slope of the plots) are the same, as op-
posed to the curves for the straight-forward occupancy
grid map approach (right).

In all cases, the update of the c-space map takes less
than 15 ms per frame. Performing 150,000 collision
checks per frame additionally requires at most another
15 ms. This corresponds to 10 · 106 collision checks per
second for arbitrary robot shapes, which clearly outper-
forms even modern GPU-based approaches with 0.5·106

collision checks per second for simple polygons [24].

A
B

C

D

narrow
passages

1m

C-space Voronoi KPiece

Figure 20: Map of a factory floor (9.5x15.4 m) with start location (A)
and three goals (B), (C), and (D). Example paths from (A) to (D)
are shown for two different planners. The sampling-based planner
(right) is challenged by narrow passages, while the performance of
the Voronoi planner (left) is unaffected.

A→B A→C A→D

0.001
0.01
0.1

1
10

100
1000

10000

Planning time [s]

C-space Voronoi

KPiece

RRT

A→B A→C A→D
0

1000

2000

3000

4000

Path length [cells]

C-space Voronoi

KPiece

RRT

Figure 21: Planning time and path length for three planners and the
three planning tasks in Fig. 20. The plot shows mean and min/max
for 20 runs. In contrast to the Voronoi planner, the sampling-based
planners require several orders of magnitude more planning time for
each narrow passage in the path.

17

8.5. Path Planning using C-space Voronoi Maps
The c-space Voronoi maps presented in this paper

provide means for complete grid map planning for non-
circular omnidirectional robots using standard graph
search algorithms like A∗ or D∗ Lite [36]. With our
algorithms for incremental updates they are applicable
in dynamic environments. This experiment uses the
Voronoi bubble technique proposed in Sect. 5.2.

We use A∗ to plan paths for the large robot model (see
above) on the grid map of the factory floor shown in
Fig. 20. The start pose is given by (A), and three possi-
ble goal poses by (B), (C), and (D). Each of the consec-
utive goals requires traversing another narrow passage.
For comparison, we test our method against the KPiece
and RRT implementations available in the Open Motion
Planning Library [47]. All planners use our c-space map
for collision checking, thus the performance differences
are due to the tested planner.

The average resulting planning times and path lengths
for 20 runs per start-goal combination are shown in
Fig. 21. Each additional narrow passage requires sev-
eral orders of magnitude more planning time for the
sampling-based planners, while the time taken by the
Voronoi planner grows roughly linearly with the path
length. Using per-cell collision checking rather than the
c-space collision maps for the sampling based planners
increases the computation times by a factor of 3.

As another application example, we plan the path of a
PR2 robot using a c-space Voronoi map generated from
real 3D point cloud data (see Fig. 22). After a precom-
putation phase of 0.5 s, planning a path on the incre-
mentally updatable c-space Voronoi map takes less than
2.5 ms.

Clearly, Voronoi planning is of advantage in narrow
areas as long as the grid resolution is fine enough. Our
incrementally updatable c-space Voronoi representation
allows to apply this idea to non-circular robots in dy-
namic environments, and could also be used in Voronoi
sampling routines of other path planners [38].

9. Conclusion

In this paper we presented incremental algorithms
to update distance maps, Voronoi diagrams, and
configuration-space collision maps. These representa-
tions are initialized using a given grid map or point
cloud. For efficient online operation, our methods only
update cells that are affected by changes in the environ-
ment. Thus, they can be used in real-world scenarios
with unexpected or moving obstacles for applications
like SLAM, path planning, collision avoidance, or lo-
calization.

Figure 22: Table-docking with a PR2 robot in a 3D map using Voronoi
planning. The yellow line shows the planned path, the rendered robots
denote the start and goal pose. Note that the goal pose requires 3D
collision checking, since the table overlaps with the robot’s footprint.

Compared to previous approaches, our methods for
updating two-dimensional Euclidean distance maps and
Voronoi diagrams require about 60-70% less cell up-
dates and computation time. At the same time they pro-
vide equal or more accurate results without any draw-
backs. With modifications that limit the maximum prop-
agated distances and reduce the neighborhood size dur-
ing propagation, we can also update three-dimensional
distances maps at a speed that is suitable for online ap-
plications. Our Voronoi approach is easy to implement
and, unlike previous approaches, correctly handles non-
convex obstacle compounds like indoor areas.

For the three-dimensional configuration space of non-
circular robots we also presented methods to incremen-
tally update collision maps, distance maps, and Voronoi
diagrams. We consider different obstacle representa-
tions, namely a robot moving on a plane with overhang-
ing obstacles, or vice versa, obstacles elevating from the
ground, and a robot with overhanging parts. The ap-
proaches are also applicable to 2D and full 3D obstacle
representations and can exploit symmetries in the robot
shape.

Our algorithms have been implemented and tested on
real-world datasets. The achieved minimum frame rates
for updates, collision checks, and path planning range
between 3 and 20 fps, depending on the dimensionality
of the map and the size of the environment. If required,
the frame rates can be further increased by limiting the
propagated distances. The source code of all our algo-
rithms is available online [1]. The 3D distance map is
also available as part of the OctoMap software pack-
age [48].

18

Acknowledgements

This work has partly been supported by the Euro-
pean Commission under grant agreement numbers FP7-
248258-First-MM, FP7-248873-RADHAR, and FP7-
260026-TAPAS.

References

[1] B. Lau, C. Sprunk, W. Burgard, Open source implementation
of dynamically updatable distance maps, Voronoi diagrams,
and configuration space representations, http://www.

informatik.uni-freiburg.de/~lau/dynamicvoronoi,
2012.

[2] B. Lau, C. Sprunk, W. Burgard, Improved Updating of Eu-
clidean Distance Maps and Voronoi Diagrams, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, 281–286, 2010.

[3] B. Lau, C. Sprunk, W. Burgard, Incremental Updates of Config-
uration Space Representations for Non-Circular Mobile Robots
with 2D, 2.5D, or 3D Obstacle Models, in: European Confer-
ence on Mobile Robots (ECMR), Örebro, Sweden, 49–54, 2011.

[4] H. Choset, J. Burdick, Sensor-Based Exploration: The Hier-
archical Generalized Voronoi Graph, International Journal of
Robotics Research (IJRR) 19 (2) (2000) 96–125.

[5] F. Aurenhammer, Voronoi diagrams – a survey of a fundamen-
tal geometric data structure, ACM Computing Surveys (CSUR)
23 (3) (1991) 345–405.

[6] C. Mandel, U. Frese, Comparison of Wheelchair User Inter-
faces for the Paralysed: Head-Joystick vs. Verbal Path Selection
from an offered Route-Set, in: European Conference on Mobile
Robots (ECMR), 2007.

[7] S. Thrun, A Probabilistic On-Line Mapping Algorithm for
Teams of Mobile Robots, International Journal of Robotics Re-
search (IJRR) 20 (5) (2001) 335–363.

[8] G. Borgefors, Distance transformations in digital images, Com-
puter Vision, Graphics, and Image Processing 34 (3) (1986)
344–371.

[9] R. Fabbri, L. da Fontoura Costa, J. C. Torelli, O. M. Bruno, 2D
Euclidean distance transform algorithms: A comparative survey,
ACM Computing Surveys 40 (1) (2008) 1–44.

[10] B. J. H. Verwer, P. W. Verbeek, S. T. Dekker, An efficient uni-
form cost algorithm applied to distance transforms, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 11 (4)
(1989) 425–429.

[11] N. Kalra, D. Ferguson, A. Stentz, Incremental reconstruction
of generalized Voronoi diagrams on grids, Robotics and Au-
tonomous Systems (RAS) 57 (2) (2009) 123–128.

[12] A. Stentz, Optimal and Efficient Path Planning for Partially-
Known Environments, in: IEEE International Conference on
Robotics and Automation (ICRA), San Diego, CA, USA, 3310–
3317, 2004.

[13] P.-E. Danielsson, Euclidean Distance Mapping, Computer
Graphics and Image Processing 14 (3) (1980) 227–248.

[14] S. Scherer, D. Ferguson, S. Singh, Efficient C-Space and Cost
Function Updates in 3D for Unmanned Aerial Vehicles, in:
IEEE International Conference on Robotics and Automation
(ICRA), Kobe, Japan, 3860–3865, 2009.

[15] O. Cuisenaire, B. Macq, Fast Euclidean Distance Transforma-
tion by Propagation Using Multiple Neighborhoods, Computer
Vision and Image Understanding 76 (2) (1999) 163–172.

[16] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers,
S. Nuske, S. Singh, River mapping from a flying robot: state

estimation, river detection, and obstacle mapping, Autonomous
Robots 33 (2012) 189–214.

[17] T. Tao, S. Tully, G. Kantor, H. Choset, Incremental construction
of the saturated-GVG for multi-hypothesis topological SLAM,
in: IEEE International Conference on Robotics and Automation
(ICRA), 3072–3077, 2011.

[18] N. Rao, N. Stoltzfus, S. Iyengar, A ‘retraction’ method for
learned navigation in unknown terrains for a circular robot,
IEEE Transactions on Robotics and Automation 7 (5) (1991)
699–707.

[19] C. M. Gold, P. R. Remmele, T. Roos, Voronoi methods in GIS,
in: Algorithmic Foundations of Geographic Information Sys-
tems, vol. 1340, Springer Berlin / Heidelberg, 21–35, 1997.

[20] I. Lee, M. Gahegan, Interactive Analysis Using Voronoi Dia-
grams: Algorithms to Support Dynamic Update from a Generic
Triangle-based Data Structure, Transactions in GIS 6 (2) (2002)
89–114.

[21] L. J. Guibas, D. E. Knuth, M. Sharir, Randomized Incremental
Construction of Delaunay and Voronoi Diagrams, Algorithmica
7 (1992) 381–413.

[22] H. Choset, S. Walker, K. Eiamsa-Ard, J. Burdick, Sensor-Based
Exploration: Incremental Construction of the Hierarchical Gen-
eralized Voronoi Graph, The International Journal of Robotics
Research 19 (2000) 126–148.

[23] M. Tang, Y. J. Kim, D. Manocha, CCQ: Efficient Local Planning
using Connection Collision Query, in: Algorithmic Foundations
of Robotics IX, vol. 68 of Springer Tracts in Advanced Robotics
(STAR), Springer Berlin / Heidelberg, 229–247, 2011.

[24] J. Pan, D. Manocha, GPU-based Parallel Collision Detection
for Real-time Motion Planning, in: Algorithmic Foundations of
Robotics IX, vol. 68 of Springer Tracts in Advanced Robotics
(STAR), Springer Berlin / Heidelberg, 211–228, 2011.

[25] C. Schlegel, Fast Local Obstacle Avoidance under Kinematic
and Dynamic Constraints for a Mobile Robot, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Victoria, Canada, 594–599, 1998.

[26] T. Lozano-Perez, Spatial Planning: A Configuration Space Ap-
proach, IEEE Transactions on Computers C-32 (2) (1983) 108–
120.

[27] K. D. Wise, A. Bowyer, A Survey of Global Configuration-
Space Mapping Techniques for a Single Robot in a Static En-
vironment, International Journal of Robotics Research (IJRR)
19 (8) (2000) 762–779.

[28] J. Linan, T. Zhenmin, Building configuration space for multiple
UGVs, in: IEEE International Conference on Vehicular Elec-
tronics and Safety, 245–250, 2005.

[29] E. Behar, J.-M. Lien, A New Method for Mapping the Config-
uration Space Obstacles of Polygons, Tech. Rep. GMU-CS-TR-
2011-11, Department of Computer Science, George Mason Uni-
versity, 2010.

[30] L. E. Kavraki, Computation of Configuration-Space Obsta-
cles Using the Fast Fourier Transform, IEEE Transactions on
Robotics and Automation 11 (3) (1995) 408–413.

[31] R. Therón, V. Moreno, B. Curto, F. J. Blanco, Configuration
space of 3D mobile robots: Parallel processing, in: 11th Inter-
national Conference on Advanced Robotics, vol. 1–3, 210–215,
2003.

[32] F. J. Blanco, V. Moreno, B. Curto, R. Therón, C-Space Eval-
uation for Mobile Robots at Large Workspaces, in: IEEE In-
ternational Conference on Robotics and Automation (ICRA),
Barcelona, Spain, 3434–3439, 2005.

[33] J. Ziegler, C. Stiller, Fast Collision Checking for Intelligent Ve-
hicle Motion Planning, in: IEEE Intelligent Vehicles Sympo-
sium, San Diego, CA, USA, 518–522, 2010.

[34] X. J. Wu, J. Tang, K. H. Heng, On the Construction of Dis-

19

cretized Configuration Space of Manipulators, Robotica 25 (1)
(2007) 1–11.

[35] M. Foskey, M. Garber, M. C. Lin, D. Manocha, A Voronoi-
based hybrid motion planner, in: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Maui, HI,
USA, 55–60, 2001.

[36] S. Koenig, M. Likhachev, D* lite, in: Eighteenth National Con-
ference on Artificial Intelligence (AAAI), 476–483, 2002.

[37] S. Lindemann, S. LaValle, Incrementally Reducing Dispersion
by Increasing Voronoi Bias in RRTs, in: IEEE International
Conference on Robotics and Automation (ICRA), 3251–3257,
2004.

[38] L. Zhang, D. Manocha, An efficient retraction-based RRT plan-
ner, in: IEEE International Conference on Robotics and Au-
tomation (ICRA), Pasadena, 3743–3750, 2008.

[39] R. Geraerts, M. Overmars, A Comparative Study of Probabilis-
tic Roadmap Planners, in: Algorithmic Foundations of Robotics
V, vol. 7 of Springer Tracts in Advanced Robotics (STAR),
Springer Berlin / Heidelberg, 43–58, 2004.

[40] J. Canny, A Voronoi Method for the Piano-Movers Problem,
in: IEEE International Conference on Robotics and Automation
(ICRA), 530–535, 1985.

[41] C. R. Maurer, Jr., R. Qi, V. Raghavan, A linear time algorithm
for computing exact Euclidean distance transforms of binary
images in arbitrary dimensions, IEEE Transactions on Pattern
Analysis and Machine Intelligence 25 (2) (2003) 265–270.

[42] P. Beeson, EVG-Thin: A Thinning Approximation to the Ex-
tended Voronoi Graph, Available online: http://www.cs.

utexas.edu/users/qr/software/evg-thin.html, 2006.
[43] G. Grisetti, C. Stachniss, W. Burgard, Improved Techniques for

Grid Mapping with Rao-Blackwellized Particle Filters, IEEE
Transactions on Robotics 23 (1) (2007) 34–46.

[44] C. Stachniss, U. Frese, G. Grisetti, OpenSLAM, URL http:

//openslam.org, 2012.
[45] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, W. Bur-

gard, OctoMap: A Probabilistic, Flexible, and Compact 3D Map
Representation for Robotic Systems, in: ICRA Workshop on
Best Practice in 3D Perception and Modeling for Mobile Ma-
nipulation, Anchorage, 2010.

[46] C. Sprunk, B. Lau, P. Pfaff, W. Burgard, Online Generation
of Kinodynamic Trajectories for Non-Circular Omnidirectional
Robots, in: IEEE International Conference on Robotics and Au-
tomation (ICRA), Shanghai, 72–77, 2011.

[47] I. A. Şucan, M. Moll, L. E. Kavraki, The Open Motion
Planning Library (OMPL), Available online: http://ompl.

kavrakilab.org, 2011.
[48] K. M. Wurm, A. Hornung, OctoMap, An Efficient Probabilistic

3D Mapping Framework Based on Octrees, http://octomap.
github.com, 2012.

20

