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Abstract—This paper provides a new fully-decentralized al-
gorithm for Collaborative Localization based on the extended
Kalman filter. The major challenge in decentralized collaborative
localization is to track inter-robot dependencies – which is
particularly difficult in situations where sustained synchronous
communication between robots cannot be guaranteed. Current
approaches suffer from the need for particular communica-
tion schemes, extensive bookkeeping of measurements, overly-
conservative assumptions, or the restriction to specific mea-
surement models. To the best of our knowledge, the algorithm
we propose in this paper is the first one that tracks inter-
robot correlations while fulfilling all of the following relevant
conditions: communication is limited to two robots that obtain
a relative measurement, the algorithm is recursive in the sense
that it does not require storage of measurements and each robot
maintains only the latest estimate of its own pose, and it supports
generic measurement models. These particularly hard conditions
make the approach applicable to a wide range of multi-robot
applications. Extensive experiments carried out using real world
datasets demonstrate the improved performance of our method
compared to several existing approaches.

I. INTRODUCTION

Localization is one of the most fundamental tasks for mobile
robots. For a team of multiple robots, a paradigm called
Collaborative Localization (CL) has been demonstrated to pro-
vide significant improvements of the localization performance
of the individual teammates [5, 22]. In CL, robots detect
each other and communicate their estimates, which correlates
the estimates of their individual poses. It is of fundamental
importance to keep track of these dependencies to avoid
the problem of double-counting or data-incest, which occurs
when two robots treat shared information as uncorrelated.
Leading to overly optimistic estimates, double-counting puts
the localization reliability at risk.

To fuse information gathered from proprioceptive (e.g.,
wheel encoders) and exteroceptive sensors (e.g., cameras or
laser scanners) researchers have used Particle Filters [5, 21, 7],
Maximum-a-Posteriori [19] and Maximum-Likelihood algo-
rithms [6], and – like in our approach – the Extended Kalman
Filter (EKF). Under the assumption of Gaussian noise for mo-
tions and measurements, applying the EKF to the joint system
state space containing the poses of all team members yields the
optimal estimator apart from linearization errors [24, 8]. Here,
double-counting does not occur, because the filter naturally
tracks inter-robot correlations in terms of the off-diagonal
covariance matrix elements. The disadvantage of this approach
lies in the fact that it requires a central processing unit

Fig. 1. This picture shows a five robot localization problem in an indoor
environment according to the publicly available data set recorded by Leung
et al. [15]. The three robots on the left observe each other, while the rightmost
robot observes two landmarks. Accordingly, its error ellipse is small. The fifth
(blue) robot has a large error covariance as it did not detect any landmarks, nor
was it able to improve its pose estimate with the help of pairwise observations
in the most recent steps.

for updating the joint filter. In addition, all robots need to
instantaneously send all their motion and measurement data to
this unit introducing a substantial communication overhead.

However, in many relevant multi-robot applications – for
example underwater, in mines, or in large-scale environments,
– communication might be energy consuming, error-prone,
slow, or simply not possible at all times. Therefore, decentral-
ized architectures that reduce the need for communication to a
minimum are desirable. Particularly appealing are algorithms
restricting exchange of information between two robots to
points in time where they actually meet. Establishing the
correct joint estimate in such a context demands for storage
and bookkeeping of measurements [14]. If the memory needed
to store measurements is limited and robots are only allowed to
communicate at rare occasions, it is impossible to reproduce
the centralized EKF. In particular the covariance matrix of
the joint system can only be approximated. Here, the double-
counting problem can occur if the off-diagonal terms of the
matrix are underestimated or completely neglected. Accord-
ingly, in such a situation the estimates of the poses cannot be
guaranteed to be consistent.

Our contribution is an EKF-based localization algorithm
that is able to approximate the covariance under the above-
mentioned constraints on communication and memory:



• Exchange of information takes place only between two
robots obtaining a relative measurement. Our approach
does not require communication with further teammates.
The communication complexity1 is thus O (1) per relative
measurement.

• The algorithm is recursive in the sense that no mea-
surements have to be stored. For a team of N robots,
each robot only updates the belief about its own pose
and N − 1 matrices that carry information about the
correlations with the estimates of the teammates.

• In addition to relative observations, the algorithm also
supports absolute positioning of individual robots. It
furthermore allows for generic measurement models.

II. RELATED WORK

The problem of multi-robot localization has received con-
siderable attention in the past. Roumeliotis and Bekey [22]
present a distributed algorithm that is equivalent to the joint
EKF. In their approach, each robot processes its own odometry
and measurements are communicated to all teammates. For a
team of N robots, this results in communication complexity
of O (N) per robot-robot perception. In contrast to that,
our approach is of communication complexity O (1) and is
applicable even if the exchange of information is limited to
robots performing a relative measurement. Similar communi-
cation networks without centralized entity are used in gossip
protocols [3]. As opposed to our method, all centralized-
equivalent approaches share the need for either a particular
structure of the communication graph [2, 11, 17, 26] or the
storage of measurement information [14].

In the following, we concentrate on EKF-based CL algo-
rithms that meet our assumptions – namely algorithms that
forgo storage of measurement information and rely only on
pairwise communication in the context of a relative mea-
surement. There are approaches in which the robots treat
the poses of teammates as deterministic parameters [20] and
cross-correlations are simply neglected. This entails the risk of
becoming over-confident, or forces the robots to follow certain
motion patterns [12].

A more elaborate approach is to treat incorporation of
relative measurements as fusion of estimates with unknown
correlations. To avoid over-confidence, Covariance Intersec-
tion (CI) or Split Covariance Intersection (SCI) techniques
constitute a natural choice. Approaches based on CI [4] treat
estimates as if they were maximally correlated. Approaches
based on SCI [16, 25] split the covariances into a dependent
and an independent component. The fusion of consistent esti-
mates by CI or SCI provably preserves consistency. However,
as a price, they are in general overly pessimistic. Moreover –
in contrast to our approach – the implementations as presented
in the literature, have to assume perception systems capable
of identifying the relative poses of neighboring robots. More
precisely, they require relative range and orientation measure-
ments and cannot be applied to systems that, for example, only

1We define communication complexity as the number of edges required in
the communication graph [11].

provide relative range or bearing measurements. For details on
different measurement models, we refer the reader to the work
of Martinelli et al. [18].

Karam et al. [10] present an approach based on state
exchange. It only allows independent states to be fused and is
thus not optimal. Moreover, it requires relative pose detection.
Unlike the already mentioned approaches, the interleaved
update algorithm by Bahr et al. [1] can handle general mea-
surement models. In this approach, each vehicle of a team of
N robots has to maintain and update up to 2N estimates and
covariances and has to keep track of their dependencies with
all the team members. Robot i can only use those estimates
of robot j that are not (directly or indirectly via other robots)
correlated to robot i. Compared to this algorithm, our method
has the advantage that each robot has to maintain only one
estimate and N matrices (as opposed to 2N estimates and
matrices). Moreover, our algorithm is recursive in the sense
that only the most recent estimates are used, which separates
it from the approaches of Bahr et al. [1] and Karam et al. [10].

III. THE PROPOSED APPROACH

In a team of N robots, let Xi be the pose of robot i in
a fixed reference frame. Throughout this paper, we consider
the problem of localizing N vehicles navigating on a plane,
although our approach is not limited to this case. Under this
assumption, a robot pose is a triple Xi = [xi, yi, θi]

T with
Cartesian coordinates [xi, yi] and orientation θi. The number
N can change over time and does not need to be known to the
robots beforehand. Each robot is provided with an estimate of
its own pose X̂t

i and the corresponding covariance matrix Σt
ii

at each time step t. We call belti = {X̂t
i ,Σ

t
ii} the belief of

robot i at time t. The belief of the joint system is

belt = {X̂t,Σt}, (1)

with X̂t = [X̂t
1; . . . ; X̂t

N ] and Σt =
[
Σt

ij

]
1≤i,j≤N .

At the beginning of their mission the robots might be
uncorrelated, which means Σt

ij = 0 for all i 6= j, and the
individual beliefs are sufficient to represent belt. When robot
i detects robot j at time t, we have in general Σt+1

ij 6= 0.
Inspired by Roumeliotis and Bekey [22], we decompose

Σt+1
ij = σt+1

ij

(
σt+1
ji

)T
,

where we can choose any possible decomposition. In Algo-
rithm 1 given below, for example, we set σt+1

ij = Σt+1
ij and

σt+1
ji = I. In the following, robots i and j independently

update σt+1
ij respectively σt+1

ji . The details are presented in
Section III-C.

We assume the belief (1) to be distributed among the team
such that each robot i carries belti and {σt

ij}∀j 6=i. During their
mission, the robots perform
• Motion: Each robot has access to a control, which is a

velocity command or odometry information. We allow for
generic motion models.

• Private Measurements: Any of the robots might or
might not perform measurements that are not shared with



the group, e.g., detection of known landmarks or GPS. We
allow for a heterogeneous team and generic measurement
models.

• Relative Measurements: Any of the robots might or
might not perform measurements that include itself and
a teammate. Again, we allow for varying and generic
detection models. In particular, we do not demand access
to relative poses.

• Communication: Relative measurements are the only
occasions where communication takes place. When robot
i detects robot j, both share beli/j and σij/ji. We do not
require communication to further teammates.

Algorithm 1 provides an overview of how the robots
perform the corresponding updates. We derive the occur-
ring matrices Gt

i, M
private, and Mrel as well as the func-

tions predictBelief , correctBelief , relCorrectBeliefa/b, and
relCorrectCorrelation in III-A to III-C.

Algorithm 1 Update Procedure for Robot i

1: Input: belti, {σt
ij}∀j 6=i, A

2: Output: belt+1
i , {σt+1

ij }∀j 6=i

3: if A is a control then
4: belt+1

i ← predictBelief(belti, A)
5: for 1 ≤ j ≤ N , j 6= i do
6: σt+1

ij ← Gt
i(belti, A) · σt

ij

7: if A is a private measurement then
8: belt+1

i ← correctBelief(belti, A)
9: for 1 ≤ j ≤ N , j 6= i do

10: σt+1
ij ←Mprivate(belti) · σt

ij

11: if A is a relative measurement to robot j then
12: send to robot j: belti, σ

t
ij , A

13: receive from robot j: beltj , σt
ji

14: Σt
ij ← σt

ij

(
σt
ji

)T
15: belt+1

i ← relCorrectBeliefa(belti,beltj ,Σ
t
ij , A)

16: Σt+1
ij ← relCorrectCorrelation(belti,beltj ,Σ

t
ij , A)

17: for 1 ≤ k ≤ N , k /∈ {i, j} do
18: σt+1

ik ←Mrel(belti,belt+1
i ) · σt

ik

19: σt+1
ij ← Σt+1

ij

20: if A is a relative measurement received from robot j then
21: receive from robot j: beltj , σt

ji

22: send to robot j: belti, σ
t
ij

23: Σt
ij ← σt

ij

(
σt
ji

)T
24: belt+1

i ← relCorrectBeliefb(belti,beltj ,Σ
t
ij , A)

25: for 1 ≤ k ≤ N , k /∈ {i, j} do
26: σt+1

ik ←Mrel(belti,belt+1
i ) · σt

ik

27: σt+1
ij ← I

A. Motion
We assume the motion of different robots to be independent

and corrupted by Gaussian noise νx, νu,

Xt+1
i = g

(
Xt

i , U
t
i + νu

)
+ νx,

with motion model g, where U t
i can either be a velocity

command or an odometry measurement. If robot i performs a
motion, the correct prediction step for the joint system can be
derived from the standard EKF and is given by

X̂t+1
i = g

(
X̂t

i , U
t
i

)
(2)

Σt+1
ii = Gt

iΣ
t
ii

(
Gt

i

)T
+Rt

i (3)

Σt+1
ij = Gt

iΣ
t
ij (4)

X̂t+1
j = X̂t

j (5)

Σt+1
jj = Σt

jj , (6)

for all j 6= i with linearization Gt
i = ∂g(X,U)

∂X (X̂t
i , U

t
i )

and noise covariance Rt
i . These equations correspond to (24)

in [22]. In the case of odometry measurements with noise
distributed as νu ∼ N (0;M t

i ) and νx = 0, for example,
we have Rt

i = V t
i M

t
i V

t
i
T , with V t

i = ∂g(X,U)
∂U (X̂t

i , U
t
i ). The

crucial insight here – as already pointed out by Roumeliotis
and Bekey [22] – is that robot i can correctly update the cross-
correlations to all teammates by updating

σt+1
ij = Gt

iσ
t
ij .

This is because, if robots i and j meet, they can reproduce
their cross-correlation by the matrix multiplication

σt+1
ij

(
σt+1
ji

)T
= Gt

iσ
t
ij

(
σt
ji

)T
= Σt+1

ij .

The function predictBelief in Algorithm 1 is defined by (2)
and (3).

B. Private Measurements

We define a private measurement to be a function of the
observing robot’s pose, corrupted by Gaussian noise

zti = h
(
Xt

i

)
+ νpm,

with νpm ∼ N (0, Qt
i) and measurement model h. In the

following paragraphs, we will derive the equations used in our
approach for the private measurement update. The derivations
prove that this component of our method is identical to the
well-known Schmidt-Kalman filter [23]. Let i receive a private
measurement and j ∈ 2{1,...,N}\{i} indicate any subset of the
remaining robots. Then, as we show in Section VI-A, the exact
correction step for the joint system is

X̂t+1
i = X̂t

i +Kt
i

[
zti − h(X̂t

i )
]

(7)

Σt+1
ii =

(
I−Kt

iH
t
i

)
Σt

ii (8)

Σt+1
ij =

(
I−Kt

iH
t
i

)
Σt

ij (9)

X̂t+1
j = X̂t

j +Kt
j

[
zti − h(X̂t

i )
]

(10)

Σt+1
jj = Σt

jj −Kt
jH

t
iΣ

t
ij , (11)

with the linearization Ht
i = ∂h(X)

∂X (X̂t
i ), the Kalman gains

Kt
i/j = Σt

ii/ji(H
t
i )

T
S−1, and the invertible residual covari-

ance S = Ht
iΣ

t
iiH

t
i
T

+Qt
i.

We can execute the correction updates (7)-(9) without com-
munication because all necessary terms are known to robot i.



The function correctBelief in Algorithm 1 is defined by (7)
and (8). The cross-correlation update (9) is realized by the
matrix multiplication

σt+1
ij =

(
I−Kt

iH
t
i

)
σt
ij = Mprivateσt

ij ,

similar to the prediction step in Section III-A.
To avoid communication, we approximate updates (10) and

(11) to leave the corresponding beliefs unchanged, i.e.,

X̂t+1
j ≈ X̂t

j =: X̃t+1
j

Σt+1
jj ≈ Σt

jj =: Σ̃t+1
jj .

In summary we arrive at a set of equations equivalent to the
Schmidt-Kalman Filter 2. In expectation, this approximation
is consistent with respect to the joint system. This is due to
the following two observations: Given the correct belief belt,
we have expectation Ezt

i

(
X̂t+1

j

)
= X̂t

j ; the difference of the

approximated Σ̃t+1 and the exact covariance Σt+1 is a positive
semi-definite matrix, i.e.,

Σ̃t+1 − Σt+1 =

(
0
0

0

Σt
ji(H

t
i )

T
S−1Ht

iΣ
t
ij

)
� 0.

C. Relative Measurements

We define relative measurements – most generally – as noisy
observations depending on the state of two robots

rtij = f
(
Xt

i , X
t
j

)
+ νrm,

with measurement model f . To meet the conditions for ap-
plying the EKF, we assume the noise term to be normally
distributed νrm ∼ N (0;Qt

ij). We emphasize again, that we
neither require the relative measurements to be a function of
pose differences of two robots rtij = f

(
Xt

i −Xt
j

)
+ νrm, nor

do we assume that the relative measurements provides the ob-
serving robot with an estimation of the observed robot’s pose.
Both are special cases of our general model. In particular we
can handle the practically relevant case of range and/or bearing
measurements. When a robot obtains a relative measurement
– w.l.o.g. i observes j – the exact correction step for the joint
system can be written as follows. We present the derivation
in Section VI-A. Here k represents the indices of all N − 2
robots that do not participate at the relative measurement:

X̂t+1
i/j = X̂t

i/j +Ki/j

[
rtij − f(X̂t

i , X̂
t
j)
]

(12)

Σt+1
ii/jj = (I−Ki/jFi/j)Σ

t
ii/jj −Ki/jFj/iΣ

t
ji/ij (13)

Σt+1
ij = (I−KiFi)Σ

t
ij −KiFjΣ

t
jj (14)

Σt+1
ik = (I−KiFi)Σ

t
ik −KiFjΣ

t
jk, (15)

with linearization Fi/j =
∂f(Xi,Xj)

∂Xi/j
(X̂t

i/j), and Kalman gain

K =

[
Ki

Kj

]
=

[
Σt

iiF
T
i + Σt

ijF
T
j

Σt
jjF

T
j + Σt

jiF
T
i

]
S−1,

2Please note that Julier [9] has used the same structure to reduce the
computational cost of the related problem of simultaneous localization and
mapping.

with residual covariance

S = [Fi, Fj ]

[
Σt

ii

Σt
ji

Σt
ij

Σt
jj

] [
Fi

T

Fj
T

]
+Qt

ij .

Our update equations (12)-(15) generalize the update equations
by Roumeliotis and Bekey [22] to arbitrary measurement
models. As argued in Section III-B, we approximate

Σt+1
kk ≈ Σt

kk

X̂t+1
k ≈ X̂t

k,

for k ∈ 2{1,...,N}\{i,j} and arrive at update equations equiv-
alent to the Schmidt-Kalman filter [23]. Communication be-
tween i and j is allowed at the time of the relative measure-
ment and they share the measurement rtij and their beliefs
belti/j = {X̂t

i/j ,Σ
t
ii/jj}. Additionally, they reproduce their

correlation by sharing σij/ji. We can correctly perform the
updates (12)-(14). The exactly calculated cross-correlation
(14) is decomposed into Σt+1

ij = σt+1
ij

(
σt+1
ji

)T
and distributed

among the two participating robots.
The only terms we have not taken care of yet are the

correlations between participating and non-participating robots
(15). In contrast to [22], we do not rely on communication with
other teammates. The problem in this case is that – unlike (9)
for private measurements – the update cannot be written as
a simple matrix multiplication of the form Σt+1

ik = MrelΣt
ik.

In particular, we cannot reproduce the terms Σt
ik = σt

ik(σt
ki)

T

and Σt
jk = σt

jk(σt
kj)

T that are necessary for the correct update.
This is because we do not rely on communication with robot
k, that carries the terms σt

ki and σt
kj .

To arrive at the general form of approximations that main-
tain the decentralized structure, we rewrite the Schmidt-
Kalman filter update step (13)-(15). For better readability and
w.l.o.g. we define a := {i, j} and b := {1, . . . , N} \ {i, j}.
With help of this notation we get

Σt+1
aa = (I−K [Fi, Fj ]) Σt

aa

and thus we have

Σt+1
ab = (I−K [Fi, Fj ]) Σt

ab = Σt+1
aa

(
Σt

aa

)−1
Σt

ab

=

[
Σt+1

ii

Σt+1
ji

Σt+1
ij

Σt+1
jj

] [
Σt

ii

Σt
ji

Σt
ij

Σt
jj

]−1
︸ ︷︷ ︸

:=A

[
Σt

ib

Σt
jb

]
. (16)

To avoid the need for communication, we have to use a block-
diagonal approximation of A.

A naive approximation of A and thus of (15) can
be achieved by taking the block-diagonal matrix of
(I−K [Fi, Fj ]), which leads to

Σt+1
ik = (I−KiFi)Σ

t
ik −KiFjΣ

t
jk ≈ (I−KiFi)Σ

t
ik. (17)

In our experiments, approximation (17) yields unsatisfying
results. A key contribution of this paper is the more reasoned
approximation

Σt+1
ik ≈ MrelΣt

ik = Σt+1
ii

(
Σt

ii

)−1
Σt

ik, (18)



where we assume that the joint covariance Σt is positive
definite at any time, which can be assumed due to imperfect
sensors and due to motion noise. Approximation (18) corre-
sponds to setting

A ≈ Ã :=

[
Σt+1

ii (Σt
ii)
−1

0

0 Σt+1
jj

(
Σt

jj

)−1]
in (16). It has the following mathematical justification:

Proposition 1: Under the assumption that the position es-
timates of two robots are either strongly correlated or totally
uncorrelated, Ã is the unique block diagonal approximation,
which minimizes the approximation error with respect to the
operator norm corresponding to the 1-norm for vectors, i.e.,

Ã = argmin

B=

B1 0
0 B2

, B1, B2∈Rd×d

‖Σt+1
ab −BΣt

ab‖1,

where d is the dimension of a single robot’s state space.
The statement also holds for every entry-wise or column-wise
matrix norm.

Especially, if the estimates of robots i and j are strongly
correlated before the measurement then the approximation (18)
is exact.

Proof: See Appendix B.
Note that there are instances where both (17) and (18) un-

derestimate cross-correlations. Assume, for example, Σt
ik = 0

and Σt
jk 6= 0 before the relative measurement. Then (15)

implies in general Σt+1
ik 6= 0 after the relative measurement.

But with (17) or (18), it remains Σt+1
ik = 0. However, our

experiments indicate, that (18) does not only outperform (17),
but also leads to good overall localization performance in
practice.

All terms necessary to calculate Mrel are known to robot i,
which can now realize the update by setting σt+1

ik = Mrelσt
ik.

In Algorithm 1, functions relCorrectBeliefa/b are given by
(12)-(13) and function relCorrectCorrelation is given by (14).

IV. EXPERIMENTS WITH REAL WORLD DATA

We test our approach on the publicly available UTIAS
Multi-Robot Cooperative Localization and Mapping Dataset
[15]. A fleet of five (two-wheel differential drive) robots get
range and bearing measurements with known correspondences
to each other and up to 15 distinguishable landmarks. The
dataset includes odometry and measurements together with
pose ground truth. The duration is over 4.7 hours, spread
over nine different runs ranging from 15 to 70 minutes. In
the ninth run, the environment contains some barriers as
depicted in Fig. 1. We let the robots perform localization
based on six different strategies (listed below), using dead
reckoning and the relative measurements. Additionally, we
allow one of the robots to process its landmark measurements.
To increase the amount of data fivefold, we consecutively
allow each of the robots (one at a time) to use the landmark
measurements. This provides us with over 23.6 hours (not
entirely independent) data. Then we drop all relative bearing

measurements, which leaves the robots with relative range only
measurements. This serves to demonstrate that our approach
can deal with generic measurement models. Following, we
replace all relative measurements by simulated relative pose
measurements, consisting of the pose of the observed robot in
the observing robot’s reference frame. This experiment allows
us to compare against Covariance Intersection [4], which relies
on relative measurements providing the observing robot with
an estimate of the observed robot’s pose.

We compare the following EKF-based approaches:
• Collaborative Localization using the centralized joint

extended Kalman Filter (EKF), e.g., [22]. (ground truth)
• Our approach (DCL).
• Naive version of our approach (NDCL): we use approx-

imation (17) instead of (18).
• Covariance Intersection (CI) [4]: information to be fused

is assumed to be maximally correlated.
• Total Naive Collaborative Localization (NCL): cross-

correlations are neglected.
• Single Robot Localization (SL): robots can detect land-

marks but no other robots.
Note that to realize the centralized equivalent approach

(EKF), each measurement demands for N − 1 = 4 edges
in the communication graph. In contrast, our approach (DCL)
requires only one edge for each relative measurement and no
communication at all for private measurements. The datasets
include a total number of nrel = 173289 relative measure-
ments and npriv = 42605 private measurements on average for
one of the robots performing landmark measurements. Thus,
EKF needs (N − 1)(nrel + npriv)/(nrel) = 4.98 times more
edges then our approach.

A. Accuracy Analysis
We calculate the root-mean-square error averaged over all

five robots (RMSEE
t ) of estimator E at time step t. As

measure for the performance of an estimator in one run, we
subtract the corresponding value of the centralized filter

PE =
1

T

T∑
t=1

(
RMSEE

t −RMSEEKF
t

)
,

where T is the absolute number of time steps in that run.
This choice is justified by the following observation. Due
to linearization errors, approximate measurement and motion
models, and randomness in the system, even EKF sometimes
produces wrong estimates. In these cases it is unlikely (though
possible) that any approximation of EKF yields better results.
This is illustrated in Fig. 2. It shows the root-mean-square
error (RMSE) averaged over all five robots in the second run,
where the relative measurements consist of range information
only. In the time between second 400 to 500, all algorithms
(including the correct EKF) encounter problems. For the rest,
our approach (DCL) yields localization with RMSE below 50
cm. After around 1200 seconds, EKF yields bad localization
results, while our algorithm remains stable. This is due to a
robot processing landmark measurements with wrong associ-
ations. In EKF the robot instantaneously communicates these
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Fig. 2. Root-mean-square error averaged over all five robots in the second
run. With our approach (DCL), the error remains below 50 cm throughout
the whole experiment. Using single robot localization (SL), the error diverges
due to the fact that only a subset of robots detect landmarks. At first, the
naive approach (NCL) keeps up with DCL. But due to overconfidence its
localization performance starts to decrease after around 1200 seconds.

measurements which corrupts all other robots’ estimates. We
emphasize that in this case our algorithm (DCL) outperforms
EKF just accidentally by not communicating measurement
information. For the rest of the time, it performs almost
identically well as EKF. Using single robot localization (SL),
the error diverges due to the fact that only a subset of robots
detect landmarks. At first, the naive approach (NCL) keeps
up with DCL. But due to overconfidence its localization
performance starts to decrease after around 1200 seconds.

Table I shows the values PE in centimeters for each of the
four approximate algorithms in the nine runs.

TABLE I
POSITIONING ACCURACY (PE IN CM) ON REAL WORLD DATA WITH

RANGE AND BEARING MEASUREMENTS

Run DCL NDCL NCL SL
1 1.19 1.94 6.16 171.19
2 1.52 1.75 4.27 148.15
3 -0.22 2.89 7.62 161.63
4 1.38 1.29 10.14 131.59
5 1.06 0.92 3.91 117.79
6 0.79 1.26 3.53 91.40
7 1.32 1.74 3.79 80.40
8 2.27 4.08 10.63 207.19
9 2.45 37.15 12.10 339.05
∅ 1.48 6.65 7.70 177.71

In every single run, our approach (DCL) yields the best
absolute localization results – except for the fifth run where
the naive version of our algorithm (NDCL) is slightly better.
The average is taken over all runs weighted with the respective
duration. Here, DCL outperforms all other approaches. Addi-
tionally, the correct joint EKF outperforms our approximate
algorithm only by less then 1.5 centimeters although making
use of nearly five times as many communication links.

We repeat this experiment four times while consecutively

allowing each of the robots (one at a time) to receive the
landmark measurements. That way we get 45 runs with relative
range and bearing measurements. We erase all relative bearing
measurements to get another 45 runs with range-only relative
measurements. We generate another 45 runs by replacing all
relative measurements by simulated relative pose measure-
ments. Tab. II shows mean and variance of PE over all 45 runs
(weighted by the duration) for the different measurement types
and algorithms. For all algorithms, we additionally count the
number of runs in which it outperforms all other approximate
algorithms. No matter which kind of relative measurements we
use, our approach outperforms all of the compared methods
in absolute accuracy.

TABLE II
POSITIONING ACCURACY (PE IN CM) ON REAL WORLD DATA

RANGE AND BEARING
DCL NDCL NCL CI SL

mean(PE ) 2.68 29.83 6.25 – 183.56
variance(PE ) 3.42 42.94 4.77 – 63.55
# best runs 31 11 3 – 0

RANGE ONLY
DCL NDCL NCL CI SL

mean(PE ) 0.69 18.65 9.93 – 155.03
variance(PE ) 7.89 32.70 11.60 – 57.49
# best runs 23 10 12 – 0

SIMULATED RELATIVE POSE
DCL NDCL NCL CI SL

mean(PE ) 2.59 13.83 8.88 7.84 180.78
variance(PE ) 2.03 20.11 7.39 5.68 57.96
# best runs 37 2 2 4 0

B. Robustness Analysis

As stated before, even the correct EKF might diverge.
However – if the covariance is not underestimated – the filter
might recover from that after subsequent measurements. To
demonstrate robustness of our approximation, we compare
mean time to failure and the relative number of recoveries
after failures for the different approaches. We define a failure
to be a point in time where the root-mean-square error of the
joint system exceeds 50 cm. We define a recovery as a point
in time where the root-mean-square error of the joint system
drops below 10 cm after a failure. The recovery ratio R is the
number of recoveries divided by the number of total failures.
Mean time to failure T is the mean time difference between
a recovery (or the start of a run) and the next failure. Fig.
3 serves as an example. It shows the estimation error of the
x-component over time for one of the robots that only rely
on dead reckoning and relative measurements. All compared
algorithms - including EKF (not shown) - lose positioning. In
contrast to the naive approach (NCL), our approach (DCL) is
able to recover from the bad localization around t = 600s,
and yield an accurate estimate later on.

Table III displays the mean time to failure in minutes and the
recovery ratio in percent. For each measurement type, these
values are taken over the complete 23.6 hours of data. Our
algorithm (DCL) outperforms all other algorithms – including
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Fig. 3. Absolute difference |x| between the correct x-component (of robot
4 in run 3) and the corresponding value estimated with our algorithm (DCL,
plot on top) and the naive approach (NCL, plot at the bottom). This is an
example, where all algorithms (including the correct centralized EKF) lose
positioning around time 550s-650s. In contrast to the naive one, our approach
is able to recover from that and yields accurate localization.

EKF – regarding mean time to failure. With respect to recovery
rate, our approach is approximately identical to EKF. Note that
mean time to failure is very low for Covariance Intersection
(CI). We accredit this to the fact that in CI only the observed
robot profits from a relative measurement. However, conser-
vative approximation in CI achieves a very high recovery
ratio. The experiments demonstrate our algorithm to be as
robust as the correct EKF while using nearly five times less
communication links and forgoing storage of measurements
and the need for global communication.

V. CONCLUSION

This paper introduces a fully decentralized, EKF-based
algorithm for Collaborative Localization. To the best of our
knowledge, it is the first approach that tracks inter-robot corre-
lations while fulfilling all of the following relevant conditions:
the algorithm does not require storage of measurements, it
supports generic measurement models, and communication is
limited to pairs of robots that obtain a relative measurement.

TABLE III
MEAN TIME TO FAILURE T IN MINUTES AND RECOVERY RATIO R IN

PERCENT FOR REAL WORLD DATA.

RANGE AND BEARING
EKF DCL NDCL NCL CI SL

T 42.37 46.89 24.79 38.98 – 2.65
R 75.00 72.00 74.42 71.43 – 0

RANGE ONLY
EKF DCL NDCL NCL CI SL

T 11.14 11.99 10.81 7.64 – 2.63
R 57.14 57.63 54.10 41.94 – 0

SIMULATED RELATIVE POSE
EKF DCL NDCL NCL CI SL

T 41.53 45.13 40.51 44.41 8.41 2.65
R 78.57 76.00 74.07 79.17 93.80 0

Each robot maintains only the latest estimate of its own
pose. These particularly hard conditions make the approach
applicable to a wide range of applications.

We test our approach on real world data. It outperforms
existing decentralized EKF-based approaches with respect to
accuracy and robustness. Albeit our estimator is not provably
consistent in general, our experiments imply that it is as robust
as the correct EKF, which – in contrast to our method –
rests on the assumption of persistent availability of global
communication or has substantial memory requirements.

VI. APPENDIX

A. Derivation of the Update Equations
We derive the update equations (12)-(15) for relative mea-

surements rtij = f
(
Xt

i , X
t
j

)
+N (0, Q). W.l.o.g. we assume a

system of three robots where robot 1 detects robot 2. Thus, the
Jacobian can be written as F := ∂f(X1,X2)

∂X (X̂) = [F1, F2, 0]

with F1/2 = ∂f(X1,X2)
∂X1/2

(X̂).
We write out the standard Kalman Filter update equations

[24, Ch. 1] for the joint system with covariance Σ. The Kalman
gain is calculated as

K = ΣFT (FΣFT +Q)−1

=
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 ,
with residual covariance

S = [F1, F2]

[
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] [
FT
1

FT
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]
+Q.

For the updated covariance Σt+1, we have

Σt+1 = (I−KF )Σ

=

 I−K1F1

−K2F1
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Element-wise evaluation yields

Σt+1
ii = (I−KiFi)Σii −KiFjΣji

Σt+1
ij = (I−KiFi)Σij −KiFjΣjj

Σt+1
i3 = (I−KiFi)Σi3 −KiFjΣj3

for i, j ∈ {1, 2}, i 6= j.
We derived the covariance update equations for relative

measurements. The corresponding update for X̂ can be derived
in the same, straightforward manner. Notice, that – in our
notation – a private measurement is a special case of a relative
measurement. Thus, to derive the update equations (7)-(11),
we just replace F = [F1, F2, 0] by H = [H1, 0, 0].

B. Proof of Proposition 1

Let X,Y, Z be d-dimensional random variables and
〈X,Y 〉 := cov(X,Y ) = E

(
(X − E(X))(Y − E(Y ))T

)
.

Under the assumptions of imperfect sensors and motion noise,
one can assume that the joint covariance Σt is positive definite
at any time. Thus we have〈X,X〉 〈X,Y 〉 〈X,Z〉〈Y,X〉 〈Y, Y 〉 〈Y,Z〉
〈Z,X〉 〈Z, Y 〉 〈Z,Z〉

 =

Σii Σij Σik

Σji Σjj Σjk

Σki Σkj Σkk


and all of its principal sub-matrices are positive definite and
invertible. Then we get with [13, Corollary 1] that

vT 〈X,Y 〉〈Y, Y 〉−1〈Y,X〉v ≤ vT 〈X,X〉v,

for all v ∈ Rd. With help of the symmetric and positive definite
square roots, this is equivalent to∥∥∥〈Y, Y 〉− 1

2 〈Y,X〉v
∥∥∥ ≤ ∥∥∥〈X,X〉 12 v∥∥∥ ,

for all v ∈ Rd. Using the induced matrix norm we obtain

‖〈Y,X〉‖ := max
‖v‖=1

‖〈Y,X〉v‖

≤ ‖〈Y, Y 〉 12 ‖ max
‖v‖=1

‖〈Y, Y 〉− 1
2 〈Y,X〉v‖

≤ ‖〈Y, Y 〉 12 ‖‖〈X,X〉 12 ‖.

(19)

This inequality is related to the usual Cauchy-Schwarz-
Inequality valid for scalar products. Decompose now Z and
X in an Y -dependent part and a part orthogonal to Y with
respect to 〈., .〉, namely

Z = 〈Z, Y 〉 (〈Y, Y 〉)−1 Y + Ẑ,

X = 〈X,Y 〉 (〈Y, Y 〉)−1 Y + X̂.

The goal is to apply (19) to 〈X̂, Ẑ〉. Therefore we need to
prove that 〈Ẑ, Ẑ〉 is positive definite. We obtain, that

〈Ẑ, Ẑ〉 = 〈Z,Z〉 − 〈Z, Y 〉〈Y, Y 〉−1〈Y,Z〉

is the Schur complement of a positive definite matrix and thus
it is positive definite. Thus (19) implies

‖Σik − ΣijΣ
−1
jj Σjk‖ = ‖〈X̂, Ẑ〉‖

≤ ‖〈X̂, X̂〉 12 ‖‖〈Ẑ, Ẑ〉 12 ‖ (20)

= ‖
(
Σii − ΣijΣ

−1
jj Σji

) 1
2 ‖ · ‖

(
Σkk − ΣkjΣ

−1
jj Σjk

) 1
2 ‖.

First we show that Approximation (18) is exact if the
estimates of robots i and j are strongly correlated before the
relative measurement, namely if Σt

ii = Σt
ij

(
Σt

jj

)−1
Σt

ji. With
(20) and assuming the second term of its right hand side to
be bounded, we get Σt

jk = Σt
ji (Σt

ii)
−1

Σt
ik, after exchanging

i and j. Thus, we arrive at (18):

Σt+1
ik = (I−KiFi) Σt

ik −KiFjΣ
t
ji

(
Σt

ii

)−1
Σt

ik

= Σt+1
ii

(
Σt

ii

)−1
Σt

ik.

Let B be any block-diagonal matrix as in Proposition 1,
i.e.,

B =

[
B1 0
0 B2

]
, B1, B2 ∈ Rd×d,

where d is the dimension of a single robot’s state space. For
the case Σt

ij = 0 we have

M :=Σt+1
ab −BΣt

ab

=

[
Σt+1

ii (Σt
ii)
−1

Σt
ib + Σt+1

ij

(
Σt

jj

)−1
Σt

jb −B1Σt
ib

Σt+1
ji (Σt

ii)
−1

Σt
ib + Σt+1

jj

(
Σt

jj

)−1
Σt

jb −B2Σt
jb

]
,

with M = (mij)ij ∈ Rm×n, m = 2d, and n = (N − 2)d. As
we are interested in minimizing the 1-norm of M , i.e.,

‖M‖1 = max
1≤j≤n

m∑
i=1

|mij |,

it suffices to minimize subsets of columns independently (the
same holds for any entry-wise or column-wise norm). In
particular, we can set b = k.

For Σt
ik = 0 it is easy to see that[
B1 0

0 Σt+1
jj

(
Σt

jj

)−1] ∈ argmin
A
‖M‖

for all B1 ∈ Rd×d and thus Ã ∈ argminA ‖M‖. Analogously
we get Ã ∈ argminA ‖M‖ for Σt

jk = 0, which proves the
proposition.

Note that, if the estimate of robot k is strongly correlated
to both i and j before the relative measurement, then also
estimates i and j are strongly correlated – the case which
we have already covered. This can be seen as follows. We
have Σt

ii = Σt
ik (Σt

kk)
−1

Σt
ki and Σt

kk = Σt
kj

(
Σt

jj

)−1
Σt

jk, or
equivalently I =

(
Σt

jj

)−1
Σt

jk (Σt
kk)
−1

Σt
kj . We combine this

with Σt
ik = Σt

ij

(
Σt

jj

)−1
Σt

jk from (20) and conclude

Σt
ii = Σt

ik

(
Σt

kk

)−1
Σt

ki

= Σt
ij

(
Σt

jj

)−1
Σt

jk

(
Σt

kk

)−1
Σt

kj

(
Σt

jj

)−1
Σt

ji

= Σt
ij

(
Σt

jj

)−1
Σt

ji,

which shows that the estimates of robots i and j are strongly
correlated.
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