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Detecting Changes in the Environment
Based on Full Posterior Distributions

over Real-valued Grid Maps
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Abstract—To detect changes in an environment, one has to
decide whether a set of observations is incompatible with a set
of previously made observations. For binary, lidar-based grid
maps, this is essentially the case when the laser beam traverses a
voxel which has been observed as occupied, or when the beam is
reflected by a voxel which has been observed as empty. However,
due to discretization errors, some voxels are neither completely
occupied nor completely free. These voxels have to be modeled by
real-valued variables, whose estimation is an inherently statistical
process. Thus, it is nontrivial to decide whether two sets of
observations emerge from the same underlying true map values,
and hence from an unchanged environment. Our main idea is
to account for the statistical nature of the estimation process by
leveraging the full map posteriors instead of only the most likely
maps. Closed-form solutions of posteriors over real-valued grid
maps have been introduced recently. We leverage a similarity
measure on these posteriors to calculate for each point in time
the probability that it constitutes a change in the hidden map
value. While the proposed approach works for any type of real-
valued grid map that allows the computation of the full posterior,
we provide all formulas for the well-known reflection maps
and the recently introduced decay-rate maps. We introduce and
compare different similarity measures and show that our method
significantly outperforms baseline approaches in simulated and
real world experiments.

Index Terms—Mapping, range sensing

I. INTRODUCTION

Grid maps are a popular approach in the context of mobile
robots to represent the environment. Their key idea is to
partition the environment into discrete voxels, where each
voxel stores a particular value related to a specific property
of the environment in the corresponding location. Lidars
are a popular sensor for building such maps due to their
accuracy. They send out laser beams and measure the time
the beams need to return after being reflected from objects in
the environment.

Typically, environments exhibit temporary or permanent
changes, which the robot has to detect and react to. Consider
occupancy grid maps, in which each cell is either free or
occupied. Here, observing a reflection in a free cell or a trans-
mission through an occupied cell is an indication of a change
in the environment. However, reasoning about these changes
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Fig. 1: Exemplary views of the changing environment in which
we conduct one of our mapping experiments.

is more complicated in real-world applications, where cells are
not always completely free or occupied. These types of cells
are required to represent semi-transparent objects, structures
smaller than the voxel size, or glass. To model the stochastic
behavior of a beam within such a voxel, one has to use real-
valued maps. Their values can either be interpreted as occu-
pancy probabilities [1], [2], [3], reflection probabilities [4],
or as expected laser ray lengths [5]. It is non-trivial to decide
whether a set of observations is within stochastic fluctuation or
due to an actual change in the environment. This is particularly
true if the map representation only comprises the most likely
values, as opposed to the full posterior distributions. Consider,
for example, a set of observations within a voxel, most of
which report a reflection. Only with a notion of uncertainty
about a previously estimated map value, one can judge whether
the observations are likely to be in accordance with this value.

Our main idea is that if the full map posteriors are given,
we can score pairs of temporary maps conditioned on distinct
sets of observations according to their compatibility. To get
the map posteriors we apply mapping with known poses. Luft
et al. [6] recently introduced closed-form solutions to the full
map posteriors over real-valued maps. For each point in time,
this approach computes two posteriors, the one conditioned
on all measurements after this point in time and the one
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conditioned on all measurements before it. We leverage a
similarity measure on these posteriors to score each point in
time according to the probability that it constitutes a change
in the hidden map value for each voxel.

The proposed framework applies to any measurement model
that allows to calculate the full posterior over a real-valued
map, for example the well-known reflection model [4] and
the recently introduced decay-rate model [5]. The input to the
proposed algorithm is the ordered sequence of observations.
For the reflection model, the elements of this stream contain
the counts of how often beams were reflected by a cell or
crossed it. For the decay-rate model, they consist of the
numbers of reflections and the total distances that all beams
travelled within each cell during the mapping process.

Conceptually, there are three main features that set the
proposed method apart from other approaches: It considers
the full path information, as opposed to end-point models; It
considers real valued maps, as opposed to occupancy maps;
It uses the full posterior over these real map values. Please
note that previous approaches, for example the one proposed
by Arbuckle et al. [7], use real valued posteriors over binary
occupancy maps, which is different from using full posteriors
over real map values.

II. RELATED WORK

There has been a substantial amount of research on grid
mapping in dynamic environments. Fox et al. [8] propose
two methods to discard measurements in the localization
process that are unlikely to be due to mapped objects. One
of these methods is the entropy filter. It accounts for only
those measurements that confirm the robot’s belief – which
can lead to over-confidence. As opposed to that, our method
always accounts for the whole stream of measurements after
a predicted change in the environment. The second method
which Fox et al. describe [8] – the distance filter – discards
measurements with ranges smaller than predicted from the
current map. While the latter is suited for the case that
unexpected objects appear, it can not handle changes where
objects are removed from the scene. In contrast, our approach
is not only able to detect voxels that turn from occupied to free
and vice versa, but also reasons about changes of non-binary
map values.

Hähnel et al. [4] introduce a hidden variable that indicates
whether a measurement is caused by a dynamic object. In
contrast to our method, both Fox et al. [8] and Hähnel et al. [4]
treat dynamic objects as outliers instead of adjusting the map
accordingly.

Other approaches incorporate information about the dynam-
ics within the map. Arbuckle et al. [7] store multiple occu-
pancy values estimated over different timescales in so-called
Temporal Occupancy Grids. While this introduces additional
parameters and memory consumption, our approach keeps
track of only the most recent map.

Luber et al. [9] model the occurrence of humans by a
Poisson process. They store the learned parameter – the
temporal rate at which a person appears at a certain point
in space – in a so-called affordance map. Saarinen et al. [10]

extend this approach by learning two rates: the one at which
occupied cells turn free, and vice versa. Additionally, they
use a weighting method to prefer recent measurements over
older ones. Meyer-Delius et al. [11] extend the Bayesian
update formula for the occupancy posterior by a state transition
probability. The latter term is not given a priori but estimated
during operation. Compared to the these previous methods,
our approach is more general in the sense that it forgoes an
explicit model of the underlying dynamics.

Biber and Duckett [12] maintain multiple maps learned
from data on different timescales. Similar to Yamauchi and
R. Beer [13], they use recency-weighted averaging to suppress
old measurements. In their approach, the decay-rate of the
weighting term depends on the timescale. In both approaches,
the weighting terms have to be fixed a priori while our algo-
rithm estimates the breakpoint for each region individually.1

All approaches discussed so far either assume a binary
occupancy state or work with the most likely maps only
instead of the full posterior distribution. As opposed to that,
we leverage the full posterior over real-valued maps, which we
consider to be the most significant difference to all approaches
discussed in this section.

Fehr et al. [14] conduct RGB-D-based 3D reconstructions
in dynamic environments with a segmentation of dynamic
objects. Krajnik et al. [15] model the environment, e.g., the
occupancy states of a grid, as periodically changing in time
and store the most prominent Fourier coefficients. Andreasson
et al. [16] calculate the probability for each reflection point in a
laser scan to be different from a previously recorded reference
model. The latter is represented as a 3D grid comprising
the mean and covariance values obtained from the Normal
Distribution Transformation (NDT) of the initial laser point
cloud. As opposed to our approach, Andreasson et al. [16] do
not account for the whole path information of the laser beams
but only for their endpoints.

Besides the grid-based approaches, there are also feature-
based methods that consider dynamic objects, for example the
work of Andrade-Cetto and Sanfeliu [17], Sofman et al. [18],
and Manso et al. [19].

III. APPROACH

In this section, we first define how we formalize a change
in the map. We then briefly describe the basics of posterior
distributions over real valued grid maps [6] and provide the
formulas needed for the remainder of the paper. After we
formulate the search for a point in time at which the map
changes as minimization of certain measures on map posteri-
ors, we introduce three different options for these measures in
sections III-A to III-C.

Similar to most other grid-based mapping approaches, we
model the map value of each individual voxel as hidden
random variableM and estimate its value from a set of n ob-
servations Z. The posterior distribution belZ(m) := p(m | Z)
of the map value m ∈M given all measurements Z is called
belief.

1 Our algorithm uses a measure of compatibility between map posteriors.
This measure is interchangeable. One of the three proposed measures also
contains an a priori fixed threshold, see III-C.
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Let us assume that the environment changes at some point in
time (let us call it a breakpoint b) because an object is removed
or added. Then, instantly, the hidden variables corresponding
to voxels that are affected by this change are replaced by new
variables. For the voxels in question, all measurements taken
before the breakpoint bias the estimate of the new random
variable. Thus, for a potential breakpoint, we define two
distributions: the map posterior bel1:b−1 conditioned on the
measurements before the breakpoint and the posterior belb:n

conditioned on the recent measurements from the breakpoint
on. If the robot has to localize itself, it must use the most
recent map. Thus, it is desirable to detect the breakpoint b
and maintain belb:n.

Luft et al. [6] show that, for two particular measurement
models, the beliefs over individual non-binary map values
can be parametrized as follows. The well-known reflection
model [4] assigns to each voxel a reflection probability µ.
Given the hidden map value µ, the likelihood to observe a
particular stream Z of observations with H reflections (hits)
and M transmissions (misses) in the cell is

Lµ(Z) := p(Z | µ) = µH (1− µ)
M
. (1)

The map posteriors are beta-distributions [6]

bel(µ) = Beta(µ;α, β) =
µα−1(1− µ)β−1

B(α, β)
, (2)

with the beta function B(·, ·). The parameters α and β are
determined by the number of reflections and transmissions:
α = H + α0 and β = M + β0, where α0 and β0 are priors
and α0 = β0 = 1 for a uniform prior. The recently introduced
decay-rate model [5] assigns each voxel a decay-rate λ. Here,
the likelihood for a stream Z with H reflections and all laser
beams travel a total distance R within the cell is

Lλ(Z) := p(Z | λ) = λH exp (−λR) . (3)

The map posteriors are gamma-distributions [6]

bel(λ) = Gamma(λ;α, β) =
βα

Γ(α)
λα−1e−βλ, (4)

with the gamma function Γ(·), α = H + α0, β = R+ β0,
where α0 = 1 and β0 = 0 for an uninformed prior.

Please note that in their original formulation [1], [2], [3],
occupancy grid maps possess binary map values, such that
the map posterior for each voxel is a Bernoulli distribution,
represented by one real value p. As opposed to that, for the
two map representations introduced in this section, the map
values are already real numbers, such that the posterior for
each voxel is a continuous distribution.

Based on the parametrized posteriors, the aim of this paper
is to formalize a criterion that allows a breakpoint detection.
We are looking for a measure M such that the expected
breakpoint b∗ is

b∗ = argmin
b∈B

M
(

bel1:b−1,belb:n
)
, (5)

where B ⊂ N≤n is a set of potential breakpoints. Please note
that b∗ = 1 means that we detect that the environment did
not change. We ensure that 1 ∈ B, where bel1:0 = bel∅

is a prior distribution. To associate each of the collected
measurements to either bel1:b−1 or belb:n we have to preserve
their temporal order. However, the order between potential
breakpoints can be neglected to the benefit of reduced memory
usage, which is particularly relevant for |B| � n. This applies
for lidars that see a voxel multiple times within one scan
almost simultaneously, assuming that a breakpoint can only
occur between individual scans. Therefore, in our real-world
experiments IV-B, we define the potential breakpoints to lie
between individual scans. Depending on the concrete use case,
one can choose the potential breakpoints substantially more
sparsely. A service robot, for example, could check for break-
points every time it revisits a particular room. Accordingly,
it is sufficient to store the map generated during a particular
visit as a single measurement, instead of maintaining the entire
stream of laser scans. Please note that our approach explicitly
assumes instantaneous changes of map values. This is no loss
of generality, as one can choose the set of possible breakpoints
such that it fits the dynamics of the situation.

In principle, it is possible to apply our framework in an
online setting. Every time a new laser scan arrives, the map
posteriors are updated recursively and the values M in (5) have
to be recalculated. When a breakpoint is detected, all previous
measurements can be deleted.

Thus far, we assumed that each voxel contains either a
single breakpoint or no breakpoints at all. However, in many
applications the robot might face multiple changes within
individual voxels during its mission. Ideally, these breakpoints
manifest as local minima in the objective function M in (5).
The experiments in Section IV-A indicate that our method
can also deal with multiple breakpoints. However, it is subject
of future research to take these multiple breakpoints more
explicitly into account.

In the remainder of this section, we discuss three different
options for the measure M in (5).

A. Bayesian Information Criterion

A natural choice for M is the Bayesian Information Crite-
rion (BIC) [20]

BIC = ln (n) k − 2 ln(L), (6)

with the number of measurements n, the number of parameters
in the model k, and the maximized measurement likelihood
L. The first term penalizes over-fitting, while the second term
rewards the goodness of fit.

For b = 1, we assume that we only have one map value.
Then, the likelihood function for the reflection model is given
by (1) and the likelihood for the decay-rate model is given by
(3). These likelihoods both possess only a single parameter,
namely µ or λ, respectively. Thus, we set k = 1 in (6). If we
assume two posteriors – one conditioned on the measurements
before b and the other conditioned on the measurements after
– we have k = 3. The parameters are the breakpoint b and the
map values of both posteriors. For the reflection model, the
likelihood term can thus be calculated from (1) as

L = Lµ1:b−1

(
Z1:b−1)Lµb:n

(
Zb:n

)
,
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with the maximum likelihood parameters

µ1:b−1 = H1:b−1(H1:b−1 +M1:b−1)−1

and µb:n accordingly [6]. For the decay-rate model, the like-
lihood term can be calculated from (3) as

L = Lλ1:b−1

(
Z1:b−1)Lλb:n

(
Zb:n

)
,

with the maximum likelihood parameters

λ1:b−1 = H1:b−1(R1:b−1)−1

and λb:n accordingly [6].
Please note that the map posteriors are sufficient to calcu-

late (6). Thus, minimizing the BIC is a special case of (5).
If the minimum is attained at b = 1, the BIC-based method
implies that there is no change in the environment.

In the following, we introduce two measures that consider
the full map posteriors in contrast to the BIC, which only
accounts for the measurement likelihood given the most likely
map parameters,

B. Entropy-based approach

As a second option for M we introduce an entropy-based
approach. We assume that the entropy of a posterior distri-
bution with given parameterization generally decreases with
the number of measurements. This is implies that if the
incorporation of an additional set of measurements leads to
an increase of the entropy, this set must be generated from a
different random variable. Thus we are looking for the set of
most recent measurements that minimize the entropy

b∗ = argmin
b∈B

H
(

belb:n
)
. (7)

For the reflection model, the posterior belb:n is a Beta distri-
bution. Its entropy is

H [Beta(α, β)] = ln [B(α, β)] + (α+ β − 2)ψ(α+ β)

− (α− 1)ψ(α)− (β − 1)ψ(β)

with the digamma function ψ(·) and the beta function B(·, ·).
For the decay-rate model, the posterior belb:n is a Gamma
distribution with entropy

H [Gamma(α, β)] =α+ ln

(
Γ(α)

β

)
+ (1− α)ψ(α)

where Γ(·) is the gamma function.
Please note that in the case of binary occupancy grids,

the entropy of the posterior is minimal for the Bernoulli
parameters p = 0 or p = 1. Thus, the entropy-based approach
always maintains the latest stream of observations which
contains either only hits or only misses. As this will lead to
severe over-confidence, it is essential to leverage the posteriors
over real-valued maps.

C. Probabilistic approach

In addition to the BIC, which considers the most likely map
parameters, and the entropy-based approach, which accounts
for the full map posterior conditioned on the measurements
after a potential breakpoint, we now introduce a new measure,
which compares two map posteriors. Therefor, we analyt-
ically derive the probability density Pb that two posterior
distributions bel1:b−1 and belb:n are generated from the same
underlying random variable:

Pb :=

∫
m

∫
m′

bel1:b−1(m) belb:n(m′)δ(m−m′)dmdm′

=

∫
m

bel1:b−1(m) belb:n(m)dm. (8)

We assume that the probability for both distributions to
be generated by the same hidden variable is minimal at the
breakpoint. Thus

b∗ = argmin
b∈B

Pb

(
bel1:b−1,belb:n

)
. (9)

For the reflection model, the objective function reduces to

Pb =

∫ 1

0

Beta
(
µ;α1:b−1, β1:b−1)Beta

(
µ;αb:n, βb:n

)
dµ

=

∫ 1

0

µα
1:b−1−1(1− µ)β

1:b−1−1

B(α1:b−1, β1:b−1)

µα
b:n−1(1− µ)β

b:n−1

B(αb:n, βb:n)
dµ

=

∫ 1

0

µα
1:b−1+αb:n−2(1− µ)β

1:b−1+βb:n−2

B(α1:b−1, β1:b−1) B(αb:n, βb:n)
dµ

=

∫ 1

0

Beta(µ;α1:b−1 + αb:n − 1, β1:b−1 + βb:n − 1)dµ

· B(α1:b−1 + αb:n − 1, β1:b−1 + βb:n − 1)

B(α1:b−1, β1:b−1) B(αb:n, βb:n)

=
B(α1:b−1 + αb:n − 1, β1:b−1 + βb:n − 1)

B(α1:b−1, β1:b−1) B(αb:n, βb:n)
(10)

For the decay-rate model, we replace the beta distributions by
gamma distributions and integrate from zero to infinity. With
a similar derivation as in (10), we get

Pb =

(
β1:b−1

β1:b−1 + βb:n

)α1:b−1 (
βb:n

β1:b−1 + βb:n

)αb:n

· (β1:b−1 + βb:n)

(α1:b−1 + αb:n − 1) B(α1:b−1, αb:n)
(11)

Please note that Pb is a particular value of a probability
density function. To determine the value P1 from (8), one has
to define bel∅. In our experiments, we treat P1 as a fixed
parameter and determine it via cross-validation, as explained
in Section IV-A.

It is straightforward to apply the metric (8) to binary
occupancy maps where m ∈ {0, 1}. Here, the real value µ
is the occupancy probability and hence represents the full
posterior. Replacing the integral in (8) by a sum, yields

Pb = µ1:b−1µb:n +
(
1− µ1:b−1) (1− µb:n) . (12)

Here, Pb is a probability, as opposed to the probability density
function in the case of the real-valued maps. A natural choice
of the prior µ∅ = 0.5 results in P1 = 0.5.



LUFT et al.: DETECTING CHANGES 5

IV. EXPERIMENTS

To evaluate our method, we perform experiments in simu-
lation and with a real-world dataset. In the experiments, we
compare the following approaches
• TRUE: uses the true breakpoint.
• BIC: the Bayesian Information Criterion III-A.
• ENT: the entropy-based approach III-B.
• PRO: the probabilistic approach III-C.
• BIN: the probabilistic approach on binary maps (12).
• NDT: the NDT-based approach [16].
• BASE: the baseline that assumes a static environment

(b = 1).
Note that TRUE is the map generated from all mea-

surements after the true (typically unknown) breakpoint. We
compare our method against NDT as presented by Andrea-
son et al. [16]. It generates a reference model of the initial
environment represented by the Normal Distribution Transfor-
mation of the corresponding point cloud. For each point in
the subsequent laser scans, it computes the probability to be
different from this reference model.

A. Simulation experiments

We perform an experiment with randomly chosen ground
truth map values and simulated lidar observations as follows.
We consider an environment of N = 104 voxels. A robot visits
every voxel n times and collects the measurements H , M , and
R. We simulate these measurements according to randomly
generated ground truth map values µ and λ. For each cell, we
draw µ and Pref := 1− exp(−λ · l) with l = 1m from a uni-
form distribution over [0, 1].2 To simulate changes in the map,
these true map values change after a breakpoint b. For each
voxel, we draw b from a uniform distribution over {1, . . . , n}.
For each voxel, we estimate the breakpoint based on the
different approaches and use the stream of all measurements
from b on to generate the map posterior. We repeat the whole
experiment for n ∈ {5, 10, 20, 50, 100, 200, 500}. Figs. 2c
and 2d show the root mean squared error per voxel (RMSE)
between the maps estimated by the different approaches and
the true map. For the decay-rate maps, we compare Pref
instead of λ.

The algorithm produces a false positive if it detects a
breakpoint where the true map value remains the same. These
false positives are particularly adverse in static environments,
where a false breakpoint detection reduces the number of
measurements taken into account for mapping. The situation
most prone to false positives is when all map values are
constant. The results are shown in Figs. 2e and 2f. Note that
in this case the baseline approach coincides with the approach
based on the true breakpoint.

To illustrate our intuition that the proposed algorithm can
also handle multiple changes within one voxel, we run the
simulation again with multiple breakpoints per voxel. For each

2In case of the decay-rate model, the map values λ can vary from zero
to infinity. Therefore, we transform λ into the interval [0, 1] by the formula
Pref = 1−exp(−λ·l). Here, Pref can be interpreted as the probability that
a perpendicularly incident laser beam is reflected within a voxel with value
λ and edge length l.

voxel, we draw the number of breakpoints from a uniform
distribution over the integers one to five. The corresponding
results are shown in Figs. 2a and 2b.

Please note that the value P1, which we need for the proba-
bilistic approach, cannot be directly computed from (8). In the
experiments, we determine it via cross-validation. Therefor, we
run the whole simulation experiment including the changing
and the stationary scenario for different values of P1. We
choose the value of P1 that minimizes the total RMSE on
this training phase and conduct the evaluation in Fig. 2 on an
independent simulation.

For both measurement models and all approaches except for
the baseline, the error decreases with the number of collected
measurements. In the changing environment with the decay-
rate model, we observe that BIC and PRO perform better than
ENT. For the reflection model, this effect manifests only with
a growing number of measurements (n > 20). We attribute
this to the fact that the decay-rate model takes into account
the real valued distances of beams within a voxel in addition
to the integer hits and misses. Therefore, it contains more
information than the reflection model, which is particularly
relevant for small n. Independent of the measurement model,
the BIC performs poorly in the static environment, while
the entropy-based approach performs poorly in the changing
environment. The proposed probabilistic approach performs
well in all simulated situations. In particular, it produces very
few false positives and therefore shows a performance close
to the ground truth in the static environment.

B. Real-world experiments

To test our approach in the real world, we create a dataset in
a hall with a static Velodyne HDL-64E lidar sensor. We record
the scene 13 times with an average of 65 scans per run. In
between the scanning phases, we change the scene by adding
and removing objects. Two of the sequences include moving
people. Overall, we generate 169 scenarios by concatenating
every pair of sequences, including the combinations of each
sequence with itself to simulate static scenes. For each sce-
nario, we define the ground truth as the map generated from
the second sequence of observations. Fig. 1 shows a typical
scene of the overall dataset.

We search for breakpoints between each pair of laser scans.
For P1 in (8), we use the cross-validation values from the
simulation runs. We compute the RMSE per voxel between
the map generated from TRUE and the maps calculated from
the individual approaches. Since the majority of voxels does
not change, BASE has a low error. To demonstrate that the
individual approaches outperform the baseline-approach, we
conduct a one-tailed, paired-sample t-test. The p-values in
Tab. I correspond to the probability that the corresponding
algorithm produces a smaller error than the baseline approach.
The variances of the RMSE over the individual scenarios
are always three orders of magnitude smaller than the mean.
With the proposed method, all three measures significantly
outperform the baseline. For the decay-rate model, the entropy-
based approach performs best. Considering that large regions
of the environment remain static, the good performance of
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(a) Reflection model in a environment with multiple changes.
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(b) Decay-rate model in a environment with multiple changes.
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(c) Reflection model in a changing environment.
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(d) Decay-rate model in a changing environment.
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(e) Reflection model in a static environment.
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(f) Decay-rate model in a static environment.

Fig. 2: Mapping error (RMSE) in a simulated environment. The parameter n is the number of observations per voxel during
the mapping process. The error bars represent the variances over 10,000 voxels. Note that in the static scenario, the baseline
approach and the approach based on the true breakpoint coincide.
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Reflection model
l[cm] BIC ENT PRO BIN NDT BASE

10 0.42(100) 0.64(100) 0.45(100) 0.74(12.35) 1.17(0) 0.70
30 3.92(100) 4.35(100) 3.86(100) 3.91(100) 11.08(0) 4.55
50 9.44(100) 10.25(99.43) 9.94(99.95) 8.39(100) 28.91(0) 10.32

Decay-rate model
l[cm] BIC ENT PRO BIN NDT BASE

10 1.00(100) 0.87(100) 0.93(100) 1.33(63.55) 2.77(0) 1.35
30 6.53(99.99) 4.59(100) 5.52(100) 5.97(100) 15.40(0) 7.15
50 13.03(100) 7.75(100) 10.73(100) 11.65(99.97) 35.28(0) 14.16

TABLE I: RMSE per voxel of estimated map values for the different algorithms in the real-world experiments for different
voxel edge lengths. We show its mean in [10−4m] over the individual scenarios and omit the corresponding variances as they
are always at least three orders of magnitude smaller. In the brackets, we show the p-values of a paired sample t-test between
the corresponding algorithms and the baseline. The p-values are in percent and rounded within precision of 10−4.

ENT is in accordance with the simulation results. For the
reference model in NDT, we use all measurements before the
breakpoint. Since NDT only considers the end points of the
laser beams, it cannot detect the removal of objects. In our
datasets, it performs worse than the baseline approach as it
assumes that the spatial distribution of points within different
laser scans remains constant in a static scene. This does not
hold for our experiments, resulting in false positives.

V. CONCLUSION

We propose a method to detect changes in environments
represented by real-valued grid maps generated from lidar
measurements. Our approach uses different measures to score
each point in time according to the probability that it consti-
tutes a change in the environment. The score depends on the
two map posteriors: the one given all measurements before
this point in time and the one given all measurements after.
We compare three baseline approaches and three variants of
our method based on different measures in simulated and real-
world experiments. While our method always outperforms the
baseline in these experiments, we plan to investigate how
the proposed measures perform in different scenarios. One
advantage of our method is that it works on the basis of
voxels and does not require any semantic scene understanding.
However, in the future, we plan to relax the assumption of
independent voxels to detect changes on the level of whole
objects instead. As presented in this paper, the proposed
algorithm serves as method for mapping with known poses.
In the future, we plan to embed it into a SLAM framework.
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