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Abstract

This paper provides a fully decentralized algorithm for collaborative localization based on the extended Kalman filter.

The major challenge in decentralized collaborative localization is to track inter-robot dependencies, which is particularly

difficult when sustained synchronous communication between the robots cannot be guaranteed. Current approaches suf-

fer from the need for particular communication schemes, extensive bookkeeping of measurements, overly conservative

assumptions, or the restriction to specific measurement models. This paper introduces a localization algorithm that is able

to approximate the inter-robot correlations while fulfilling all of the following conditions: communication is limited to two

robots that obtain a relative measurement, the algorithm is recursive in the sense that it does not require storage of mea-

surements and each robot maintains only the latest estimate of its own pose, and it supports generic measurement models.

The fact that the proposed approach can handle these particularly difficult conditions ensures that it is applicable to a

wide range of multi-robot scenarios. We provide mathematical details on our approximation. Extensive experiments car-

ried out using real-world datasets demonstrate the improved performance of our method compared with several existing

approaches.
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1. Introduction

Localization is one of the most fundamental tasks for

mobile robots. For a team of multiple robots, a paradigm

called collaborative localization significantly improves the

localization performance of the individual teammates, see

Fox et al. (2000) and Roumeliotis and Bekey (2002).

In collaborative localization, robots detect each other

and communicate their pose estimates, which correlates the

estimates of their individual poses. It is of fundamental

importance to keep track of these dependencies to avoid the

problem of double-counting or data incest, which occurs

when two robots treat shared information as uncorrelated.

Double-counting puts the localization reliability at risk as it

leads to overly optimistic estimates.

Collaborative localization can be formulated as the task

of fusing information gathered from proprioceptive (e.g.,

wheel encoders) and exteroceptive sensors (e.g., cameras

or laser scanners) to calculate the posterior of the joint pose

of all involved robots. A popular solution to this problem

is the Bayes filter. However, it is impossible to imple-

ment the Bayes filter for arbitrary distributions of contin-

uous random variables as these distributions can possess

infinitely many dimensions. Therefore, researchers have

used approximations of the Bayes filter and related infor-

mation fusing techniques. Fox et al. (2000), Prorok et al.

(2012), and Howard et al. (2003) used particle filters,

Nerurkar et al. (2009) employed a maximum a posteriori

algorithm, and Howard et al. (2002) utilized a maximum-

likelihood algorithm.

In addition to the already-mentioned algorithms, another

popular approximation of the Bayes filter is the extended

Kalman filter (EKF), which we leverage in the proposed

approach. Under the assumption of Gaussian noise for

motions and measurements, applying the EKF to the joint

system state space containing the poses of all team mem-

bers yields the optimal estimator (apart from linearization

errors, see Martinelli and Siegwart (2005) and Huang et al.

(2011)).
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Fig. 1. A five robot localization problem in an indoor environment

according to the publicly available data set recorded by Leung

et al. (2011). The three robots on the left observe each other, while

the rightmost robot observes two landmarks. Accordingly, its error

ellipse is small. The fifth (blue) robot has a large error covariance

as it did not detect any landmarks, nor was it able to improve its

pose estimate with the help of pairwise observations in the most

recent steps.

The EKF naturally tracks inter-robot correlations in

terms of the off-diagonal blocks of the covariance matrix.

This prevents double-counting. The disadvantage lies in the

fact that it requires a central processing unit for updating the

joint filter. In addition, all robots need to instantaneously

send all their motion and measurement data to this unit

introducing a substantial communication overhead.

However, in many relevant multi-robot applications, for

example underwater, in mines, or in large-scale environ-

ments, communication might be energy consuming, error-

prone, slow, or simply not available at all times. Therefore,

decentralized architectures that reduce the need for commu-

nication to a minimum are desirable. Particularly appealing

are algorithms restricting exchange of information between

two robots to points in time where they actually meet.

Establishing the correct joint estimate in such a context

requires storage and bookkeeping of measurements, as in

Leung et al. (2010). If the memory needed to store mea-

surements is limited and the robots are only able to com-

municate at rare occasions, it is impossible to reproduce the

centralized EKF. In particular, the covariance matrix of the

joint system can only be approximated. Here, the double-

counting problem can occur if the off-diagonal terms of the

matrix are underestimated or neglected completely. Accord-

ingly, in such a situation the estimates of the poses cannot

be guaranteed to be consistent.

Our contribution is an EKF-based localization algorithm

that is able to approximate the covariance under the above-

mentioned constraints on communication and memory.

• Exchange of information takes place only between two

robots obtaining a relative measurement. Our approach

does not require communication with further team-

mates. The communication complexity1 is thus O (1)

per relative measurement.

• The algorithm is recursive in the sense that no mea-

surements have to be stored. For a team of N robots,

each robot only updates the belief about its own pose

and N − 1 matrices that carry information about the

correlations with the estimates of the teammates.

• In addition to relative observations, the algorithm also

supports absolute positioning of individual robots. It

furthermore allows for generic measurement models.

This paper is a revised and substantially extended ver-

sion of our previous conference publication Luft et al.

(2016). Compared with this prior publication, the present

paper introduces more comprehensive theoretical elabora-

tions. First, we prove that all introduced approximations

maintain well-behaved joint distributions of all two-robot

subsystems. Second, we show that the corresponding

approximation errors are explicitly bounded by the inter-

robot correlations. In addition, we introduce an alternative

update strategy (28) and present augmented experimental

evaluations including a paired sample t-test, an evalua-

tion of the ANEES (defined below) as additional metric,

and comparisons with two additional approaches: the new

update strategy (28) and the Schmidt–Kalman filter as intro-

duced by Schmidt (1966). While the former is decentral-

ized as the proposed approach, the latter relies on all-to-all

communication to avoid the approximation introduced in

Equation (26), which is essential for the proposed approach.

2. Related work

The problem of multi-robot localization has received con-

siderable attention in the past. Roumeliotis and Bekey

(2002) presented a distributed algorithm that is equivalent

to the joint EKF. In their approach, each robot processes its

own odometry and measurements are communicated to all

teammates. For a team of N robots, this results in commu-

nication complexity of O (N) per robot–robot perception.

In contrast, our approach is of communication complexity

O (1) and is applicable even if the exchange of informa-

tion is limited to robots performing a relative measure-

ment. Similar communication networks without centralized

entity are used in gossip protocols (see, e.g., Boyd et al.,

2006). As opposed to our method, all centralized-equivalent

approaches share the need for either a particular structure of

the communication graph, similarly to Bailey et al. (2011),

Kia et al. (2014), Martinelli (2007), and Wanasinghe et al.

(2015), or the storage of measurement. Examples for the lat-

ter are Leung et al. (2010) for localization and Leung et al.

(2012) for simultaneous localization and mapping (SLAM).

In the following, we concentrate on EKF-based collab-

orative localization algorithms that meet our assumptions:

namely, algorithms that are not dependent on the storage of

measurement information and rely only on pairwise com-

munication in the context of a relative measurement. There

are approaches in which the robots treat the poses of team-

mates as deterministic parameters and cross-correlations

are simply neglected, as in Panzieri et al. (2006). This

entails the risk of becoming over-confident, or forces the
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robots to follow certain motion patterns, as in Kurazume

et al. (1994).

A more elaborate approach is to treat incorporation of

relative measurements as fusion of estimates with unknown

correlations. To avoid over-confidence, covariance inter-

section (CI) or split covariance intersection (SCI) tech-

niques constitute a natural choice. Carrillo-Arce et al.

(2013) presented an approach based on CI, which treats

estimates as if they were maximally correlated. Li and

Nashashibi (2013) and Wanasinghe et al. (2014) presented

approaches based on SCI, which splits the covariances

into a dependent and an independent component. The

fusion of consistent estimates by CI or SCI provably pre-

serves consistency. However, as a price, they are in general

overly pessimistic. Moreover, in contrast to our approach,

the implementations as presented in the literature have to

assume perception systems capable of identifying the rel-

ative poses of neighboring robots. More precisely, they

require relative range and orientation measurements and

cannot be applied to systems that, for example, only pro-

vide relative range or bearing measurements. For details on

different measurement models, we refer the reader to the

work of Martinelli et al. (2005).

Karam et al. (2006) presented an approach based on state

exchange. It only allows independent states to be fused

and is thus not optimal. Moreover, it requires relative pose

detection. Unlike the already-mentioned approaches, the

interleaved update algorithm by Bahr et al. (2009) can han-

dle general measurement models. In this approach, each

vehicle of a team of N robots has to maintain and update

up to 2N estimates and covariances and has to keep track

of their dependencies with all the team members. Robot i

can only use those estimates of robot j that are not (directly

or indirectly via other robots) correlated to robot i. Com-

pared with this algorithm, our method has the advantage

that each robot has to maintain only one estimate and N

matrices (as opposed to 2N estimates and matrices). More-

over, our algorithm is recursive in the sense that only the

most recent estimates are used, which separates it from the

approaches of Bahr et al. (2009) and Karam et al. (2006).

In addition to the mentioned recursive localization meth-

ods related to the paper at hand, there is a lot of work

on multi-robot localization and SLAM, which estimate the

whole trajectories. As examples, see the works of Walls

and Eustice (2013), Cunningham et al. (2012), Cunning-

ham et al. (2013), Indelman et al. (2012), and Choud-

hary et al. (2016). A popular approach to optimize robot

poses and landmark positions uses factor graphs. These

graphs maintain measurement information over the whole

robot trajectories, such that the latter can be optimized.

To avoid double-counting, Cunningham et al. (2012) main-

tained for each robot a map derived from its local mea-

surements and a map merged from neighboring robot’s

measurements. The authors proposed a method to solve

the data association between landmarks observed from dif-

ferent robots. To avoid the overly conservative separation

between local and neighborhood map, Cunningham et al.

(2013) extended this work by introducing so-called anti-

factors as a tool to avoid double-counting. Indelman et al.

(2012) introduce another approach to multi-robot localiza-

tion, where the cross-correlations can be calculated explic-

itly from the graph of all previous measurement updates.

These graph-based methods have the advantage that they

optimize over the full robot trajectories given the history

of measurements. As a drawback they have to store these

measurements, as opposed to our recursive method.

3. The proposed approach

In a team of N robots, let Xi for i ∈ {1, . . . , N} be the pose

of robot i in a common fixed reference frame. Throughout

this paper, we consider the problem of localizing N vehicles

navigating on a plane, although our approach is not limited

to this case. Under this assumption, a robot pose is a triple

Xi = [xi, yi, θi]
T with Cartesian coordinates [xi, yi] and ori-

entation θi. The number N can change over time and does

not need to be known to the robots beforehand. Each robot

is provided with an estimate X̂ t
i of its own pose and the cor-

responding covariance matrix 6t
ii at each time step t. We call

belti = {X̂ t
i , 6t

ii} the belief of robot i at time t. The belief of

the joint system is

Belt = {X̂ t, 6t} (1)

with X̂ t = [X̂ t
1; . . . ; X̂ t

N ] and 6t =
[
6t

ij

]
1≤i,j≤N

.

At the beginning of their mission the robots might be

uncorrelated, which means 6t
ij = 0 for all i 6= j, and

the individual beliefs are sufficient to represent Belt. When

robot i detects robot j at time t, we have in general 6t+1
ij 6= 0.

Inspired by Roumeliotis and Bekey (2002), we decompose

6t+1
ij = σ t+1

ij

(
σ t+1

ji

)T

where we can choose any possible decomposition. In Algo-

rithm 3 given below, for example, we set σ t+1
ij = 6t+1

ij and

σ t+1
ji = I. In the following, robots i and j independently

update σ t+1
ij and σ t+1

ji , respectively. We present the details

in Sections 3.1 to 3.3.

We assume the belief (1) to be distributed among the

team such that each robot i carries belti and {σ t
ij}j∈{1,...,N}\{i}.

During their mission, the robots perform the following.

• Motion (Algorithm 1): Each robot has access to a

control u, which is a velocity command or odometry

information. We allow for generic motion models.

• Private measurements (Algorithm 2): Any of the

robots might or might not perform measurements with

output z that are not shared with the group, e.g., detec-

tion of known landmarks or GPS. The algorithm allows

for a heterogeneous robot team and generic measure-

ment models. In our experiments, the robots conduct

range and bearing measurements to a set of previously

known, distinguishable landmarks.
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Algorithm 1 Motion Update for Robot i

1: Input: X̂ t
i , 6t

ii, {σ t
ij}j∈{1,...,N}\{i}, u

2: Output: X̂ t+1
i , 6t+1

ii , {σ t+1
ij }j∈{1,...,N}\{i}

3: G = ∂g(X ,u)

∂X
( X̂ t

i , u) F motion model g is known

4: X̂ t+1
i = g

(
X̂ t

i , u
)

5: 6t+1
ii = G 6t

ii GT + R F noise covariance R is known

6: for 1 ≤ j ≤ N , j 6= i do

7: σ t+1
ij = G σ t

ij

8: end for

Algorithm 2 Private Measurement Update for Robot i

1: Input: X̂ t
i , 6t

ii, {σ t
ij}j∈{1,...,N}\{i}, z

2: Output: X̂ t+1
i , 6t+1

ii , {σ t+1
ij }j∈{1,...,N}\{i}

3: H = ∂h(X )

∂X
( X̂ t

i ) F measurement model h is known

4: Ki = 6t
iiH

T
(
H6t

iiH
T + Q

)−1 F noise covariance

Q is known

5: X̂ t+1
i = X̂ t

i + Ki

[
z− h( X̂ t

i )
]

6: 6t+1
ii = (I− KiH) 6t

ii

7: for 1 ≤ j ≤ N , j 6= i do

8: σ t+1
ij = (I− KiH) σ t

ij

9: end for

• Relative measurements (Algorithm 3): Any of the

robots might or might not perform measurements with

output r that includes itself and a teammate and depends

on the two robot’s current poses only. Again, we allow

for varying and generic detection models. In particular,

we do not demand access to relative poses.

• Communication: Whenever a relative measurement

takes place, the two involved robots communicate. This

is the only occasion where communication takes place.

When robot i detects robot j, both share their individual

beliefs beli, belj and the terms σij, σji. We do not require

communication with further teammates. This assumes

that robot i knows that he detects robot j.

Algorithms 1–3 provide an overview of how the robots per-

form the corresponding updates. We derive the underlying

update schemes in Sections 3.1–3.3.

3.1. Motion update

We assume the motion of different robots to be independent

and corrupted by Gaussian noise νu

X t+1
i = g

(
X t

i , u+ νu

)

with differentiable motion model g, where u can either be a

velocity command or an odometry measurement. If robot i

performs a motion, the correct prediction step for the joint

Algorithm 3 Relative Measurement Update for Robot i

1: Input: X̂ t
i , 6t

ii, {σ t
ij}j∈{1,...,N}\{i}, r

2: Output: X̂ t+1
i , 6t+1

ii , {σ t+1
ij }j∈{1,...,N}\{i}

// robot i detects robot j

3: if robot i conducts relative measurement r to robot j

then

4: receive from robot j: X̂ t
j , 6t

jj, σ t
ji

5: 6t
ij = σ t

ij

(
σ t

ji

)T

6: 6t
aa =

[
6t

ii(
6t

ij

)T
6t

ij

6t
jj

]

7: Fa =
[

∂f (Xi,Xj)

∂Xi
( X̂ t

i , X̂ t
j ) ,

∂f (Xi,Xj)

∂Xj
( X̂ t

i , X̂ t
j )

]

8: Ka = 6t
aaFT

a ( Fa6
t
aaFT

a + Q)−1 F Q is known

9:

[
X̂ t+1

i

X̂ t+1
j

]
=

[
X̂ t

i

X̂ t
j

]
+ Ka

[
r − f ( X̂ t

i , X̂ t
j )

]

10:

[
6t+1

ii

6t+1
ji

6t+1
ij

6t+1
jj

]
= (I− KaF) 6t

aa

11: send to robot j: X̂ t+1
j , 6t+1

jj

12: σ t+1
ij = 6t+1

ij

13: for 1 ≤ k ≤ N , k /∈ {i, j} do

14: σ t+1
ik = 6t+1

ii

(
6t

ii

)−1
σ t

ik

15: end for

16: end if

// robot i is detected by robot j

17: if robot i is detected by robot j then

18: send to Robot j: X̂ t
i , 6t

ii, σ t
ij

19: receive from robot j: X̂ t+1
i , 6t+1

ii

20: σ t+1
ij = I

21: for 1 ≤ k ≤ N , k /∈ {i, j} do

22: σ t+1
ik ← 6t+1

ii

(
6t

ii

)−1
σ t

ik

23: end for

24: end if

system can be derived from the standard EKF and is given

by

X̂ t+1
i = g

(
X̂ t

i , u
)

(2)

6t+1
ii = G6t

iiG
T + R (3)

6t+1
ij = G6t

ij (4)

X̂ t+1
j = X̂ t

j (5)

6t+1
jj = 6t

jj (6)

for all j 6= i with linearization G = ∂g(X ,u)

∂X
( X̂ t

i , u) and

positive-definite noise covariance R. These equations cor-

respond to (24) in Roumeliotis and Bekey (2002). In the

case of odometry measurements with noise distributed as

νu ∼ N ( 0; M), for example, we have R = VMV T, with
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V = ∂g(X ,u)

∂u
( X̂ t

i , u). The crucial insight here, as already

pointed out in Roumeliotis and Bekey (2002), is that robot i

can correctly update the cross-correlations to all teammates

by updating

σ t+1
ij = Gσ t

ij

The reason is that in case the robots i and j meet, they can

reproduce their cross-correlation by the matrix multiplica-

tion

σ t+1
ij

(
σ t+1

ji

)T

= Gσ t
ij

(
σ t

ji

)T

= 6t+1
ij

Please note that G and R are not constant. The important

fact is that robot i can access these quantities. Algorithm 1

is the realization of the exact update equations (2)–(6).

3.2. Private measurement update

We define a private measurement to be a function of the

observing robot’s pose, corrupted by Gaussian noise

z = h
(
X t

i

)
+ νp

with νp ∼ N ( 0, Q), positive-definite noise covariance Q,

and differentiable measurement model h. Thus, the mea-

surement probability is conditionally independent of all

other variables given the observing robot’s current pose.

In our experiments, the robots perform range and bearing

measurements to a set of known distinguishable landmarks.

In the case of a range measurement to a landmark with

position P, e.g. we have

h
(
X t

i

)
= ‖[xt

i, yt
i]

T − P‖2

with the Euclidean norm ‖·‖2.

In the following, we derive the equations used in our

approach for the private measurement update. The deriva-

tions prove that this component of our method is identi-

cal to the Schmidt–Kalman filter as introduced by Schmidt

(1966). Assume robot i receives a private measurement and

j ∈ {1, . . . , N} \ {i} indicate a remaining robot. Then, as we

show in Appendix A, the exact correction step for the joint

system is

X̂ t+1
i = X̂ t

i + Ki

[
z− h( X̂ t

i )
]

(7)

6t+1
ii = (I− KiH) 6t

ii (8)

6t+1
ij = (I− KiH) 6t

ij (9)

X̂ t+1
j = X̂ t

j + Kj

[
z− h( X̂ t

i )
]

(10)

6t+1
jj = 6t

jj − KjH6t
ij (11)

with the linearization H = ∂h(X )

∂X
( X̂ t

i ) and the blocks

Ki = 6t
iiH

TS−1

Kj = 6t
jiH

TS−1

of the Kalman gain with the invertible residual covariance

S = H6t
iiH

T + Q. We can execute the correction updates

(7)–(9) without communication because all necessary terms

are known to robot i.

The cross-correlation update (9) is realized by the matrix

multiplication

σ t+1
ij = (I− KiH) σ t

ij

similar to the prediction step in Section 3.1.

To avoid communication, we approximate updates (10)

and (11) to leave the corresponding beliefs unchanged, i.e.

X̂ t+1
j ≈ X̃ t+1

j := X̂ t
j (12)

6t+1
jj ≈ 6̃t+1

jj := 6t
jj (13)

In summary, we arrive at a set of equations equivalent to the

Schmidt-Kalman filter, see Schmidt (1966).2 Algorithm 2

is the realization of the update equations (7)–(9), (12),

and (13).

In expectation, this approximation is consistent with

respect to the joint system. This is due to the following

two observations: given the correct belief Belt, we have

the expectation Ez

(
X̂ t+1

j

)
= X̂ t

j ; the difference of the

approximated 6̃t+1 and the exact covariance 6t+1 is a

positive-semidefinite matrix, i.e.,

6̃t+1 −6t+1 =
(

0

0

0

6t
jiH

TS−1H6t
ij

)
� 0

3.3. Relative measurements

We define a relative measurement r, most generally, as a

noisy observation depending on the state of two robots, i.e.,

r = f
(

X t
i , X t

j

)
+ νr

with differentiable measurement model f . To meet the con-

ditions for applying the EKF, we assume the noise term to

be normally distributed νr ∼ N ( 0; Q). Thus, the measure-

ment probability is conditionally independent of all other

variables given the two observing robot’s current poses.

For ease of notation we use the same noise covariance as

for the private measurement model. Obviously, we can also

model the relative measurement with a different covariance

matrix. In our experiments, the robots perform range and

bearing measurements to each other. In the case of a range

measurement between robots i and j, for example, we have

f
(

X t
i , X t

j

)
= ‖[xt

j, yt
j]

T − [xt
i, yt

i]
T‖2

We emphasize again that we neither require the rela-

tive measurement to be a function of pose differences of

two robots f
(

X t
i , X t

j

)
= f

(
X t

i − X t
j

)
nor do we assume

that the relative measurement provides the observing robot
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with an estimate of the observed robot’s pose. Both are

special cases of our general model. In particular, we can

handle the practically relevant case of range and/or bearing

measurements.

Assume that a robot obtains a relative measurement,

without loss of generality, i observes j. Define now a = {i, j}
and let b = {1, . . . , N} \ {i, j} be the indices of the N − 2

robots that do not participate at the relative measurement.

The exact correction step for the joint system can be written

as

X̂ t+1
a = X̂ t

a + Ka

[
r − f ( X̂ t

a)
]

(14)

6t+1
aa =( I− KaFa) 6t

aa (15)

6t+1
ab =( I− KaFa) 6t

ab

(15)= 6t+1
aa

(
6t

aa

)−1

︸ ︷︷ ︸
=:A

6t
ab (16)

with

Fa =
[
∂f ( Xi, Xj)

∂Xi

( X̂ t
i , X̂ t

j ) ,
∂f ( Xi, Xj)

∂Xj

( X̂ t
i , X̂ t

j )

]

=:
[
Fi, Fj

]

Ka =
[

6t
iiF

T
i +6t

ijF
T
j

6t
jjF

T
j +6t

jiF
T
i

] (
Fa6

t
aaFT

a + Q
)−1

=:

[
Ki

Kj

]

and f ( X̂ t
a)= f ( X̂ t

i , X̂ t
j ). We present the derivation in

Appendix A. The update equations (14)–(16) generalize

the update equations by Roumeliotis and Bekey (2002) to

arbitrary measurement models. In more explicit form, these

equations read

X̂ t+1
i = X̂ t

i + Ki

[
r − f ( X̂ t

i , X̂ t
j )

]
(17)

6t+1
ii =( I− KiFi) 6t

ii − KiFj6
t
ji (18)

6t+1
ij =( I− KiFi) 6t

ij − KiFj6
t
jj (19)

6t+1
ik =( I− KiFi) 6t

ik − KiFj6
t
jk (20)

and, equivalently, if we exchange i and j (and keep the

arguments in f ).

As argued in Section 3.2, we approximate

X̂ t+1
b ≈ X̂ t

b (21)

6t+1
bb ≈ 6t

bb (22)

and arrive at update equations equivalent to the Schmidt–

Kalman filter. Communication between robot i and robot j

is allowed at the time of the relative measurement and they

share the measurement r and their beliefs belti and beltj. In

addition, they reproduce their correlation 6t
ij = σ t

ij

(
σ t

ji

)T

by sharing the two terms on the right-hand side. Thus, they

have access to all elements of 6t
aa and can exactly update

their beliefs with (14) and (15). The new, exactly calculated

cross-correlation is decomposed into 6t+1
ij = σ t+1

ij

(
σ t+1

ji

)T

and distributed among the two participating robots. In Algo-

rithm 3, we choose the decomposition σ t+1
ij = 6t+1

ij and

σ t+1
ji = I.

The only terms we have not taken care of yet are the cor-

relations between participating and non-participating robots

6t+1
ab . In more explicit form, the exact update (16) reads

[
6t+1

ik

6t+1
jk

]
=

[
I− KiFi

−KjFi

−KiFj

I− KjFj

]

︸ ︷︷ ︸
=A

[
6t

ik

6t
jk

]
(23)

for all k ∈ {1, . . . , N} \ {i, j}. In contrast to Roumeliotis

and Bekey (2002), we do not rely on communication with

other teammates. The problem in this case is that, unlike (9)

for private measurements, the update cannot be written as a

simple matrix multiplication of the form 6t+1
ik = M 6t

ik . In

particular, we cannot reproduce the terms 6t
ik = σ t

ik( σ t
ki)

T

and 6t
jk = σ t

jk( σ t
kj)

T that are necessary for the correct

update. The reason is that we do not rely on communica-

tion with robot k, which carries the terms σ t
ki and σ t

kj. To

arrive at the general form of approximations that maintain

the decentralized structure, we have to use a block-diagonal

approximation of A.

A naive approximation of A and thus of (16), or equiv-

alently (23), can be achieved by simply neglecting the

off-diagonal blocks of A, which leads to

6t+1
ik =( I− KiFi) 6t

ik − KiFj6
t
jk

≈( I− KiFi) 6t
ik (24)

This approximation is exact if the robots j and k are

uncorrelated, i.e., 6t
jk = 0.

However, in our experiments, approximation (24) yields

unsatisfying results. Thus, we need a more reasoned

approximation that also covers the case that the robots j and

k are correlated before the relative measurement. The key

problem here is to find a relation between the two unavail-

able terms 6t
ik and 6t

jk , that leads to a reasoned block-

diagonal approximation A. In the following, we introduce

the corresponding approximation and present an informal

derivation. In Section 3.4, we present theoretical details.

The main idea is that we obtain the relation

6t
jk ≈ 6t

ji

(
6t

ii

)−1
6t

ik (25)

if robot i is strongly correlated to at least one of the other

robots (j and/or k) before the relative measurement. We for-

malize and prove this in Section 3.4. We insert this into (23)

and obtain

6t+1
ik

(25)
≈ ( I− KiFi) 6t

ik − KiFj6
t
ji

(
6t

ii

)−1
6t

ik

(18)= 6t+1
ii

(
6t

ii

)−1
6t

ik

=: 6̃t+1
ik (26)
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This leads to one of the key contributions of this paper,

namely the more reasoned approximation

A ≈ Ã :=


6t+1

ii

(
6t

ii

)−1
0

0 6t+1
jj

(
6t

jj

)−1


 (27)

Before we present our theoretical results on the approxima-

tion (27), we sum up the update procedure for the relative

measurement. The proposed approach uses the exact update

equations (14) and (15) for the subsystem of the two robots

involved in the relative measurement; it leaves the subsys-

tem of the robots that are not involved unchanged according

to (21) and (22); and it uses the approximation (26) for

the cross-correlations between involved and non-involved

robots. This procedure is summarized in Algorithm 3.

Please note that multiplying Ã in (27) by a scalar factor λ,

or equivalently modifying (26) to

6t+1
ik ≈ λ 6t+1

ii

(
6t

ii

)−1
6t

ik (28)

results in an alternative update strategy which can be imple-

mented in the same decentralized structure as the proposed

algorithm. In particular, setting λ = 0 means that each

robot only maintains the cross-correlation to the teammate

it encountered most recently, which is useful for memory

restricted systems with a large number of robots.

The updates (26) or (28) require the existence of
(
6t

ii

)−1

for all t. The standard EKF with finite measurement noise

always maintains a positive-definite covariance matrix. In

that case, the inverse exists. For the proposed approximation

of the EKF, the following proposition ensures the existence

of
(
6t

ii

)−1
.

Proposition 1. For a matrix 6t where all two-robot sub-

matrices are positive-definite, the proposed approximate

update according to Algorithm 3 maintains the positive-

definiteness off all two-robot submatrices. The same also

holds true if we use (28) with |λ| ≤ 1 instead of (26).

Proof. See Appendix B.

Starting with a positive-definite covariance matrix,

repeated application of Proposition 1 ensures that
(
6t

ii

)−1

exists for all t. Note that beyond (26) and (28), all approx-

imations used in the proposed approach also maintain

the positive-definiteness as they can be derived from the

Schmidt–Kalman filter.

Please note that there are instances where every approxi-

mation which relies on a multiplicative update, as (24), (26),

and (28) do, underestimates the cross-correlations. Assume,

for example, 6t
ik = 0 and 6t

jk 6= 0, before the relative mea-

surement. Then, (23) implies in general 6t+1
ik 6= 0 after the

relative measurement. However, with any block-diagonal

approximation of A, it remains 6t+1
ik = 0. However, our

experiments indicate, that (26) does not only outperform

(24) and (28) for λ 6= 1, but also leads to good over-

all localization performance in practice. Moreover, at each

time step in the experiments, the positive-definiteness of the

joint covariance matrix is preserved.

3.4. Error bounds

The goal of this section is twofold. First, we introduce

Lemma 1 which relates the correlations between three

jointly distributed random variables. This lemma directly

quantifies the error of the approximation in (25). Second,

we introduce Corollary 1 to compute an upper bound on the

error introduced by the proposed approximation (26) as a

function of the correlations between the robots.

If not defined otherwise, ‖A‖ denotes the spectral norm

for a matrix A, i.e.,

‖A‖ :=
√

λmax

(
ATA

)
(29)

where λmax( ATA) denotes the maximal eigenvalue of ATA.

First, we formalize and derive the relation introduced

in (25). Therefore, we need the following definition and

lemma.

Definition 1. For two d-dimensional, jointly distributed

random variables Xi and Xj with the ( 2d×2d)-dimensional

covariance matrix of the joint system

6 =
(

6ii

6ji

6ij

6jj

)

we define Xi and Xj to be ε-correlated, if the following

relation for the Schur complement of 6jj in 6 is valid:

‖6ii −6ij6
−1
jj 6ji‖ = ε

In other words, for ε-correlated variables, ε is the spectral

norm of the covariance of Xi conditioned on Xj. Please note

that 0 ≤ ε, with equality for maximally correlated variables,

and ε ≤ ‖6ii‖, with equality for uncorrelated variables. The

latter inequality is due to the fact that 6ii, 6ij6
−1
jj 6ji, and

6ii −6ij6
−1
jj 6ji are positive-semidefinite.

Lemma 1. Assume three jointly distributed d-dimensional

random variables {Xl}l∈{i,j,k} with the positive-definite ( 3d×
3d)-dimensional covariance matrix




6ii

6ji

6ki

6ij

6jj

6kj

6ik

6jk

6kk




Further, assume that Xj and Xi are εji-correlated and Xk and

Xi are εki-correlated. Then, we have

‖6jk −6ji (6ii)
−1 6ik‖ ≤

√
εjiεki

Proof. See Appendix C.

With the assumption of a positive-definite covariance

matrix, this lemma directly implies that approximation (25)

and, thus, (26) are exact for sufficiently strongly correlated

robots, i.e., sufficiently small εji and εki. More explicitly, for

the error introduced by (26), Lemma 1 implies the following

corollary.
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Corollary 1. With the assumption that {Xl}l∈{i,j,k} are jointly

distributed with a positive-definite covariance matrix, and

the random variables Xj and Xi are εji-correlated and

Xk and Xi are εki-correlated, the following bound for the

approximation error introduced by (26) is valid

‖6t+1
ik − 6̃t+1

ik ‖ ≤ ‖KiFj‖
√

εjiεki

Proof. See Section 5.1

In the following, we demonstrate that with the assump-

tion of a positive-definite covariance matrix, Corollary 1

provides error bounds for all possible combinations of

inter-robot correlations which can be taken care of by a

multiplicative cross-correlation update. Assuming that two

robots can either be uncorrelated or correlated, there are

2N possible combinations of correlations before the mea-

surement. Without loss of generality, we look at N = 3.

Corollary 1 provides error bounds for the cases that j and

i or k and i are correlated.3 This covers six of the eight

cases. If all robots are uncorrelated, it is trivial to see that

the proposed approximation is exact. The remaining com-

bination is that only j and k are correlated. In this case, any

multiplicative update yields the same error

‖6t+1
ik − 6̃t+1

ik ‖ ≤ ‖KiFj‖‖6t
jk‖

as can be seen by plugging 6t
ik = 6t

ij = 0 into the proof of

Corollary 1 in Section 5.1.

4. Experiments with real-world data

We test our approach on the publicly available utias

multi-robot cooperative localization and mapping dataset,

recorded by Leung et al. (2011). A fleet of five (two-wheel

differential drive) robots obtain range and bearing measure-

ments with known correspondences to each other and up to

15 distinguishable landmarks. The dataset includes odom-

etry and measurements together with pose ground truth.

The duration is over 4.7 hours, spread over nine differ-

ent runs with different trajectories ranging from 15 to 70

minutes. In the ninth run, the environment contains some

barriers to reduce the number of measurements, as depicted

in Figure 1. We let the robots perform localization based

on eight different strategies (listed below), using dead reck-

oning and the relative measurements. In addition, we allow

one of the robots to process its landmark measurements.

To increase the amount of data fivefold, we consecutively

allow each of the robots (one at a time) to use the land-

mark measurements. This provides us with over 23.6 hours

of (not entirely independent) data. Then, we drop all rel-

ative bearing measurements, which leaves the robots with

relative range only measurements. This serves to demon-

strate that our approach can deal with generic measurement

models. Then we replace all relative measurements by sim-

ulated relative pose measurements, consisting of the pose

of the observed robot in the observing robot’s reference

frame. This experiment allows us to compare against CI

Table 1. Overview of how often the different algorithms have

to be run per robot in the different scenarios. The values in

parentheses are the rates as a percentage.

Algorithm 1 Algorithm 2 Algorithm 3

1 320,656 (90.43) 27,470 (7.75) 6,477 (1.83)

2 424,754 (90.13) 37,330 (7.92) 9,169 (1.95)

3 339,503 (88.98) 35,125 (9.21) 6,940 (1.82)

4 282,464 (87.75) 32,542 (10.11) 6,873 (2.14)

5 531,936 (91.78) 36,450 (6.29) 11,183 (1.93)

6 193,086 (90.88) 15,374 (7.24) 4,003 (1.88)

7 189,383 (90.33) 16,057 (7.66) 4,225 (2.02)

8 841,204 (89.95) 75,584 (8.08) 18,355 (1.96)

9 462,895 (91.47) 36,516 (7.22) 6,641 (1.31)

sum 3,585,881 (90.27) 312,448 (7.87) 73,866 (1.86)

(Carrillo-Arce et al., 2013), which relies on relative mea-

surements providing the observing robot with an estimate

of the observed robot’s pose. Table 1 gives an overview on

the number of velocity commands, private measurements,

and relative measurements per robot in each scenario. The

values in parentheses are the rates as a percentage.

We compare the following EKF-based approaches.

• Collaborative localization using the centralized joint

EKF, e.g., the approach of Roumeliotis and Bekey

(2002) (ground truth).

• Schmidt–Kalman filter (SK): identical to our proposed

approach with the difference, that SK uses the exact

update (16) instead of the decentralized approximation

(26), see Schmidt (1966).

• Our approach (DCL): We use (26).

• Our approach with a scaling factor λ for the cross cor-

relations (D[λ]): We use (28) with different values for λ

instead of (26).

• Total naive collaborative localization (NCL): cross-

correlations are neglected.

• Naive version of our approach (NDCL): we use approx-

imation (24) instead of (26).

• Single Robot Localization (SL): robots can detect land-

marks but no other robots.

• CI: information to be fused is assumed to be maximally

correlated, see Carrillo-Arce et al. (2013).

Note that to realize the centralized equivalent approach

(EKF), each measurement demands for N − 1 = 4 edges in

the communication graph. In contrast, our approach (DCL)

requires only one edge for each relative measurement and

no communication at all for private measurements. The

Schmidt–Kalman filter (SK) needs N − 1 = 4 edges for

each relative measurement and no communication for pri-

vate measurements. The datasets include a total number of

nrel = 73,866 relative measurements and npriv ≈ 62,490

private measurements on average for one of the robots per-

forming landmark measurements. Thus, EKF needs ( N −
1) ( nrel + npriv) /( nrel)≈ 7.38 times more edges, and SK

needs four times more edges than our approach.
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4.1. Accuracy analysis

As a measure for the accuracy of an estimator, we calcu-

late the distance between the system’s true and estimated

position and average it over all time steps

D := 1

T

T∑

t=1

∥∥∥X t − X̂ t
∥∥∥

2

where T is the absolute number of evaluated time steps.

As a measure for consistency, we choose the average

normalized estimation error squared

ANEES := 1

T

T∑

t=1

( X t − X̂ t)T
(
6t

)−1
( X t − X̂ t)

For the quantitative evaluations in Tables 2 and 3, we nor-

malize both metrics D and ANEES by the corresponding

values of the exact EKF. When normalized accordingly, we

refer to these metrics as D and ANEES. This choice is jus-

tified by the following observation. Owing to linearization

errors, approximate measurement and motion models, and

randomness in the system, even EKF sometimes produces

incorrect estimates. In these cases it is unlikely (though pos-

sible) that any approximation of EKF yields better results.

This is illustrated in Figure 2, where we do not normalize

the metrics to demonstrate the relation between the different

approaches and the EKF. This figure shows D and ANEES

in the second run, where the relative measurements consist

of range information only. In the time between seconds 400

to 500, all algorithms (including the correct EKF) encounter

problems. For the rest, our approach (DCL) yields localiza-

tion with D below around 60 cm (mostly below 30 cm).

After around 1,200 seconds, EKF yields bad localization

results, while our algorithm remains stable. This is due to a

robot processing landmark measurements with wrong asso-

ciations. In EKF the robot instantaneously communicates

these measurements which corrupts all other robots’ esti-

mates. In this particular example, DCL outperforms EKF

due to its decentralized structure by not communicating the

faulty measurement information.4 The rest of the time, it

performs almost identically well as EKF. Using single robot

localization (SL), the error diverges due to the fact that

only a subset of robots detect landmarks. At first, the naive

approach (NCL) keeps up with DCL. However, due to over-

confidence its localization performance starts to deteriorate

after around 1,200 seconds.

Table 2 shows the D for each of the approximate algo-

rithms in the nine scenarios, normalized to the correspond-

ing value of the exact EKF. For each scenario, we perform

five runs where each time another robot processes private

measurements. For each run, the result of the best decen-

tralized algorithm is in bold print. Please note that the

Schmidt–Kalman filter (SK) is not fully decentralized but

depends on all-to-all communication for each relative mea-

surement. The mean is taken over all 45 runs weighted

Fig. 2. Mean error D and ANEES in the second run. With our

approach (DCL), the error remains below 50 cm throughout the

whole experiment. Using single robot localization (SL), the error

diverges due to the fact that only a subset of robots detect land-

marks. At first, the naive approach (NCL) keeps up with DCL.

However, due to overconfidence its localization performance starts

to deteriorate after around 1,200 seconds.

with the respective duration. We perform a one-tailed,

paired-sample t-test. The resulting p-value is the probabil-

ity that the corresponding algorithm is outperformed by

the proposed DCL. With a p-value above 90%, the pro-

posed approach outperforms the alternative update strategy

NDCL. The latter also performs well in most of the runs

but completely fails in some runs. Note that for NDCL, the

p-value cannot be interpreted as a probability because

NDCL violates a condition to apply the t-test: results have

to be normally distributed. We attribute the outliers in

NDCL to the fact that there is no result like Proposition 1

for NDCL. With probability near to one, the proposed

approach outperforms all other decentralized algorithms.

On an average, its error is 12% higher than the error of the

exact EKF and 3% higher than the error of SK, although

the latter two algorithms need four (respectively, nearly five)

times more communication links.

We repeat each run five times with the initial estimate

chosen randomly from a Gaussian with mean at the true

pose to obtain 225 runs. We erase all relative bearing

measurements to obtain another 225 runs with range-only

relative measurements. We generate another 225 runs by

replacing all relative measurements by simulated relative

pose measurements. Table 3 shows the mean D and ANEES

over all 225 runs (weighted by the duration) for the different

measurement types and algorithms. Lower values of D indi-

cate better localization accuracy. Values of ANEES greater

(smaller) than one indicate that the filter is less (more)

conservative than the exact EKF.

To illustrate the influence of the communication fre-

quency on the estimate, we repeat the whole experi-

ment multiple times, such that each robot only processes
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Table 2. Mean error D on real-world data with range and bearing measurements, normalized by the corresponding values of the exact

EKF. For each run, the best value is in bolt, where SK is not considered as it is not fully decentralized.

Scenario SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL

1.03 1.12 1.39 1.49 1.54 1.57 1.60 1.19 17.34

1.12 1.14 1.23 1.27 1.29 1.31 1.37 1.13 22.61

1 0.99 1.04 1.20 1.26 1.29 1.31 1.30 1.13 16.99

1.07 1.12 1.34 1.39 1.43 1.46 1.66 1.20 20.54

0.86 0.86 0.87 0.85 0.84 0.83 0.85 74.46 9.59

1.11 1.17 1.34 1.42 1.45 1.47 1.47 1.19 17.25

1.11 1.11 1.22 1.28 1.32 1.36 1.43 1.14 20.74

2 1.04 1.05 1.09 1.12 1.14 1.16 1.21 1.09 18.03

1.24 1.28 1.30 1.34 1.36 1.38 1.38 1.38 13.79

1.04 1.05 1.13 1.16 1.18 1.19 1.31 1.23 23.55

0.96 0.97 1.27 1.44 1.55 1.62 1.99 71.41 21.98

1.04 1.05 1.20 1.30 1.35 1.39 1.70 1.05 17.63

3 1.00 0.99 1.06 1.11 1.15 1.17 1.49 1.00 11.37

0.65 1.02 0.91 0.92 0.92 0.92 0.83 6.37 7.71

1.04 1.02 1.02 1.03 1.03 1.03 1.11 1.02 15.62

1.03 1.12 1.46 1.47 1.47 1.47 1.84 1.11 11.81

1.26 1.22 1.25 1.27 1.29 1.30 1.52 26.02 9.88

4 1.14 1.22 1.20 1.21 1.22 1.22 1.28 1.19 11.40

0.97 1.06 1.37 1.39 1.36 1.36 1.50 595.81 8.99

1.29 1.26 1.09 1.09 1.10 1.10 1.32 1.14 11.80

1.06 1.12 1.20 1.24 1.27 1.30 1.46 1.11 14.68

1.08 1.16 1.18 1.19 1.20 1.22 1.40 1.18 16.92

5 1.12 1.13 1.39 1.52 1.58 1.61 1.65 2.10 16.43

1.09 1.05 1.14 1.16 1.16 1.15 1.35 1.88 13.12

1.06 1.05 1.17 1.21 1.22 1.23 1.34 1.24 16.57

1.12 1.11 1.16 1.27 1.35 1.41 1.47 1.56 13.17

1.03 1.02 1.02 1.03 1.04 1.05 1.31 19.48 14.61

6 1.01 1.05 1.11 1.14 1.16 1.18 1.24 3.45 13.77

1.16 1.24 1.23 1.29 1.33 1.37 1.51 1.88 12.70

1.10 1.12 1.14 1.17 1.19 1.20 1.38 1.11 16.19

1.09 1.14 1.24 1.22 1.22 1.22 1.40 1.18 9.57

1.08 1.12 1.17 1.19 1.20 1.22 1.28 1.11 11.90

7 1.06 1.08 1.11 1.13 1.14 1.16 1.28 1.06 11.51

1.03 1.22 1.31 1.33 1.35 1.37 1.51 1.20 8.60

1.14 1.16 1.19 1.21 1.21 1.22 1.22 1.17 11.41

1.13 1.21 1.53 1.61 1.65 1.68 1.97 1.37 19.94

1.10 1.11 1.19 1.20 1.21 1.22 1.39 2.06 26.95

8 1.08 1.10 1.21 1.27 1.30 1.32 1.44 1.19 24.76

1.02 1.09 1.30 1.38 1.43 1.46 1.75 1.18 14.96

1.12 1.13 1.24 1.27 1.29 1.30 1.39 1.15 23.03

1.22 1.03 1.05 1.06 1.07 1.02 1.15 1.46 5.16

0.87 0.90 0.85 0.86 0.93 0.88 0.96 1.03 4.15

9 1.24 1.29 1.15 1.39 1.39 1.19 1.25 1.43 4.29

1.18 1.35 1.26 1.15 1.40 1.46 1.44 3.16 3.94

1.11 1.09 1.11 1.14 1.13 1.17 1.02 1.16 3.57

Mean 1.09 1.12 1.15 1.18 1.23 1.22 1.29 10.95 9.53

Variance 0.97 0.98 0.93 0.96 1.03 0.99 1.01 19.95 3.75

p-value 0.0012 - 1.0000 1.0000 1.0000 1.0000 1.0000 0.9049 1.0000
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Table 3. D and ANEES over the entire dataset for three different measurement models, normalized by the corresponding values of the

exact EKF.

Range and bearing (all relative measurements)

SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

D 1.09 1.12 1.15 1.18 1.23 1.22 1.29 4.63 9.53 –

ANEES 0.28 0.30 0.68 0.79 0.87 0.91 1.33 1590.40 0.21 –

Range and bearing (50% of relative measurements)

SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

D 1.01 1.06 1.10 1.11 1.12 1.12 1.21 2.47 8.36 –

ANEES 0.61 0.66 1.00 1.14 1.23 1.28 1.96 35.44 0.49 –

Range and bearing (10% of relative measurements)

SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

D 1.07 1.07 1.11 1.11 1.11 1.13 1.14 1.11 6.60 –

ANEES 0.96 0.97 1.06 1.07 1.09 1.11 1.22 0.99 0.84 –

Range only

SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

D 1.01 1.00 1.11 1.13 1.14 1.16 1.19 1.55 4.09 –

ANEES 0.69 0.71 1.14 1.31 1.40 1.53 1.89 6.45 0.42 –

Simulated relative pose

SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

D 1.07 1.13 1.21 1.24 1.25 1.26 1.36 1.61 8.53 2.23

ANEES 0.72 0.96 2.92 3.44 3.74 3.96 4.87 12.94 0.33 0.40

and communicates only a subset of its relative measure-

ments. Note that without relative measurements, all pre-

sented decentralized algorithms become identical to the

Schmidt–Kalman filter. In particular, if the initial correla-

tions between robots are zero, all algorithms become iden-

tical to the EKF. This tendency can be seen in Figure 3 and

Table 3.

To illustrate the influence of faulty landmark detections,

we repeat the whole experiment twice, such that 5% (10%)

of the landmark detections are faulty. Therefore, we replace

the correct association by randomly drawing the id of one

of the other landmarks. The results in Figure 4 indicate that

a growing number of faulty landmark detections harms the

estimate of the EKF more than the estimates of the other

algorithms.

4.2. Robustness analysis

As stated before, even the correct EKF might diverge.

However, if the covariance is not underestimated, the filter

might recover from that after subsequent measurements. To

demonstrate robustness of our approximation, we compare

mean time to failure and the relative number of recoveries

after failures for the different approaches. We define a fail-

ure to be a point in time where the root-mean-square error

of the joint system exceeds 50 cm. We define a recovery as a

Fig. 3. Influence of the communication frequency on the localiza-

tion accuracy. We show the error D in relation to the error of the

centralized EKF depending on the ratio Rc of processed relative

measurements. With decreasing Rc, the relative error D decreases,

while the absolute error D, not shown in this figure, obviously

increases.

point in time where the root-mean-square error of the joint

system drops below 10 cm after a failure. The recovery ratio

R is the number of recoveries divided by the number of total

failures. Mean time to failure T is the mean time difference

between a recovery (or the start of a run) and the next fail-

ure. Figure 5 serves as an example. It shows the estimation
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Fig. 4. Influence of faulty landmark associations on the local-

ization accuracy. We show the error D in relation to the error of

the centralized EKF depending on the ratio Ra of faulty landmark

associations. With increasing Ra, the absolute error D, not shown

in this figure, obviously increases for all algorithms. However, the

relative error D decreases, as the wrong information affects the

centralized EKF more than the decentralized algorithms.

error of the x-component over time for one of the robots

that only rely on dead reckoning and relative measurements.

All compared algorithms, including EKF (not shown), lose

positioning. In contrast to the naive approach (NCL), our

approach (DCL) is able to recover from the bad localization

around t = 600 s, and yield an accurate estimate later on.

Table 4 displays the mean time to failure in minutes and

the recovery ratio as a percentage. For each measurement

type, these values are taken over the complete 23.6 hours

of data. Our algorithm (DCL) outperforms the EKF with

regards to mean time to failure. With respect to recovery

rate, our approach is approximately identical to EKF. Note

that mean time to failure is very low for CI. We accredit this

to the fact that in CI only the observed robot profits from

a relative measurement. However, conservative approxima-

tion in CI achieves a very high recovery ratio. The exper-

iments demonstrate our algorithm to be as robust as the

correct EKF while it uses nearly five times less communica-

tion links and does not rely on the storage of measurements

or global communication.

5. Conclusion

This paper is a revised and substantially extended version

of Luft et al. (2016), which introduced a fully decentral-

ized, EKF-based algorithm for collaborative localization.

To the best of the authors’ knowledge, this is the first

approach to track inter-robot correlations while fulfilling all

of the following relevant conditions: the algorithm does not

require storage of measurements, it supports generic mea-

surement models, and communication is limited to pairs

of robots that obtain a relative measurement. Each robot

maintains only the latest estimate of its own pose. The fact

that the proposed approach can handle these particularly

Fig. 5. Absolute difference |x| between the correct x-component

(of robot 4 in run 3) and the corresponding value estimated with

our algorithm (DCL, plot on top) and the naive approach (NCL,

plot at the bottom). This is an example, where all algorithms

(including the correct centralized EKF) lose positioning around

time 550–650 s. In contrast to the naive one, our approach is able

to recover from that and yields accurate subsequent localization.

challenging requirements make it suitable for a wide range

of applications, such as underwater or in mines.

For the approximations with respect to the standard

EKF, we present explicit error bounds depending on the

inter-robot correlations. As extensive tests with real-world

datasets show, our approach outperforms existing decen-

tralized EKF-based algorithms in terms of both accuracy

and robustness. Albeit our estimator is not provably consis-

tent in general, our experiments imply that it is as robust

as the standard EKF, which – in contrast to our method –

rests on the assumption of persistent availability of global

communication or has substantial memory requirements.
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Table 4. Mean time to failure T in minutes and recovery ratio R as a percentage for real-world data.

Range and bearing

EKF SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

T 42.37 42.43 46.89 47.78 43.43 41.61 41.56 37.68 24.09 2.62 –

R 75.00 75.00 72.00 75.00 76.92 77.78 77.78 71.43 76.09 0 –

Range only

EKF SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

T 11.36 11.86 11.80 10.33 9.42 9.28 8.94 7.98 10.37 2.65 –

R 56.45 52.63 57.63 46.55 45.00 39.66 38.98 40.00 49.18 0 –

Simulated relative pose

EKF SK DCL D[0.75] D[0.5] D[0.25] D[0] NCL NDCL SL CI

T 38.79 47.75 45.14 45.20 42.38 42.32 40.56 42.44 37.34 2.40 5.10

R 80.00 75.00 76.00 79.17 76.00 76.00 76.92 80.00 72.41 0 93.60

Notes

1. We define communication complexity as the number of edges

required in the communication graph, see, e.g., Kia et al.

(2014).

2. Please note that Julier (2001) and Eustice et al. (2006) have

used the same structure to reduce the computational cost of

the related problem of SLAM.

3. Corollary 1 is also valid if both j and i, and k and i are uncor-

related. However, the stronger the correlations between j and

i, and k and i are, the tighter is the error bound.

4. We emphasize that it is not our goal to outperform EKF.

In general, the estimate profits from robots communicating

their local information to the team. Only in the particular

case of a faulty data association does it harm the estimate of

the joint EKF. We perform experiments with faulty landmark

associations, see Section 4.
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Appendix A: Derivation of the update

equations

We derive the update equations from the standard Kalman

filter, which is described for example in Thrun et al. (2005,

Ch. 1). We partition the covariance of the joint system into

blocks

6t =
[

6t
aa

6t
ba

6t
ab

6t
bb

]

such that a is the set of indices of robots that are involved

in a measurement and b = {1, . . . , N} \ a. Thus, with the

corresponding partition, we have the Jacobian of the mea-

surement model F = [Fa, 0]. For a relative measurement

between robots 1 and 2, for example, we have a = {1, 2} and

F = [F1, F2, 0, . . . , 0]. For a private measurement of robot

1, we have a = 1 and F = [H , 0, 0, . . . , 0]. The Kalman

gain is calculated as

K =6tFT( F6tFT + Q)−1

=
[

6t
aa

6t
ba

6t
ab

6t
bb

] [
FT

a

0

]

·
(

[Fa, 0]

[
6t

aa

6t
ba

6t
ab

6t
bb

] [
FT

a

0

]
+ Q

)−1

=
[

6t
aaFT

a

6t
baFT

a

]
·
(
Fa6

t
aaFT

a + Q
)−1

=:

[
Ka

Kb

]

For the updated covariance 6t+1, we have

6t+1 = (I− KF) 6t

=
[

I− KaFa

−KbFa

0

I

] [
6t

aa

6t
ba

6t
ab

6t
bb

]

Element-wise evaluation yields

6t+1
aa =( I− KaFa) 6t

aa

6t+1
ab =( I− KaFa) 6t

ab

6t+1
bb = 6t

bb − KbFa6
t
ab
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Now we can easily transform these equations back into the

representation where each block corresponds to a single

robot’s pose. The update for X̂ can be derived in the same,

straightforward manner.

Appendix B: Proof of Proposition 1

Without loss of generality, we prove Proposition 1 for a

three-robot system with

6t =




6t
11

6t
21

6t
31

6t
12

6t
22

6t
32

6t
13

6t
23

6t
33




With the proposed approach, an approximate update for a

relative measurement between robots 1 and 2 consists of

Equations (14)-(15), (22), and (26). We prove the proposi-

tion for (28) with |λ| ≤ 1, which is a generalization of (26).

After the approximate update, we have

6̃t+1 =




6t+1
11(

6t+1
12

)T

(
6̃t+1

13

)T

6t+1
12

6t+1
22(

6̃t+1
23

)T

6̃t+1
13

6̃t+1
23

6t
33




The upper left two-by-two block corresponds to the subsys-

tem of the two robots involved in the relative measurement.

It is updated according to the exact EKF, thus it is positive-

definite. To complete the proof, we have to show that the

other two two-by-two blocks are also positive-definite. We

show the proof for

6̃t+1
{1,3}{1,3} :=

[
6t+1

11(
6̃t+1

13

)T
6̃t+1

13

6t
33

]
(30)

For 6̃t+1
{2,3}{2,3}, the lower right block of 6̃t+1, the proof is

equivalent. The matrix 6̃t+1
{1,3}{1,3} is positive definite if and

only if both 6t+1
11 and

6t
33 −

(
6̃t+1

13

)T (
6t+1

11

)−1
6̃t+1

13

(the Schur complement of 6t+1
11 in 6̃t+1

{1,3}{1,3}) are positive-

definite. The matrix 6t+1
11 is positive-definite, as it results

from the exact EKF update. Before we investigate the Schur

complement, we recall the exact update equation for the

whole system

6t+1 = 6t −6tFT( F6tFT + Q)−1 F6t

︸ ︷︷ ︸
:=P

where P is positive-semidefinite. Thus, we can write

6t+1
11 = 6t

11 − P11 (31)

with some positive-semidefinite matrix P11.

Now, we investigate the Schur complement

6t
33 −

(
6̃t+1

13

)T (
6t+1

11

)−1
6̃t+1

13

(28)=6t
33 − λ

(
6̃t+1

13

)T (
6t+1

11

)−1
6t+1

11︸ ︷︷ ︸
I

(
6t

11

)−1
6t

13

(28)=6t
33 − λ2

(
6t+1

11

(
6t

11

)−1
6t

13

)T (
6t

11

)−1
6t

13

=6t
33 − λ2

(
6t

13

)T (
6t

11

)−1
6t+1

11

(
6t

11

)−1
6t

13

(31)=6t
33 − λ2

(
6t

13

)T (
6t

11

)−1
6t

13

+ λ2
(
6t

13

)T (
6t

11

)−1
P11

(
6t

11

)−1
6t

13

=( 1− λ2) 6t
33

+ λ2
(
6t

33 −
(
6t

13

)T (
6t

11

)−1
6t

13

)

︸ ︷︷ ︸
=:P′

+ λ2
(
6t

13

)T (
6t

11

)−1
P11

(
6t

11

)−1
6t

13︸ ︷︷ ︸
=:P′′

The matrix P′ is the Schur complement of 6t
11 in

6t
{1,3}{1,3}. It is positive-definite according to the require-

ment of the proposition. The matrix P′′ is positive-

semidefinite and 6t
33 is positive-definite. For |λ| < 1,

we have the sum of two positive-definite matrices and a

positive-semidefinite matrix, and for |λ| = 1, we have the

sum of a positive-definite matrix and a positive-semidefinite

matrix. In both cases, the sum is positive-definite.

Appendix C: Proof of Lemma 1

Before we can prove Lemma 1, we have to introduce the fol-

lowing general lemma related to the usual Cauchy–Schwarz

inequality for scalar products, and a resulting corollary.

Lemma 2. For d-dimensional random variables X and Y,

with definition

〈X , Y 〉 := cov( X , Y )

= E
(
( X − E( X ) ) ( Y − E( Y ) )T

)

the induced matrix norm ‖·‖, and the assumption that 〈X , X 〉
and 〈Y , Y 〉 are positive-definite, we obtain

‖〈Y , X 〉‖ ≤ ‖〈Y , Y 〉 1
2 ‖‖〈X , X 〉 1

2 ‖ (32)

Proof. With Lavergne (2008, Corollary 1), we obtain

vT〈X , Y 〉〈Y , Y 〉−1〈Y , X 〉v ≤ vT〈X , X 〉v

for all v ∈ R
d . With the help of the symmetric and positive-

definite square root, this is equivalent to

∥∥∥〈Y , Y 〉− 1
2 〈Y , X 〉v

∥∥∥ ≤
∥∥∥〈X , X 〉 1

2 v

∥∥∥
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for all v ∈ R
d . Using the induced matrix norm, we obtain

‖〈Y , X 〉‖ := max
‖v‖=1
‖〈Y , X 〉v‖

≤ ‖〈Y , Y 〉 1
2 ‖ max
‖v‖=1
‖〈Y , Y 〉− 1

2 〈Y , X 〉v‖

≤ ‖〈Y , Y 〉 1
2 ‖‖〈X , X 〉 1

2 ‖

Corollary 2. With the notation of the present paper, we

obtain

‖6jk −6ji6
−1
ii 6ik‖

≤‖
(
6jj −6ji6

−1
ii 6ij

) 1
2 ‖‖

(
6kk −6ki6

−1
ii 6ik

) 1
2 ‖

Proof. For three jointly distributed d-dimensional

random variables X , Y , and Z, we decompose Z and

Y in an X -dependent part and a part orthogonal to X with

respect to 〈·, ·〉, namely

Z = 〈Z, X 〉〈X , X 〉−1X + Ẑ

Y = 〈Y , X 〉〈X , X 〉−1X + Ŷ

so that 〈Ŷ , X 〉 = 〈̂Z, X 〉 = 0. Here, we assume that



〈X , X 〉 〈X , Y 〉 〈X , Z〉
〈Y , X 〉 〈Y , Y 〉 〈Y , Z〉
〈Z, X 〉 〈Z, Y 〉 〈Z, Z〉


 =




6ii 6ij 6ik

6ji 6jj 6jk

6ki 6kj 6kk




is positive-definite, which ensures the existence of

〈X , X 〉−1. The goal is to apply (32) to 〈Ŷ , Ẑ〉. Therefore, we

need to prove that 〈̂Z, Ẑ〉 and 〈Ŷ , Ŷ 〉 are positive-definite.

We obtain that

〈̂Z, Ẑ〉 = 〈Z, Z〉 − 〈Z, X 〉〈X , X 〉−1〈X , Z〉

and

〈Ŷ , Ŷ 〉 = 〈Y , Y 〉 − 〈Y , X 〉〈X , X 〉−1〈X , Y 〉

are Schur complements of a positive-definite matrix and,

thus, they are positive-definite. Thus, we can apply (32) and

obtain

‖6jk −6ji6
−1
ii 6ik‖

=‖〈Ŷ , Z〉‖
=‖〈Ŷ , Ẑ〉‖

≤‖〈Ŷ , Ŷ 〉 1
2 ‖‖〈̂Z, Ẑ〉 1

2 ‖

=‖
(
6jj −6ji6

−1
ii 6ij

) 1
2 ‖·‖

(
6kk −6ki6

−1
ii 6ik

) 1
2 ‖

Lemma 1 immediately follows from Corollary 2 together

with the general equality ‖B1/2‖ = ‖B‖1/2 for a positive-

definite matrix B and the spectral norm.

5.1. Proof of Corollary 1

We use

6t+1
ik =( I− KiFi) 6t

ik − KiFj6
t
jk

from (20) and

6̃t+1
ik =( I− KiFi) 6t

ik − KiFj6
t
ji

(
6t

ii

)−1
6t

ik

from (26) to obtain

‖6t+1
ik − 6̃t+1

ik ‖

=
∥∥∥KiFj

(
6t

jk −6t
ji

(
6t

ii

)−1
6t

ik

)∥∥∥
≤‖KiFj‖

√
εjiεki

For the inequality, we use Lemma 1.


