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Abstract— To detect changes in an environment, one has to
decide whether a set of recent observations is incompatible
with a set of previous observations. For binary, lidar-based grid
maps, this is essentially the case when the laser beam traverses a
voxel which has been observed as occupied, or when the beam is
reflected by a voxel which has been observed as empty. However,
in real-world environments, some voxels are neither completely
occupied nor completely free. These voxels have to be modeled
by real-valued variables, whose estimation is an inherently
statistical process. Thus, it is nontrivial to decide whether two
sets of observations emerge from the same underlying true map
values, and hence from an unchanged environment. Our main
idea is to account for the statistical nature of the estimation by
leveraging the full map posteriors instead of only the most
likely maps. Closed form solutions of posteriors over real-
valued grid maps have been introduced recently. We leverage
a similarity measure on these posteriors to score each point in
time according to the probability that it constitutes a change in
the hidden map value. While the proposed approach works for
any type of real-valued grid map that allows the computation
of the full posterior, we provide all formulas for the well-
known reflection maps and the recently introduced decay-rate
maps. We introduce and compare different similarity measures
and show that our method significantly outperforms baseline
approaches in simulated and real world experiments.

I. INTRODUCTION

For navigation, mobile robots typically build maps of the
environment. A popular representation are so-called grid
maps, which partition the environment into separate voxels.
Each voxel comprises a particular map value related to some
property of the environment at the corresponding location.
Due to their accuracy, a widely used class of sensors to build
these maps are lidars. They send out laser beams and report
their directions and the distances they travel before reflection.
For a lidar-based grid map, each voxel’s value encodes the
expected behavior of a potential incident laser beam.

Most environments exhibit temporary or permanent
changes, which the robot has to detect and react to. Imagine
the simplest form of lidar-based grid maps, where each
cell is either free or occupied. Here, observing a reflection
in a free cell or a transmission through an occupied cell
detects a change in the environment. However, reasoning
about these changes is more complicated in real world
applications, where cells are not always completely free or
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Fig. 1: Exemplary views of the changing environment in
which we conduct one of our mapping experiments.

occupied. These types of cells are required to represent semi-
transparent objects, structures smaller than the voxel size, or
glass. To model the stochastic behavior of a beam within
such a voxel, one has to use real-valued maps. Their values
can either be interpreted as occupancy probabilities [1], [2],
[3], reflection probabilities [4], or as expected laser ray
lengths [5]. It is non-trivial to decide whether a set of
observations is within stochastic fluctuation or due to an
actual change in the environment. This is particularly true if
the map representation only comprises the most likely values,
as opposed to the full posterior distributions. Imagine, for
example, a set of observations within a voxel, most of which
report a reflection. Only with a notion of uncertainty about a
previously estimated map value, one can judge whether the
observations are likely to be in accordance with this value.

Our main idea is that if the full map posteriors are given,
we can score pairs of temporary maps conditioned on distinct
sets of observations according to their compatibility. To get
the map posteriors we apply mapping with known poses: Luft
et al. [6] recently introduced closed-form solutions to the full
map posteriors over real-valued maps. For each point in time,
we can compute two posteriors: the one conditioned on all
measurements after this point and the one conditioned on all
measurements before. We leverage a similarity measure on
these posteriors to score each point in time according to the
probability that it constitutes a change in the hidden map
value for each voxel.



The proposed framework applies to any measurement
model that allows to calculate the full posterior over a
real valued map, for example the well-known reflection
model [4] and the recently introduced decay-rate model [5].
The input to the proposed algorithm is the ordered sequence
of observations. For the reflection model, the elements of this
stream contain simple counts of reflections and transmissions
in each cell. For the decay-rate model, they consist of the
numbers of reflections and the total distances that all beams
travel within each cell during the mapping process.

Conceptually, there are three main features that set the
proposed method apart from other approaches: It considers
the full path information, as opposed to end-point models; It
considers real valued maps, as opposed to occupancy maps; It
uses the full posterior over these real map values. Please note
that previous approaches, for example [7], use real valued
posteriors over binary occupancy maps, which is different
from using full posteriors over real map values.

II. RELATED WORK

The following section gives a brief overview over the ex-
tensive research on grid mapping in dynamic environments.

Fox et al. [8] discuss two methods to discard measure-
ments in the localization process that are unlikely to be due
to mapped objects. One of these methods is the entropy
filter. It accounts for only those measurements that confirm
the robot’s belief – which can lead to over-confidence. As
opposed to that, our method always accounts for the whole
stream of measurements after a predicted change in the
environment. The second method which Fox et al. discuss
in [8] – the distance filter – discards measurements with
ranges smaller than predicted from the current map. While
the latter is suited for the case that unexpected objects appear,
it can not handle changes where objects are removed from
the scene. In contrast, our approach is not only able to detect
voxels that turn from occupied to free and vice versa, but also
reasons about changes of non-binary map values.

Hähnel et al. [4] introduce a hidden variable which indi-
cates whether a measurement is caused by a dynamic object.
In contrast to our method, both [8] and [4] treat dynamic
objects as outliers instead of adjusting the map accordingly.

Other approaches incorporate information about the dy-
namics within the map. Arbuckle et al. [7] store multiple
occupancy values estimated over different timescales in so-
called Temporal Occupancy Grids. While this introduces ad-
ditional parameters and memory consumption, our approach
keeps track of only the most recent map.

Luber et al. [9] model the occurrence of humans by a Pois-
son process. They store the learned parameter – the temporal
rate at which a person appears at a certain point in space – in
a so-called affordance map. Saarinen et al. [10] extend this
approach by learning two rates: the one at which occupied
cells turn free, and vice versa. Additionally, they use a simple
weighting method to prefer recent measurements over older
ones. Meyer-Delius et al. [11] extend the Bayesian update
formula for the occupancy posterior by a state transition
probability. The latter term is not given a priori but estimated

during operation. Compared to the methods in [9], [10],
and [11], our approach is more general in the sense that
it forgoes an explicit model of the underlying dynamics.

Biber and Duckett [12] maintain multiple maps learned
from data on different timescales. Similar to Yamauchi
and R. Beer [13], they use recency-weighted averaging to
suppress old measurements. In [12], the decay-rate of the
weighting term depends on the timescale. In [12], and [13],
the weighting terms have to be fixed a priori while our algo-
rithm estimates the breakpoint for each region individually.1

All approaches discussed so far either assume a binary
occupancy state or work with the most likely maps only
instead of the full posterior distribution. As opposed to that,
we leverage the full posterior over real-valued maps, which
we consider to be the most significant difference to all
approaches in this section.

Fehr et al. [14] conduct RGB-D-based 3D reconstructions
in dynamic environments with segmentation of dynamic
objects. Krajnik et al. [15] model the environment – e.g.
the occupancy states of a grid – as periodically changing
in time and store the most prominent Fourier coefficients.
Andreasson et al. [16] calculate the probability for each re-
flection point in a laser scan to be different from a previously
recorded reference model. The latter is represented as a 3D
grid comprising the mean and covariance values obtained
from the Normal Distribution Transformation (NDT) of
the initial environment’s laser point cloud. As opposed to
our approach, [16] does not account for the whole path
information of the laser beams but only for their endpoints.

Besides the grid-based approaches, there are also feature-
based methods which consider dynamic objects. The publica-
tions of Andrade-Cetto and Sanfeliu [17], Sofman et al. [18],
and Manso et al. [19] are examples for the latter.

III. APPROACH

In this section, we first define how we formalize a change
in the map. We then give a short recap on posterior distribu-
tions over real valued grid maps [6] and provide the formulas
needed for the remainder of the paper. After we formulate
the search for a point in time where the map changes
as minimization of particular measures on map posteriors,
we introduce three different options for this measure in
sections III-A to III-C.

Similar to most other grid-based mapping approaches, we
model the map value of each individual voxel as hidden ran-
dom variableM and estimate its value from a set of n obser-
vations Z. The posterior distribution belZ(m) := p(m | Z)
of the map value m ∈M given all measurements Z is called
belief.

Let us assume that the environment changes at some point
in time (let us call it a breakpoint b) because an object
is removed or added. Then, instantly, the hidden variables
corresponding to voxels that are affected by this change are
replaced by new variables. For the voxels in question, all

1 Our algorithm uses a measure of compatibility between map posteriors.
This measure is interchangeable. One of the three proposed measures also
contains an a priori fixed threshold, see III-C.



measurements taken before the breakpoint bias the estimate
of the new random variable. Thus, for a potential breakpoint,
we define two distributions: the map posterior bel1:b−1

conditioned on the measurements before the breakpoint and
the posterior belb:n conditioned on the recent measurements
from the breakpoint on. If the robot has to localize itself, it
must use the most recent map. Thus, it is desirable to detect
the breakpoint b and maintain belb:n.

Luft et al. [6] show that, for two particular measurement
models, the beliefs over individual non-binary map values
can be parameterized as follows. The well-known reflection
model [4] assigns each voxel a reflection probability µ. Given
the hidden map value µ, the likelihood to observe a particular
stream Z of observations with H reflections (hits) and M
transmissions (misses) in the cell is

Lµ(Z) := p(Z | µ) = µH (1− µ)
M
. (1)

The map posteriors are beta-distributions [6]

bel(µ) = Beta(µ;α, β) =
µα−1(1− µ)β−1

B(α, β)
, (2)

with the beta function B(·, ·). The parameters α and β are
determined by the number of reflections and transmissions:
α = H + α0 and β = M + β0, where α0 and β0 are
priors and α0 = β0 = 1 for a uniform prior. The recently
introduced decay-rate model [5] assigns each voxel a decay-
rate λ. Here, the likelihood for a stream Z with H reflections
and all laser beams travel a total distance R within the cell
is

Lλ(Z) := p(Z | λ) = λH exp (−λR) . (3)

The map posteriors are gamma-distributions [6]

bel(λ) = Gamma(λ;α, β) =
βα

Γ(α)
λα−1e−βλ, (4)

with the gamma function Γ(·), α = H + α0, β = R+ β0,
where α0 = 1 and β0 = 0 for an uninformed prior.

Please note that in their original formulation [1], [2], [3],
occupancy grids possess binary map values, such that the
map posterior for each voxel is a Bernoulli distribution,
represented by one real value p. As opposed to that, for the
two map representations introduced in this section, the map
values are already real numbers, such that the posterior for
each voxel is a continuous distribution.

Based on the parameterized posteriors, the aim of this
paper is to formalize a criterion that allows a breakpoint
detection. We are looking for a measure M such that the
expected breakpoint b∗ is

b∗ = argmin
b∈B

M
(

bel1:b−1,belb:n
)
, (5)

where B ⊂ N≤n is a set of potential breakpoints. Please note
that b∗ = 1 means that we detect that the environment did not
change. We ensure that 1 ∈ B, where bel1:0 = bel∅ is a prior
distribution. To associate each of the collected measurements
to either bel1:b−1 or belb:n we have to preserve their temporal
order. However, the order between potential breakpoints

can be neglected to the benefit of reduced memory usage,
which is particularly relevant for |B| � n. This applies
for lidars that see a voxel multiple times within one scan
almost simultaneously, assuming that a breakpoint can only
occur between individual scans. Therefore, in our real-world
experiments IV-B, we define the potential breakpoints to lie
between individual scans. Depending on the concrete use
case, one can choose the potential breakpoints substantially
more sparse. A service robot, for example, could check for
breakpoints every time it revisits a particular room. Then, it
is sufficient to store the map generated during a particular
visit as a single measurement, instead of maintaining the
entire stream of laser scans. Please note that our approach
explicitly assumes instantaneous changes of map values. This
is no loss of generality, as one can choose the set of possible
breakpoints such that it fits the dynamics of the situation.

In principle, it is possible to apply our framework in a
streaming mode: each time, a new laser scan arrives, the map
posteriors are updated recursively and the values M in (5)
have to be recalculated. When a breakpoint is detected, all
previous measurements can be deleted.

So far, we have assumed that each voxel contains either a
single breakpoint or no breakpoints at all. However, in many
applications the robot might face multiple changes within
single voxels during its mission. Ideally, these breakpoints
manifest as local minima in the objective function M in (5).
The experiments in Section IV-A indicate that the proposed
method as presented can deal with multiple breakpoints.
However, it is subject of future research to take these multiple
breakpoints into account more explicitly.

In the remainder of this section, we discuss three different
options for the measure M in (5).

A. Bayesian Information Criterion
A natural choice for M is the Bayesian Information

Criterion (BIC) [20]

BIC = ln (n) k − 2 ln(L), (6)

with the number of measurements n, the number of pa-
rameters in the model k, and the maximized measurement
likelihood L. The first term penalizes over-fitting, the second
term rewards goodness of fit.

For b = 1, we assume that we only have one map value.
Then, the likelihood function for the reflection model is
given by (1) and the likelihood for the decay-rate model
is given by (3). These likelihoods both possess only a single
parameter – namely µ and λ, respectively. Thus, we set k = 1
in (6). If we assume two posteriors – one conditioned on
the measurements before b and the other conditioned on the
measurements after – we have k = 3. The parameters are
the breakpoint b and the map values of both posteriors. In
this case, for the reflection model, the likelihood term can
be calculated from (1) as

L = Lµ1:b−1

(
Z1:b−1)Lµb:n

(
Zb:n

)
,

with the maximum likelihood parameters

µ1:b−1 = H1:b−1(H1:b−1 +M1:b−1)−1



and µb:n accordingly [6].
For the decay-rate model, the likelihood term can be

calculated from (3) as

L = Lλ1:b−1

(
Z1:b−1)Lλb:n

(
Zb:n

)
,

with the maximum likelihood parameters

λ1:b−1 = H1:b−1(R1:b−1)−1

and λb:n accordingly [6].
Please note that the map posteriors are sufficient to calcu-

late (6). Thus, minimizing the BIC is a special case of (5).
If the minimum is attained at b = 1, the BIC-based method
implies that there is no change in the environment.

As opposed to the BIC, which only accounts for the mea-
surement likelihood given the most likely map parameters,
in the following we introduce two measures that consider the
full map posteriors.

B. Entropy-based approach

As a second option for M, we introduce an entropy-based
approach. We assume that the entropy of a posterior distri-
bution with given parameterization generally decreases with
the number of measurements. By implication, if considering
an additional set of measurements leads to an increase of the
entropy, this set must be generated from a different random
variable. Thus we are looking for the set of most recent
measurements that minimize the entropy

b∗ = argmin
b∈B

H
(

belb:n
)
. (7)

For the reflection model, the posterior belb:n is a Beta
distribution. Its entropy is

H [Beta(α, β)] = ln [B(α, β)] + (α+ β − 2)ψ(α+ β)

− (α− 1)ψ(α)− (β − 1)ψ(β)

with the digamma function ψ(·) and the beta function B(·, ·).
For the decay-rate model, the posterior belb:n is a Gamma

distribution. Its entropy is

H [Gamma(α, β)] =α+ ln

(
Γ(α)

β

)
+ (1− α)ψ(α)

with the gamma function Γ(·).
Please note that in the case of binary occupancy grids,

the entropy of the posterior is minimal for the Bernoulli
parameter p = 0 or p = 1. Thus the entropy-based approach
always maintains the latest stream of observations which
contains either only hits or only misses. As this will lead
to sophisticating over-confidence, it is essential to leverage
the posteriors over real-valued maps.

C. Probabilistic approach

In addition to the BIC (6), which considers the most likely
map parameters and the entropy-based approach (7), which
accounts for the full map posterior conditioned on the mea-
surements after a potential breakpoint, we now introduce a
new measure, which compares two map posteriors. Therefor,
we analytically derive the probability density Pb that two

posterior distributions bel1:b−1 and belb:n are generated from
the same underlying random variable:

Pb :=

∫
m

∫
m′

bel1:b−1(m) belb:n(m′)δ(m−m′)dmdm′

=

∫
m

bel1:b−1(m) belb:n(m)dm. (8)

We assume that the probability for both distributions to
be generated by the same hidden variable is minimal at the
breakpoint. Thus

b∗ = argmin
b∈B

Pb

(
bel1:b−1,belb:n

)
. (9)

For the reflection model, the objective function reduces to

Pb

=

∫ 1

0

Beta
(
µ;α1:b−1, β1:b−1)Beta

(
µ;αb:n, βb:n

)
dµ

=

∫ 1

0

µα
1:b−1−1(1− µ)β

1:b−1−1

B(α1:b−1, β1:b−1)

µα
b:n−1(1− µ)β

b:n−1

B(αb:n, βb:n)
dµ

=

∫ 1

0

µα
1:b−1+αb:n−2(1− µ)β

1:b−1+βb:n−2

B(α1:b−1, β1:b−1) B(αb:n, βb:n)
dµ

=
B(α1:b−1 + αb:n − 1, β1:b−1 + βb:n − 1)

B(α1:b−1, β1:b−1) B(αb:n, βb:n)

·
∫ 1

0

Beta(µ;α1:b−1 + αb:n − 1, β1:b−1 + βb:n − 1)dµ

=
B(α1:b−1 + αb:n − 1, β1:b−1 + βb:n − 1)

B(α1:b−1, β1:b−1) B(αb:n, βb:n)
(10)

For the decay-rate model, we replace the beta distributions
by gamma distributions and integrate from zero to infinity.
With a similar derivation as in (10), we get

Pb =

(
β1:b−1

β1:b−1 + βb:n

)α1:b−1 (
βb:n

β1:b−1 + βb:n

)αb:n

· (β1:b−1 + βb:n)

(α1:b−1 + αb:n − 1) B(α1:b−1, αb:n)
(11)

Please note that Pb is a particular value of a density
rather than an absolute probability. To determine the value P1

from (8), one has to define bel∅. In our experiments, we treat
P1 as a fixed parameter and determine it via cross-validation,
as explained in Section IV-A.

It is straight forward to apply the metric (8) to binary
occupancy maps where m ∈ {0, 1}. Here, the real value µ
is the occupancy probability and hence represents the full
posterior. Replacing the integral in (8) by a sum, yields

Pb = µ1:b−1µb:n +
(
1− µ1:b−1) (1− µb:n) . (12)

Here, Pb is an absolute probability. A natural choice of the
prior µ∅ = 0.5 results in P1 = 0.5.

IV. EXPERIMENTS

To evaluate the proposed method, we perform a simulation
experiment and record a real world dataset. In the experi-
ments, we compare the following approaches
• TRUE: uses the true breakpoint.



• BIC: the Bayesian Information Criterion III-A.
• ENT: the entropy-based approach III-B.
• PRO: the probabilistic approach III-C.
• BIN: the probabilistic approach on binary maps (12).
• NDT: NDT-based approach as presented in [16].
• BASE: baseline assumes a static environment (b = 1).

Note that TRUE is the map generated from all mea-
surements after the true (typically unknown) breakpoint. We
compare our method against NDT as presented in [16]. It
generates a reference model of the initial environment repre-
sented by the Normal Distribution Transformation (NDT) of
the corresponding point cloud. The NDT [21] comprises for
each cell the mean and a covariance of the spatial distribution
of points within that cell. It then computes for each point in
a subsequent laser scan the probability to be different from
the reference model, see Equation (6) in [16].

A. Simulation experiments

We perform an experiment with randomly chosen ground
truth map values and simulated lidar observations, as follows.
We model an environment of N = 104 voxels. A robot
visits every voxel n times and collects the measurements
H , M , and R. We simulate these measurements according
to randomly generated ground truth map values µ and λ.
For each cell, we draw µ and Pref := 1− exp(−λ · l) with
l = 1m from a uniform distribution over [0, 1].2 To simulate
changes in the map, these true map values change after a
breakpoint b. For each voxel, we draw b from a uniform
distribution over {1, . . . , n}. For each voxel, we estimate
the breakpoint based on the different approaches and use
the stream of all measurements from b on to generate the
map posterior. We repeat the whole experiment for n ∈
{5, 10, 20, 50, 100, 200, 500}. In Fig. 2c and 2d, we show
the root mean squared error per voxel (RMSE) between the
maps estimated by the different approaches and the true map.
For the decay-rate maps, we compare Pref instead of λ.

The algorithm produces a false positive if it detects a
breakpoint where the true map value remains the same. These
false positives are particularly adverse in static environments,
where a false breakpoint detection reduces the number of
measurements taken into account for mapping. The scenario
most prone to false positives is an environment with only
constant map values. The results are shown in Fig. 2e and
Fig. 2f. Note that here, the baseline approach coincides with
the approach based on the true breakpoint.

To illustrate our intuition that the proposed algorithm
can also handle multiple changes within one voxel, we run
the simulation again with multiple breakpoints per voxel.
For each voxel, we draw the number of breakpoints from
a uniform distribution over the integers one to five. The
corresponding results are shown in Fig. 2a and 2b.

2 In case of the decay-rate model, the map values λ can vary from zero
to infinity. Therefore, we transform λ into the interval [0, 1] by the formula
Pref = 1− exp(−λ · l). Here, Pref can be interpreted as the probability
that a perpendicularly incident laser beam is reflected within a voxel with
value λ and edge length l.

Please note that the value P1 – which we need for the prob-
abilistic approach – cannot be directly computed from (8).
In the experiments, we determine it via cross-validation.
Therefor, we run the whole simulation experiment including
the changing and the stationary scenario for different values
of P1. We choose the value of P1 that minimizes the total
RMSE on this training phase and conduct the evaluation in
Fig. 2 on an independent simulation.

For both measurement models and all approaches except
for the baseline, the error decreases with the number of
collected measurements. In the changing environment with
the decay-rate model, we observe that BIC and PRO per-
form better than ENT. For the reflection model, this effect
manifests only with a growing number of measurements
(n > 20). We attribute this to the fact that the decay-
rate model takes into account the real valued distances of
beams within a voxel in addition to the integer hits and
misses. Therefore, it contains more information than the
reflection model, which is particularly relevant for small n.
Independent of the measurement model, the BIC performs
poorly in the static environment, while the entropy-based
approach performs poorly in the changing environment.
The proposed probabilistic approach performs well in all
simulated situations. In particular, it produces very few false
positives and therefore performs similarly to the ground truth
in the static environment.

B. Real-world experiments

To test our approach in hardware experiments, we create
a dataset in a hall with a static Velodyne HDL-64E lidar
sensor. We record the scene s = 13 times with an average
of 65 scans per run. In between the scanning phases, we
rebuild the scene by adding and removing objects. In this
way, we obtain s = 13 sequences of measurements, two
of them including moving people. We generate s2 = 169
scenarios by concatenating every pair of sequences, including
the combinations of each sequence with itself to simulate
static scenes. For each scenario, we define the ground truth as
the map generated from the second sequence of observations.
We show an example view of the scene in Fig. 1.

We search for breakpoints between each pair of laser
scans. For P1 in (8), we use the cross-validation values
from the simulation runs. We compute the RMSE per voxel
between the map generated from TRUE and the maps
calculated from the individual approaches. Since the majority
of voxels does not change, BASE has a low error. To
demonstrate that the individual approaches outperform the
baseline-approach, we conduct a one-tailed, paired-sample
t-test. The p-values in Tab. I correspond to the probability
that the corresponding algorithm produces a smaller error
than the baseline approach. The variances of the RMSE
over the individual scenarios are always three orders of
magnitude smaller than the mean. With the proposed method,
all three measures significantly outperform the baseline. For
the decay-rate model, the entropy-based approach performs
best. Considering that large regions of the environment
remain static, the good performance of ENT is in accordance
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(a) Reflection model in a environment with multiple changes.
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(b) Decay-rate model in a environment with multiple changes.
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(c) Reflection model in a changing environment.
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(d) Decay-rate model in a changing environment.
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(e) Reflection model in a static environment.
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(f) Decay-rate model in a static environment.

Fig. 2: Mapping error (RMSE) in a simulated environment. The parameter n is the number of observations per voxel during
the mapping process. The error bars represent the variances over 10,000 voxels. Note that in the static scenario, the baseline
approach and the approach based on the true breakpoint coincide.



Reflection model
l[cm] BIC ENT PRO BIN NDT BASE

10 0.42(100) 0.64(100) 0.45(100) 0.74(12.35) 1.17(0) 0.70
30 3.92(100) 4.35(100) 3.86(100) 3.91(100) 11.08(0) 4.55
50 9.44(100) 10.25(99.43) 9.94(99.95) 8.39(100) 28.91(0) 10.32

Decay-rate model
l[cm] BIC ENT PRO BIN NDT BASE

10 1.00(100) 0.87(100) 0.93(100) 1.33(63.55) 2.77(0) 1.35
30 6.53(99.99) 4.59(100) 5.52(100) 5.97(100) 15.40(0) 7.15
50 13.03(100) 7.75(100) 10.73(100) 11.65(99.97) 35.28(0) 14.16

TABLE I: RMSE per voxel of estimated map values for the different algorithms in the hardware experiments for different
voxel edge lengths l. We show its mean in [10−4m] over the individual scenarios and omit the corresponding variances as
they are always at least three orders of magnitude smaller. In the brackets, we show the p-values of a paired sample t-test
between the corresponding algorithms and the baseline. The p-values are in percent and rounded within precision of 10−4.

with the simulation results. For the reference model in NDT,
we use all measurements before the breakpoint. Since NDT
only considers the end points of the laser beams, it can never
detect the removal of objects. In our datasets, it performs
worse than the baseline approach as it assumes that the
spatial distribution of points within different laser scans
remains constant in a static scene. This does not hold for
our experiments, resulting in false positives.

V. CONCLUSION

We propose a method to detect changes in environments
represented by lidar-based real-valued grid maps. Our ap-
proach uses different measures to score each point in time
according to the probability that it constitutes a change in the
environment. The score depends on the two map posteriors:
the one given all measurements before this point in time
and the one given all measurements after. We compare three
baseline approaches and three variants of our method based
on different measures in simulated and real hardware experi-
ments. While our method always outperforms the baseline in
these experiments, we plan to investigate how the proposed
measures perform in different scenarios. One advantage of
our method is that it works on the basis of voxels and does
not require any semantic scene understanding. However, in
the future, we plan to relax the assumption of independent
voxels to detect changes on the level of whole objects
instead. As presented in this paper, the proposed algorithm
serves as method for mapping with known poses. In the
future, we plan to embed it into a whole SLAM framework.
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