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Abstract— The Bayes filter is the basis for many state-of-the-
art robot localization algorithms. In the literature, its derivation
typically requires the robot controls to be chosen independently
of all other variables. However, this assumption is not valid for
a robotic system that is to act purposefully. The contribution
of this paper is twofold: We prove that the Bayes filter is
also exact for an autonomous system that chooses the controls
depending on any subset of all observable variables. We further
show how to augment the filter if a human agent chooses
controls on the basis of parts of the state space that are
not directly accessible to the robot. In this case, modeling
the agent’s purpose improves the pose estimate as the control
selection provides additional information about the hidden state
space. A careful derivation of the Bayes filter then leads to an
additional pseudo measurement update step. Simulation and
real-world experiments with a teleoperated mobile robot as well
as evaluations on the KITTI dataset show that the localization
accuracy significantly improves if we augment a particle filter
with the proposed pseudo measurement update. Finally, we
present an analytical example for an augmented Kalman filter,
which leads to a more accurate estimate than the standard
Kalman filter.

I. INTRODUCTION

One of the fundamental challenges for mobile robots is
self-localization. Besides graph-based approaches, the Bayes
filter is the basis for most state-of-the-art robot localization
algorithms, including Kalman filters and particle filters, see
Chapters 7 and 8 of Thrun et al. [1]. The Bayes filter is a
recursive update of the pose belief given the latest incoming
controls and measurements. It is considered to deliver the
optimal estimate if the motion model and the measurement
model are given. To prove the optimality one typically
assumes that the controls are chosen randomly – or more
precisely – independently of all other variables. The problem
is that for an autonomous robot, the assumption of randomly
chosen controls is not valid: An informed choice of the next
action must include a specific goal and the current state. If
the goal is, for example, to move to a particular position, the
optimal control strongly depends on the current pose of the
robot. The first contribution of this paper is to prove that the
Bayes filter is exact not only for randomly chosen controls,
but also in the case of an autonomous system that chooses
the controls based on any subset of all observed information.

However, the situation is different if the choice of the con-
trols depends on further variables that are not accessible to
the robot. Consider, for example, a human agent who steers
the robot along a desired trajectory. The human’s decisions
can depend on parts of the state space that are observable
by the human but not by the robot. In this case, the standard
Bayes filter is not the optimal estimator anymore. However,
if we have a model of the human behavior given the robot
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(a) The robot chooses the control ut autonomously on the
basis of the current belief state Bt−1 := bel(xt−1). Here,
we assume that the belief can be computed recursively.
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(b) A human chooses the control ut based on the most recent
robot pose xt−1. The purpose model (dashed edges) encodes
complex processes including the human vision and decision
making.

Fig. 1: The graphs of the causal models for different purpose
modalities. Observable variables are gray. Variables that
are hidden to the robot are white. The dashed blue edges
correspond to the purpose models. If we remove these edges,
we recover the graph for randomly chosen controls, i.e. we
switch from feedback control to open loop control.

state, the chosen control provides additional information on
the hidden state which improves the estimate. If we know,
for example, that a human driver wants to keep his car in
the middle of the lane, a steering command to the right on a
straight road indicates that the car is on the left side of the
lane. Another common example is a navigation system that
loses the GPS signal when the car enters a tunnel. As soon
as the car turns, it is likely that it has reached a junction
and the system can recover if we take this information
into account. Note that processing odometry measurements
like from inertial measurement units or wheel encoders
in a traditional way can propagate the belief but always
increases the pose uncertainty, whereas our method can use
this proprioceptive information to decrease the uncertainty



without further exteroceptive measurements. There are many
examples where the driver’s behavior provides information
on the location of the vehicle, including reducing velocity in
regions with speed limits, holding at stop signs, and many
more.

In the following, we lay out the framework to incorporate
this additional information. We do so by carefully deriving
the motion update of the Bayes filter and taking into account
on which variables the control depends in different situations.
This results in a filtering scheme similar to the standard
Bayes filter augmented with an additional update which
we call the pseudo measurement update. In addition to the
theoretical framework, we present an experiment with a
remotely controlled mobile robot, evaluations on the KITTI
dataset [2], and a simulation experiment where a mobile
robot and an external controller cooperate in a navigation
task.

The pseudo measurement only takes effect if the control
choice is influenced by properties of the state space that
are not observable by the system. Reversely, our proof that
the standard Bayes filter is exact for completely autonomous
agents implies that heuristically leveraging a purpose model
is invalid for these systems. Intuitively, this is because the
action choice can only depend on the current pose estimate
and the information of which action is executed cannot, in
turn, improve this estimate. Otherwise, information is taken
into account repeatedly, at the risk of over-confidence.

II. RELATED WORK

This section highlights our contributions beyond the re-
lated approaches of Min Oh et al. [3] and Winterhal-
ter et al. [4], before it references works that cover different
aspects of shared autonomy, modeling of user behavior, or
general augmentations of the Bayes filter.

Classical Markov localization approaches relate observa-
tions with a map of the environment, while the motion of
the robot is typically defined independently of this map [5].
However, Min Oh et al. [3] augment the motion model
with a prior probability to be in a certain region of the
map. Winterhalter et al. [4] also implicitly take the map
into account for the motion model by penalizing particles
that move through walls when applying the motion model.
Among the references in this section, these two publications
have the closest connection to our present paper in the
sense that they augment the filter with additional terms that
improve the localization. The proposed approach advances
these ideas by allowing the integration of priors not only on
the positions [3] and on the motions between positions [4]
but also on the control selection. Moreover, it integrates these
approaches into a general framework: Priors on poses and
movements can always be implemented within the standard
Bayes filter framework by integrating map information into
the motion model. The prior on the control, however, can
only be implemented within the generalization of the filter
that we derive in the present paper. It is straightforward to
combine the mentioned approaches with our framework, as
we do in IV-C. Kaelbling et al. [6] also give an example

where the information of the control choice can reduce
the pose uncertainty by including map information into the
motion model, see Section 3.2 of their paper. Concretely,
repeatedly moving towards a wall increases the probability
to end up close to the wall. This behavior results from using
an appropriate nonlinear motion model in the standard Bayes
filter framework. There are two main differences that set
the present approach apart from the methods in [3] and
[4]. The latter two methods augment the motion model in
a heuristic way to account for the physical information in
the map. Our approach, in contrast, lays out a probabilistic
framework that gives rise to an entirely new term that
models the user’s intention. We also derive that using this
information is only valid for external inputs while it is
invalid for autonomous systems. In Monte Carlo localization
applications, our approach can punish particles before they
are propagated and can, therefore, provide a better proposal
distribution, while the other approaches can only punish
particles that have already been propagated – due to their
final position [3], or due to unfeasible motions e.g. through
walls [4]. While the proposed filtering scheme is probabilis-
tically exact, providing a heuristic-free method to design the
purpose model is out of the scope of this paper.

However, estimating human behavior for navigation pur-
poses is an active field of research. An example is the work
of Kretschmar et al. [7], which predicts human trajectories to
facilitate collaborative navigation. A second example is the
work of Demeester et al. [8], which learns the intention of
wheelchair drivers to provide robotic assistance. The behav-
ior of humans is also of high interest for autonomous driving:
on the one hand for save navigation among pedestrians – see
the work of Bai et al. [9] – and on the other hand for human-
like motion planning – see the work of Gu et al. [10].

Besides the modeling of human intentions, another aspect
of the present paper is that it augments the Bayes filter with
an additional term. The following two references augment the
classical localization (respectively SLAM) frameworks to ad-
ditionally estimate parameters of the system. Martinelli and
Siegwart [11] augment the state space in a Kalman filter con-
text to simultaneously estimate odometric parameters while
simultaneously localizing the robot. Kümmerle et al. [12]
present a framework that performs simultaneous SLAM
and parameter estimation by optimizing a hypergraph that
includes the odometry parameters as nodes.

III. THE BAYES FILTER FOR AUTONOMOUS SYSTEMS
AND SHARED AUTONOMY

A. A system model for mobile robots

We model the state of a mobile robot as a time-discrete
dynamic system with value xt at time t. The robot moves
within an environment and can execute controls ut and
gather measurements zt. Therefore, the system consists of
the jointly distributed random variables

V = {X0:t, U1:t, Z0:t} . (1)

The relevant information about the environment is encoded
in a map, which we assume to be known and treat as given



background knowledge. Without loss of generality, we can
exclude the map variable from V to ease notation. However,
we keep in mind that the functions that model our system
can strongly depend on the map. We assume

xt = g (xt−1, ut, εt) (2)
zt = h (xt, νt) , (3)

where the motion model g and the measurement model h
are deterministic functions and εt and νt are noise terms
that are distributed independently of all other variables.
Further, we specify a function π that encodes how the
controls are generated. We call π the purpose model as it
captures the purpose of the action selection. We distinguish
the purpose models for different situations: For randomly
chosen controls, π is an algorithm that does not depend on
any variable in V . For an autonomous system, it can depend
on all the observable variables {U1:t−1, Z0:t}, which are
known to the robot at the time t of its decision. A human
agent might have access to parts of the state space which
is hidden to the robot. Thus, she can in principle consider
the entire set V \ {Ut}. For now, we assume that she only
accounts for the most recent pose of the robot. Thus, for the
three different situations, we get

ut =


π (wt) random controls (4)
π (u1:t−1, z0:t−1, wt) autonomous system(5)
π (xt−1, wt) human agent (6)

where the noise terms wt are independent of all other
variables in V .

As we will recap below, the derivation of the Bayes filter
relies on the three conditional independence assumptions, or
Markov conditions

p(xt | xt−1, z0:t−1, u1:t) = p(xt | xt−1, ut) (7)
p(zt | xt, z0:t−1, u1:t) = p(zt | xt) (8)
p(xt−1 | z0:t−1, u1:t) = p(xt−1 | z0:t−1, u1:t−1). (9)

Conditions (7) and (8) directly follow from the dependencies
in the motion model (2) and the measurement model (3),
respectively. For the third Markov condition (9), it is more
subtle: It obviously holds for randomly chosen controls (4).
For autonomous systems (5), it is also valid, as we show in
the Appendix. However, for general purpose models – and in
particular for human agents (6) – it does not hold. Fig. 1 and
Fig. 2 show the directed acyclic graphs of the causal models
defined above for different purpose models. For a recap on
causal models, see Chapter 1 of Pearl [13].

B. The Bayes filter for autonomous systems
To pinpoint the crucial assumption, in the following, we

recap the well-known derivation of the Bayes filter for robot
localization as presented by Thrun et al. [1]. As the state
space is not directly accessible, we define the belief as
the posterior distribution over the latest state xt given the
readings of all observable variables thus far:

bel(xt) := p(xt | z0:t, u1:t) (10)

bel(xt) := p(xt | z0:t−1, u1:t). (11)

The Bayes Filter is a recursive update of the belief bel(xt)
with the last belief bel(xt−1), the most recent control ut, and
the latest obtained measurement zt:

bel(xt) = η p(zt | xt) bel(xt) (12)

bel(xt) =

∫
xt−1

p(xt | xt−1, ut) bel(xt−1)dxt−1. (13)

We omit the derivation of the correction step (12), which
makes use of the Markov condition (8).

The following derivation proves the prediction step (13)
for the two cases of randomly chosen controls (4) and
autonomous systems (5):

bel(xt)
(11)
= p(xt | z0:t−1, u1:t) (14)

(7)
=

∫
xt−1

p(xt | xt−1, ut) p(xt−1 | z0:t−1, u1:t)︸ ︷︷ ︸
=:belut (xt−1)

dxt−1 (15)

(9)
=

∫
xt−1

p(xt | xt−1, ut) p(xt−1 | z0:t−1, u1:t−1) dxt−1 (16)

(10)
=

∫
xt−1

p(xt | xt−1, ut) bel(xt−1) dxt−1. (17)

C. The augmented Bayes filter for shared autonomy

We now show how to augment the Bayes filter for the case
that a human agent chooses the controls on the basis of direct
observations of the state space that are not accessible to the
robot. Therefor, we apply Bayes rule to the term belut(xt−1):

belut
(xt−1) (18)

:=p(xt−1 | z0:t−1, u1:t) (19)

=
p(ut | xt−1, z0:t−1, u1:t−1)p(xt−1 | z0:t−1, u1:t−1)

p(ut | z0:t−1, u1:t−1)
(20)

=η′p(ut | xt−1, z0:t−1, u1:t−1)bel(xt−1). (21)

The denominator does neither depend on the integration
variable xt−1 nor on the variable xt for which we cal-
culate the distribution bel(xt). Thus we treat it as a nor-
malization constant η′. We see that (21) has the same
form as the measurement update (12), with the purpose
model p(ut | xt−1, z0:t−1, u1:t−1) instead of the measure-
ment model. Therefore, we call (21) the pseudo measurement
update.

For the case of a human controller, we get the augmented
prediction step

bel(xt)

=η′
∫

xt−1

p(xt | xt−1, ut) p(ut | xt−1)bel(xt−1) dxt−1,

(22)

by following the same derivation as in III-B. We can recover
the traditional prediction step (13) from the augmented
prediction step (22) if we assume that the purpose model
does not depend on xt−1 – as it is the case for randomly
or autonomously chosen controls. In the latter case, the
independence only holds conditioned on {Z0:t−1, U1:t−1}.
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Fig. 2: The graph of the causal model for the case that robot chooses the control ut autonomously on the basis of all
variables {U1:t−1, Z0:t−1} that it has observed so far. Observable variables are gray. Variables that are hidden to the robot
are white. The dashed blue edges correspond to the purpose model. If we remove these edges, we recover the graph for
randomly chosen controls, i.e. we switch from feedback control to open loop control.

Algorithm 1 contains the pseudo code for updating the
belief with incoming control information.

Algorithm 1 The motion update for the augmented Bayes
filter.

1: Input: bel(xt−1), ut
2: Output: bel(xt)
3: if ut is selected by an external controller then
4: belut

(xt−1) = p(ut | xt−1)bel(xt−1)
5: else if ut is selected autonomously by the robot then
6: belut

(xt−1) = bel(xt−1)
7: end if
8: bel(xt) =

∫
xt−1

p(xt | xt−1, ut)belut(xt−1) dxt−1

9: normalize bel(xt)

D. An analytical example

We introduce a simple model to illustrate how the true
belief changes for different purpose models. Then, we an-
alytically compute the results of the standard Bayes filter
and of the augmented Bayes filter. Consider a vehicle that
is supposed to be kept in the middle of the lane. The one-
dimensional state space is the displacement of the vehicle
with respect to the center of the lane. We define the controls
ut as lateral translations of the car with respect to the lane.
In the autonomous case, the controller chooses the action ut
based on the most recent estimate x̂t−1:

ut = π (u1:t−1, z0:t−1, wt) = −x̂t−1, (23)

where x̂t−1 can depend on all variables observed thus far
and independent noise. If a human driver has direct access
to the state, she chooses the control deterministically as

ut = π (xt−1, wt) = −xt−1. (24)

We assume a Gaussian motion model and a Gaussian prior

p(xt | xt−1, ut) = N (xt;xt−1 + ut, σ
ε
t ) (25)

p (x0) = N (x0; x̂0, σ0) . (26)

Then, the standard Bayes filter is identical to the Kalman
filter. Thus, for T iterations of the motion update, we get

x̂T = x̂0 +

T∑
t=1

ut and σT = σ0 +

T∑
t=1

σεt . (27)

Considering the purpose model (23) of the autonomous sys-
tem, we get x̂T = 0. Note that in both cases, the covariance
increases linearly with t as in Brownian motion. However,
if we consider the purpose model of the human driver (24),
estimate improves. The augmented motion update for our
model reads

bel(xt)

(22)
= η′

∫
xt−1

p(xt | xt−1, ut)p(ut | xt−1)bel(xt−1)dxt−1

(24)(25)
= η′

∫
xt−1

N (xt;xt−1 + ut, σ
ε
t ) δut+xt−1

bel(xt−1)dxt−1

=η′N (xt; 0, σ
ε
t ) bel(xt−1 = −ut)

=N (xt; 0, σ
ε
t )

Thus, after T iterations, we still have

x̂T = 0 and σT = σεT . (28)

IV. EXPERIMENTS

A. Indoor localization with a mobile robot

As a first example of how the use of a purpose model
improves the estimate, we analyze the localization accuracy
of a teleoperated Kuka OmniRob in an industrial indoor
scenario. A human controller steers the robot along arbitrary
trajectories within the hall. He is requested to execute turning
maneuvers preferably only in a safety zone Z ⊂ R2, as
depicted in Fig. 3. The instructions for the human con-
troller were kept deliberately vague to reflect the charac-
teristically high uncertainty in human navigation behavior.
A deterministic instruction like a specific maneuver at a
specific pose would automatically result in nearly perfect



pose knowledge, as in III-D. The robot is equipped with
wheel encoders and a laser scanner. We define the motion
command as ut = [uxt , u

y
t , u

θ
t ]
T and model the noise εt =

[N (0, σxt ),N (0, σyt ),N (0, σθt )]
T with σxt

σyt
σθt

 =

 0.15 0.05 0.05
0.05 0.15 0.05
0.05 0.05 0.15

 ·
 | uxt || uyt |
| uθt |

 . (29)

A 2-D occupancy grid map is constructed with the ROS
package gmapping, which is an implementation of laser-
based SLAM with a Rao-Blackwellized particle filter as
introduced by Grisettiet al. [14].The resolution of the grid
is 5 cm. For the duration of the mapping phase, the safety
zone is marked with small walls to include its boundaries
in the map, see Fig. 3. For the localization experiments,
these walls are removed so that the robot does not see the
safety zone. We perform Monte Carlo localization, where the
pseudo measurement update is a weighing of the particles.
We define the purpose model as

p (ωt | xt−1) ∝
{

0.15 for ωt > 0.5 rad/s ∧ xt−1 /∈ Z
1 else.

On four different trajectories of two minutes each we eval-
uate the Monte Carlo localization for the standard filter
and the augmented filter with the additional purpose model.
We repeat each run 100 times with different random seeds
for three modalities: without using the laser scanner (dead
reckoning), using a single beam, and using the full scans.
In Table I, we present the mean localization errors, their
standard deviations over the runs and the p-values resulting
from a one-tailed, two-sample t-test.

In Fig. 4, we present the position error in meters for one
of the four trajectories. Note that the wave-like behavior in
the upper part of Fig. 4 is a side effect for systems with
orientation uncertainty that multiply revisit certain locations,
see for example the work of Winterhalter et al. [4]. It can
be explained as follows. For both approaches, the augmented
and the standard filter, the orientation error increases when
the robot turns, as no lidar information is used. A subsequent
linear motion then leads to an increase in the position error.
When coming back to the region of the initial rotation, the
position error decreases as the estimated trajectory intersects
with the ground-truth trajectory. In our case, the minima in
the position error correspond to the robot being positioned
near the safety zone. While our approach substantially re-
duces the position error near the safety zone, it only slightly
reduces it remote from the safety zone. This is because in
this particular example the purpose model does not provide
rotational information such that remote from the safety
zone only particles without orientation offset profit from the
purpose model. As an important result of our approach, it can
be observed that the position error near the safety zone of our
augmented filter is bound to approximately half a meter, as
opposed to the standard approach, where the error increases.
The lower part of Fig. 4 represents a selected run with the
one-dimensional lidar. The standard filter diverges while the
augmented filter remains a bound localization error. With the

Fig. 3: The map of the indoor localization experiment. The
red square in the middle of the room defines the safety
zone Z of approximately 1m2.

two-dimensional laser scans, the localization accuracy is al-
ways below 10 cm and thereby of a lower magnitude than the
size of the safety zone. Therefore, using the purpose model
does not significantly improve the localization accuracy. The
effect of the purpose model decreases with the quality of the
exteroceptive sensor information, which makes it particularly
relevant for featureless, or ambiguous environments. Another
important use case is examined in the next section.

Note that in the presented experiment, the robot navigates
on a structureless ground, where no position priors can be
assigned and no particle violates a physical constraint. Thus
the approaches of Min Oh et al. [3] and Winterhalter et al. [4]
are equivalent to the standard approach.

B. Localization on the KITTI dataset

As a second example of how the use of a purpose model
improves the estimate, we track a car on a trajectory of the
KITTI dataset by Geiger et al. [2]. For the ground truth, we
use the GPS data. In our experiment, we simulate a failure
of the GPS signal so that the localization has to rely on the
inertial measurement unit (IMU). This corresponds to the
tunnel scenario described in the introduction of this paper.
We handcraft the purpose model as

p (at | xt−1) ∝
{

0.15 for at > 1m/s2 ∧ xt−1 /∈ Z
1 else

with the lateral acceleration at from the IMU and Z ⊂ R2

being regions of possible turning points as in the junction
depicted in Fig. 5. We use a standard particle filter as in our
previous work [15] and apply the purpose model as an update
of the particle weights as in the indoor experiments above.
We additionally combine the proposed approach (Purpose
model) with the approach of Min Oh et al. [3] (Map prior).



TABLE I: Mean position error and standard deviation over 100 runs in meters for four different trajectories of two minutes
each. The p-values from a one-tailed, two-sample t-test are the probabilities that our method is outperformed by the standard
approach.

No Lidar
Standard filter 2.824 ± 0.030 2.994 ± 0.030 2.966 ± 0.031 2.870 ± 0.028
Purpose model 1.406 ± 0.026 1.598 ± 0.031 1.663 ± 0.033 1.549 ± 0.032
p-value 0.000 0.000 0.000 0.000

1D Lidar
Standard filter 0.476 ± 0.215 0.898 ± 0.521 0.586 ± 0.461 0.685 ± 0.263
Purpose model 0.442 ± 0.029 0.582 ± 0.121 0.419 ± 0.021 0.66 ± 0.259
p-value 0.056 0.000 0.000 0.256

2D Lidar
Standard filter 0.078 ± 0.003 0.085 ± 0.003 0.079 ± 0.003 0.075 ± 0.003
Purpose model 0.078 ± 0.004 0.085 ± 0.003 0.079 ± 0.003 0.075 ± 0.003
p-value 0.001 0.215 0.218 0.769
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Fig. 4: Localization of our OmniRob with dead reckoning
(upper part) and lidar (lower part). While standard lidar lo-
calization fails in 11.3% of the 400 runs (as in this manually
selected example), the failure rate of the proposed method is
3.0%. We define a run to be a failure when the mean position
error averaged over the run exceeds 1m. The results over all
trajectories are presented in Table I.

Fig. 5: A laser scan of one of the junctions from the KITTI
dataset. We assign low probabilities to lateral accelerations
outside the zone Z marked with the black square.

For the latter, we use a prior proportional to 0.15 for locations
not on the road. We present the localization results for a
trajectory with two junctions in Fig. 6. The time intervals
that the car spends at the junctions are marked with the
gray boxes. Here, the car turns at the first junction and goes
straight at the second junction. The results show that our
approach does not only improve the accuracy when the car
turns but also that it does not impair the estimate if the car
goes straight.

C. Autonomous navigation with intervention

The following simulation experiment demonstrates how
the augmented filter improves the localization in an au-
tonomous navigation task when an external controller inter-
venes when necessary. It further demonstrates that applying
the purpose model to controls chosen autonomously on the
basis of the current belief can impair the estimate.

The OmniRob is instructed to follow back and forth a
straight line in the hall along the y-axis of the map with
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Fig. 6: Mean position errors and their standard errors (bands)
on the KITTI dataset for a trajectory with two junctions. The
gray areas indicate the time when the ground-truth position
is inside a junction zone.

a line follower that takes the Monte Carlo pose estimate
as input. We execute runs with the one-dimensional lidar
and runs with the full scan. As soon as the ground truth
pose is outside a 0.5m wide corridor around the desired
trajectory, an external proportional controller intervenes with
a velocity command directed to the closest point on the
trajectory and steering in the direction of the path. When the
robot is back on the desired path with a 5 cm tolerance, the
autonomous line following controller takes over again. We
repeat the experiment with a 0.2m wide corridor. Note that
there is an obvious choice of the purpose model that allows
localization accuracy of below 5 cm in x-direction after each
intervention. However, we confine to a more uninformed
purpose model to demonstrate that we still benefit in the case
the exact workings of the external controller are unknown.
We define the purpose model of the external controller as
p(ut = {vx, vy, ω} | xt−1 = {x, y, θ}) = p (vx | x) p (ω | θ)
with

p (vx | x) ∝
{

0.15 if v · x > 0

1 else

where vx is the x-component of the velocity command and
x is the x-component of the position and

p (ω | θ) ∝
{

0.15 if ω · θ > 0

1 else

where ω is the angular velocity and θ the robot’s heading
with respect to the y-axis.

We evaluate five different methods: (1) standard Monte
Carlo localization (standard filter), (2) the approach of Min
Oh et al. [3] with a prior proportional to 0.15 outside the
tolerance corridor (map priors), (3) a naive application of
the purpose model to all controls (purpose model naive),
(4) correct application of the purpose model only to the
commands chosen by the external controller as in Algorithm
1 (purpose model correct), and (5) a combination of (4) and

(2). In Table II we present the results for the one-dimensional
lidar with three different metrics: (1) the localization error
in meters averaged over all particles (mean error), (2) the
distance of the ground truth to the weighted average position
over all particles (error of mean), (3) and the distance of
the ground truth position to the closest point on the desired
trajectory (path deviation). All metrics are averaged over
all time steps of twenty runs. The standard deviations are
taken over the twenty runs. Comparing the naive and the
correct application of the purpose model, we observe that the
difference in the error of the means is more significant than
the difference between the mean errors, which is consistent
with our expectation: A naive application of the purpose
model reduces the particle spread (and therefore the mean
error if the estimation is not completely off) to a higher
degree than it improves the error of the mean.

With the full scan, the robot never leaves the tolerance
corridor. Thus, the external controller never takes over and
the standard approach and the proposed approach are equiv-
alent. As expected, a naive application of the purpose model
impairs the localization: The mean error increases from
4.4 cm (purpose model correct) to 6.1 cm (purpose model
naive), the error of mean from 3.1 cm to 5.2 cm, and the path
deviation from 1.6 cm to 3.8 cm, with the variances over the
runs being below 0.4 cm for all metrics.

V. CONCLUSION

In this paper, we presented a rigorous probabilistic frame-
work to augment the Bayes filter for self-localization with
an additional correction step for the case when a model of
the action selection – a purpose model – is given. We proved
that our augmented filter reduces to the well-known Bayes
filter in the case that the actions are chosen (1) autonomously
on the basis of a subset of all observable variables or
(2) independently of all other variables. In that sense, our
filter is a generalization of the Bayes filter. Reverse, we
also show that using the purpose model for autonomous
systems is invalid and can impair the estimate. Our approach
outperforms baseline methods in three different localization
scenarios. It is general and serves as a framework for a wide
range of applications including navigation and driving with
shared autonomy. A general framework to design purpose
models for arbitrary situations is subject to future research.

APPENDIX
THE MARKOV CONDITION FOR AUTONOMOUS SYSTEMS

To prove the Markov condition (9) for autonomously
chosen controls, we define a causal model for our system.

Definition 1 (Causal model): Assume a set V =
{Vj}1≤j≤|V| of |V| jointly distributed random variables
and a directed acyclic graph G with nodes V and edges
E ⊂ {eij}1≤i,j≤|V|. Assume further that every variable can
be written as a deterministic function

vj = fj
(
{vi}Vi∈parents(Vj), wj

)
(30)

where the Wj are mutually independent noise terms and
parents(Vj) is the set of all Vi such that eij ∈ E . Then,



TABLE II: The localization errors in meters averaged over all particles (mean error), the distance of the ground truth to
the weighted average position over all particles (error of mean), and the distance of the ground truth position to the closest
point on the desired trajectory (path deviation).

Wide corridor
mean error error of mean path deviation

(1) Standard filter 0.676 ± 0.114 0.519 ± 0.106 0.178 ± 0.014
(2) Map prior 0.313 ± 0.004 0.213 ± 0.005 0.167 ± 0.003
(3) Purpose model naive 0.253 ± 0.024 0.245 ± 0.025 0.149 ± 0.011
(4) Purpose model correct 0.237 ± 0.019 0.143 ± 0.014 0.106 ± 0.011
(5) Purpose model correct + Map prior 0.177 ± 0.003 0.152 ± 0.006 0.130 ± 0.008

Narrow corridor
mean error error of mean path deviation

(1) Standard filter 0.615 ± 0.061 0.463 ± 0.067 0.088 ± 0.010
(2) Map prior 0.135 ± 0.010 0.121 ± 0.011 0.084 ± 0.007
(3) Purpose model naive 0.168 ± 0.014 0.137 ± 0.017 0.063 ± 0.004
(4) Purpose model correct 0.182 ± 0.016 0.098 ± 0.008 0.043 ± 0.005
(5) Purpose model correct + Map prior 0.114 ± 0.002 0.098 ± 0.002 0.056 ± 0.001

the set {
G, {fj}1≤j≤|V|

}
(31)

forms a causal model. We define nondescendants(Vj) as the
set of variables Vi such that that no directed path that starts
in Vj ends in Vi.

To get from the causal model to the desired conditional
independences, we use the following Lemma.

Lemma 1 (Causal Markov Condition): In a causal model
with the directed acyclic graph G, every variable is indepen-
dent of its non-descendants given its parents:

Vi ⊥ nondescendants(Vi) | parents(Vi).
Proof: Theorem 1.4.1 in Causality: Models, Reasoning,

and Inference [13].
By decomposition of conditional independences, Lemma 1

directly implies

Vi ⊥ Vj | parents(Vi), (32)

for all Vj ∈ nondescendants(Vi) and all Vi ∈ V .
The generative, physical model for autonomous sys-

tems (5) is deterministic. Therefore, we can find a causal
model with Graph G such that

parents(Ut) = {Z0:t−1, U1:t−1}, (33)

as in Fig. 2. There are no edges pointing backwards in time
and thus no directed path from variables of the time stamp
t to variables with the time stamp < t exists. Thus, we have

Xt−1 ∈ nondescendants(Ut). (34)

Combining (32)-(34) directly yields the independence as-
sumption

Ut ⊥ Xt−1 | {Z0:t−1, U1:t−1} (35)

and thus the desired Markov condition

p(xt−1 | z0:t−1, u1:t) = p(xt−1 | z0:t−1, u1:t−1).

Equivalently, we can prove (9) by interpreting the graph G
in Fig. 2 as a Bayesian network and apply the D-separation
criterion [13].
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