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Abstract— In the last years, many researchers started to
consider teach-and-repeat approaches for reliable autonomous
navigation. The paradigm, in all its proposed forms, is deeply
rooted in the idea that the robot should autonomously follow a
route that has been demonstrated by a human during a teach
phase. However, human demonstrations are often inefficient
in terms of execution time or may cause premature wear
of the robot components due to jittery behavior or strong
accelerations. In this paper, we propose the concept of teach,
optimize and repeat, which introduces a trajectory optimization
step between the teach and repeat phases. To address this
problem, we further propose LexTOR, a constrained trajectory
optimization method for teach and repeat problems, where
the constraints are defined according to user preferences. At
its core, LexTOR optimizes both the execution time and the
trajectory smoothness in a lexicographic sense. The experiments
show that LexTOR is very effective, both qualitatively and
quantitatively, in terms of execution time, smoothness, accuracy
and bound satisfaction.

I. INTRODUCTION

Over the last years, teach and repeat has proven to be a
successful paradigm for the execution of repetitive tasks that
do not require high-level reasoning on behalf of a robotic
platform. Teach and repeat comprises two main phases. In the
teach phase, the user manually steers the robot along a route
and the system builds a representation of the environment
from the sensor data it acquires. In the repeat phase the robot
aligns its sensor data to the built representation, in order to
execute the demonstrated trajectory as accurately as possible.

The main assumption of current teach-and-repeat strate-
gies is that the quality of the demonstrated trajectory is good
enough to perform the task at hand. However, in most cases,
the route is demonstrated by a human operator. Introducing
the human factor in the loop will, in general, result in sub-
optimal trajectories, particularly in case of non-expert users.
Problems may include jittery behavior in the demonstration,
needlessly large accelerations, unnecessary stops or cusps in
the path. This often results in either long execution times or
in premature wear and tear of the robot components.

With this work, we propose a novel twist to teach and
repeat and we refer to it as teach, optimize and repeat (TOR).
Our goal is to bridge the gap between the field of teach and
repeat and trajectory optimization. We envision a scenario in
which the user specifies a maximum allowance in deviation
from the demonstrated trajectory, e.g., the bounds shown
in Fig. 1, with possibly further limitations in velocity or
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Fig. 1. View of the omniRob during the teach phase. The figure shows
the taught path (dashed) and the optimized one (solid), together with the
user-defined bounds on position (shaded).

acceleration. Without requiring further input, the system then
computes an improved trajectory that will be executed during
the repeat phase.

Furthermore, we propose LexTOR, a novel trajectory
optimization technique to jointly optimize both execution
time and trajectory smoothness in a lexicographic sense.
LexTOR solves the optimization problem iterating between
solving two convex problems in a block coordinate descent
fashion. For a second order approximation of the trajectory,
we prove that the two problems reduce to second order cone
programs (SOCPs), for which efficient solvers exist [3]. We
extensively evaluate our approach on a holonomic robot, and
show the effectiveness of LexTOR in terms of trajectory
execution time, smoothness, accuracy and bound satisfaction.

II. RELATED WORK

The teach-and-repeat paradigm has been successfully ap-
plied to various scenarios, ranging from underground tram-
ming [14], to sample-and-return missions on foreign plan-
ets [7]. Teach and repeat can be model-based [1], appearance-
based [15], or a hybrid of the two [14]. Model-based ap-
proaches require a metric-map for navigation, which often
proves to be a costly endeavor. Appearance-based and hybrid
approaches, on the other hand, rely more on sensor data and
have experienced widespread success.

Pioneering work [15] associated camera images to particu-
lar actions of the robot and later replayed them by following
the sequence of recorded images. Due to the lack of metrical
information from camera-only sensing, authors employed ei-
ther bearing-only control laws [12] or visual servoing [6, 5].
To increase accuracy, many researchers started to employ
proximity sensors. Furgale and Barfoot [7] proposed a stereo-
camera approach able to handle long-range navigation in



challenging environments. Sprunk et al. [21] propose a
data-driven approach using laser scanners and demonstrate
millimeter-level accuracy without building any map of the
environment. Cherubini and Chaumette [5] introduced the
use of a laser range finder for obstacle avoidance. Marshall et
al. [14] use a 3D laser sensors and build a hybrid map of the
environment. McManus et al. [16] extend [7] to reflectance
imagery coming from a 3D LIDAR. Krüsi et al [13] build a
topological/metrical map and use ICP together with obstacle
avoidance in the repeat phase. Ostafew et al. [17] employ
model predictive control (MPC) and Gaussian processes to
improve tracking accuracy, and at the same time devise a set
of heuristics for improving the velocity profile.

All those approaches aim at an accurate reproduction of a
path that is carefully demonstrated by the user. In this work,
we distinguish ourselves in that we introduce an additional
optimization step in the process.

The majority of trajectory optimization approaches relies
on a globally consistent map of the environment and, to
the best of our knowledge, have not been used in teach
and repeat settings. Khatib [11] first introduced the use of
potential functions for computing collision free trajectories.
Quinlan and Khatib [18] later devised an approach which
enables avoiding obstacles by deforming the trajectory as a
collection of elastic bands.

The latter inspired the CHOMP algorithm [26] which uses
covariant functional gradient descent to plan collision free
trajectories. Kalakrishnan [10] proposed a variant of CHOMP
that uses derivative-free stochastic optimization. Schulman
et al. [20] use convex relaxation and sequential quadratic
programming to compute a collision-free trajectory. Those
approaches consider optimization in path coordinates, with-
out explicitly considering time, and need to be followed by
a motion retiming step [2, 25]. Such a decoupled approach,
however, may lead to suboptimal trajectories in the vicinity
of obstacles. To avoid this Byravan et al. [4] explicitly
introduce timing in the parametrization of CHOMP. In their
work, however, they require a fixed execution time, while
our approach takes it as the main objective to optimize.

Trajectory planning has been also considered in the context
of optimal control, where differential dynamic programming
methods [9] have been successful in a number of applica-
tions. Similarly, iLQG [22] allowed handling nonlinear con-
trol costs with a quadratic approximation. This was improved
on by Toussaint [24] who used approximate inference to
efficiently generalize non-linear-quadratic-gaussian systems.

Our approach has teach and repeat as a target, and differs
from most works in trajectory optimization. Since we are
only interested in finding a perturbation about a demonstrated
trajectory, the problem is well represented by introducing
convex constraints in the functional space of trajectories.
Furthermore, with our approach we marry both trajectory
and time optimization in a single, iterative, algorithm.

III. LEXICOGRAPHIC TRAJECTORY OPTIMIZATION

Robot motion planning can be expressed as a multi-
objective optimization problem, whose goal is to minimize

a number of objective functions under a set of constraints.
Typical objective functions include the execution time of
the trajectory, path smoothness or distance to obstacles. The
problem has often been tackled by replacing the multiple
objectives f(x) = [f1(x), . . . , fk(x)] with a weighted sum
λ>f(x). This renders the objective scalar, and the problem
can be solved with standard optimization procedures.

In most cases, the appropriate weighting λ might be
arbitrary and hard to determine, especially for a non-expert
user. In this paper, we follow an alternative approach and
we only assume that the user can give a set of preferences
f1 � f2 � . . . � fk on the priorities of the objectives.

Problems of this kind are known as lexicographic opti-
mization [19], and, given a feasible set X , can be compactly
stated as follows:

lex min {f1(x), . . . , fk(x)}
subject to x ∈ X .

(1)

The problem is equivalent to an ordered sequence of opti-
mization problems for i = 1, . . . , k:

minimize fi(x)

subject to x ∈ X , fj(x) ≤ f∗j ∀j < i,
(2)

where f∗j is the j-th optimal value of the previous problem.
Given an m-dimensional trajectory q(t) = q(s(t)), we

formulate the trajectory optimization problem as computing
a path q : [0, 1]→ Rm and a monotone non-decreasing time-
scaling function s : R≥0 → [0, 1]. We consider two objective
functions: execution time and trajectory smoothness.

Let time T be expressed by the following objective, which
only depends on s:

T =

∫ T

0

dt =

∫ 1

0

ds

ṡ
. (3)

Let us express the trajectory smoothness through a convex
functional φ : H → R, bounded from below, where H
denotes the Hilbert space of trajectories in Rm. Finally,
let Q : [0, 1] → P(Rm), V : [0, 1] → P(Rm), and
A : [0, 1]→ P(Rm) be functions that map path coordinates
to convex feasible sets, respectively on position, velocity, and
acceleration. Let the first and second derivative of q(t) with
respect to time be:

q̇(t) = q′(s)ṡ, q̈(t) = q′′(s)ṡ2 + q′(s)s̈, (4)

where we denote with the apostrophe derivatives with respect
to the path coordinate s, and with the dot derivatives with
respect to the time t.

We thus formulate the problem as

lex min

{∫ 1

0

ds

ṡ
, φ [q ◦ s]

}
(5)

subject to q(s) ∈ Q(s) ∀s ∈ [0, 1], (6)
q′(s)ṡ ∈ V(s) ∀s ∈ [0, 1], (7)

q′′(s)ṡ2 + q′(s)s̈ ∈ A(s) ∀s ∈ [0, 1], (8)
q(0) = q0, q(1) = qT , (9)
q′(0)ṡ(0) = q̇0, q′(1)ṡ(T ) = q̇T , (10)



where q0, qT , q̇0 and q̇T denote the configuration and the
velocity of the trajectory at the boundaries.

A. Optimization via block coordinate descent

Unfortunately, problem (5)–(10) is highly non-convex.
This is because optimization is carried out with respect to
both q and s, which appear composed in the problem. We
choose to iteratively solve the problem via block coordinate
descent, under the assumption that an initial feasible guess
q̆, s̆ is available. This is equivalent to alternating between
solving (5)–(10) for q with s fixed (trajectory smoothing)
and solving (5)–(10) for s with q fixed (time scaling). Our
choice is motivated by the fact that, under the assumption
that Q, V , and A return convex sets and for certain convex
φ [f ] functionals, both steps can be individually solved via
convex optimization. Moreover, the convergence of the al-
gorithm can be trivially proven by exploiting the monotone
convergence theorem.

B. Convexity of time scaling and trajectory smoothing

Let us consider the optimization of (5)–(10) for q. Since
the execution time only depends on s, the lexicographic
objective reduces to the smoothness functional. By assump-
tion, s is fixed and Q, V , and A return convex sets. Since
convexity is preserved under linear transformation, (7) and
(8) are convex. Similarly, (6), and (9)–(10) are trivially
convex, and so is the smoothness functional φ[q ◦ s] for any
convex functional φ[f ]. Therefore the trajectory smoothing
problem is convex.

When solving (5)–(10) with respect to the time scaling s,
we need to consider the two functionals separately, due to the
lexicographic framework. Following Verscheure et al. [25],
we take the nonlinear substitution:

a(s) = s̈, b(s) = ṡ2. (11)

These functions are related by the differential property
b′(s) = 2a(s), which follows from noting that ḃ(s) = b′(s)ṡ
and ḃ(s) = d

dt

{
ṡ2
}

= 2ṡs̈ = 2a(s)ṡ.
If we include this constraint in (5)–(10) and enforce

the non-negativity of b(s), we can rewrite the problem of
minimizing the time functional as a function of a(s) and
b(s) alone:

minimize

∫ 1

0

ds√
b(s)

(12)

subject to b(s) ≥ 0, b′(s) = 2a(s) ∀s ∈ [0, 1], (13)

q′(s)
√
b(s) ∈ V(s) ∀s ∈ [0, 1], (14)

q′′(s)b(s) + q′(s)a(s) ∈ A(s) ∀s ∈ [0, 1], (15)
b(0) = 1, b(1) = 1. (16)

Here, we removed (6) and (9), due to their independence of
the time scaling function, and replaced (10) by (16), without
loss of generality. The cost (12) is convex in b(s), (13)
and (16) are trivially convex, while the convexity of (15)
is established due to invariance under linear transformations.

The constraint (14) can be proven to be convex exploiting
the scalar nature of b(s), for chosen s.

We rewrite the problem of minimizing the smoothness
functional in a similar way to (12)–(16), with the difference
that we replace (12) with φ[q ◦ s] and we add the lexico-
graphic constraint: ∫ 1

0

ds√
b(s)

≤ T ∗, (17)

where T ∗ is the execution time computed by the preceding
time minimization. While (17) is convex, φ[q ◦ s] is not
always so under substitution (11). In this work we consider
the squared `2 norm of q̈(t) as smoothness functional, since
lower accelerations lead to smoother velocities and lower
energy consumption. In this case we have:

φ[q ◦ s] =

∫ 1

0

‖q′′(s)b(s) + q′(s)a(s)‖22√
b(s)

ds, (18)

which is indeed convex in both a(s) and b(s).

IV. TEACH OPTIMIZE AND REPEAT WITH LEXTOR

In this section, we describe LexTOR, our proposed al-
gorithm for teach, optimize and repeat. Intuitively, LexTOR
inserts an optimize step between the teach and repeat phase,
in order to compute an optimized trajectory in terms of
execution time and smoothness. This entails defining a
trajectory parameterization, identifying the constraints (6)–
(10) and formulating the problem with respect to the chosen
parametrization.

A. Trajectory parameterization and constraints

We represent the trajectory q(t) as a piecewise quadratic
function with q ∈ C1(R), composed of N distinct intervals
with non-uniform sizes ∆tn ∀n ∈ {1, . . . , N}. Hence, we
compactly represent q(t) as a collection of N time intervals
∆tn and of N + 1 vectors qn, vn, an, where:

q(tn) = qn, q̇(tn) = vn, q̈(tn) = an, (19)

for all n ∈ {1, . . . , N + 1}, with tn =
∑n−1

i=1 ∆ti.
Regarding the constraints, we consider Q(s), V(s), and

A(s) to be sampled at N+1 distinct points Qn, Vn, and An

which respectively constrain qn, vn, and an. We compute
the set Qn based on user preferences on the deviation from
the taught trajectory qo(t). The sets Vn and An express the
maximum velocities and accelerations the robot is allowed
to achieve.

Unfortunately, constraining the x and y velocity in the
robot frame is not convex. Hence, we enforce convexity by
bounding the tangential velocity. Denoting by vmax and ωmax

respectively the maximum spatial and angular velocity, we
impose: √

ẋ2 + ẏ2 ≤ vmax, |θ̇| ≤ ωmax. (20)

Similarly, we compute a conservative bound in accelera-
tion, by taking into account the inequality:

d

dt

√
ẋ2 + ẏ2 ≤

√
ẍ2 + ÿ2 ∀x, y ∈ C1(R). (21)



Hence, if amax and αmax denote respectively the maximum
spatial and angular acceleration we can impose:√

ẍ2 + ÿ2 ≤ amax, |θ̈| ≤ αmax. (22)

The constraints are second order cone (SOC) constraints and
can be expressed in terms of qn, vn, and an.

B. Trajectory smoothing
During the trajectory smoothing step of block coordi-

nate descent, the scaling function s is fixed and known.
Therefore, we directly optimize in temporal space, as this
greatly simplifies both exposition and implementation. Given
the piecewise quadratic parameterization, we formulate the
trajectory smoothing problem as follows:

minimize

N∑
n=1

‖an‖22 ∆tn (23)

subject to qn+1 = qn + vn∆tn +
1

2
an∆t2n, (24)

vn+1 = vn + an∆tn, (25)
qn ∈ Qn, vn ∈ Vn, an ∈ An, (26)
q1 = q0, qN+1 = qT , (27)
v1 = q̇0, vN+1 = q̇T . (28)

Here, we consider the ∆tn as the time coordinates from the
previous time scaling optimization, and optimize for qn, vn,
and an, ∀n ∈ {1, . . . , N}. The constraints (24) and (25) are
taken ∀n ∈ {1, . . . , N}, while (26) ∀n ∈ {1, . . . , N + 1}.

All the constraints are either SOC or linear. Note that min-
imizing the objective function is equivalent to minimizing the
value of a helper variable γ with the constraint∥∥∥∥[a>1√∆t1 a>2

√
∆t2 · · · a>N

√
∆tN

]>∥∥∥∥
2

≤ γ. (29)

The trajectory smoothing is therefore a SOCP problem, for
which efficient solvers exist [3].

C. Time scaling
During the time scaling step, the path q is fixed and

known. Following [25], we assume b(s) to be a continuous
piecewise linear function of s, with N fixed intervals. As a
consequence, a(s) is piecewise constant, given the differen-
tial relationship b′(s) = 2a(s). We compactly represent a(s)
and b(s) as a collection of N path coordinate intervals ∆sn
and N + 1 samples an = a(sn), bn = b(sn), whose spacing
depends on the ∆tn of (23). Under the piecewise linearity
assumption, the problem (12)–(16) becomes

minimize

N∑
n=1

2∆sn√
bn+1 +

√
bn

(30)

subject to bn ≥ 0, (31)
bn+1 − bn = 2an∆sn, (32)

vn

√
bn ∈ Vn, (33)

vnan + anbn ∈ An, (34)
vn+1an + anbn+1 ∈ An, (35)
b1 = 1, bN = 1, (36)

where we optimize for bn and an ∀n ∈ {1, . . . , N + 1}
and consider (31), (33), and (34) ∀n ∈ {1, . . . , N + 1}.
Constraints (32) and (35) are taken ∀n ∈ {1, . . . , N}.

We include the constraint (35) to bound the acceleration
∀s ∈ [sn, sn+1]. The scaled acceleration is linear in s,
therefore we can check inclusion only at sn and sn+1.

Similarly to trajectory smoothing, the entire problem can
be reformulated as SOCP. We know that (33) is a convex
constraint of a scalar variable, therefore it is in the form
bmin
n ≤ bn ≤ bmax

n , for some bmin
n and bmax

n . SOC constraints
are closed with respect to linear transformations, hence (34)
and (35) are SOC. The problem is equivalent to minimizing,
for the helper variables cn and dn [25],

N∑
n=1

2∆sndn, (37)

with the additional constraints:∥∥∥[ 2cn bn − 1 ]
>
∥∥∥
2
≤ bn + 1, (38)∥∥∥[ 2 cn+1 + cn − dn ]

>
∥∥∥
2
≤ cn+1 + cn + dn, (39)

where we take the first constraint ∀n ∈ {1, . . . , N + 1} and
the second ∀n ∈ {1, . . . , N}. Finally, we compute a new set
of time intervals ∆tn for the succeeding iteration as ∆tn 7→
2∆sndn.

A similar approach can be followed in order to optimize
the smoothness of the trajectory with respect to the time
scaling. Consistently with Sec. III-B we supplement (30)–
(36) with the lexicographic constraint:

N∑
n=1

2∆sndn ≤
N∑

n=1

∆sn, (40)

where we take ∆sn from the solution of (30)–(36).
Under our parameterization for q and s, we approximate

(18) as:
N∑

n=1

‖anbn + vnan‖2√
bn

∆sn, (41)

which is a fair choice so long as ∆sn � 1 ∀n ∈ {1, . . . , N}.
The whole problem can be expressed in SOCP form by in-
troducing N additional variables en, replacing (30) with the
objective

∑N
i=1 en, and introducing the following constraints

∀n ∈ {1, . . . , N}:∥∥∥∥[ 2
√

∆sn
(
a>n bn + v>n an

)
en − cn

]>∥∥∥∥
2

≤ en+cn. (42)

D. Execution of the optimized trajectory

For the execution of the trajectory, we build upon our
previous work on teach and repeat [21]. During the teach
phase, the system records pose and velocity of the robot
from the wheel encoders. The system also records the
measurements from an on-board laser range finder at so-
called anchor points. We express the reference trajectory as
relative offset to these anchor points and, during the repeat
phase, we employ a scan matching routine to compute the
error signal for the feedback controller. By expressing the
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Fig. 2. Anchor points, along the demonstrated path, that were selected
when tracking the optimized trajectory of the Edgy scenario, with 20 cm
distance constraints. Slight holes in anchor point selection may occur due
to differences in orientation, which are not shown here. The path is expressed
in odometry frame as it is internally computed by the robot, which is not
aware of its global position.

reference trajectory relative to anchor points, our framework
alleviates the drift in odometry without the need of building
a globally consistent metric map in a setup phase.

This work presents two main differences. First, the anchor
points now no longer necessarily fall onto the optimized
trajectory, an effect that is visualized in Fig. 2. Second, we
replace the recorded velocity with the optimized one in the
feed-forward part of the controller.

E. Practical aspects

Both optimization problems described in Sec. IV-C result
in a piecewise quadratic time scaling function. For any con-
tinuous trajectory model, the composition with the scaling
function results in higher order terms, like jerk or snap.
This high order effects may render the trajectory smoothing
problem infeasible, since we are only considering ∆tn time
intervals. This is unfortunately inevitable for any computa-
tion that relies on finite precision. When this happens, we
circumvent this problem by choosing a small ε > 0 and feed
to the trajectory smoothing a set of scaled time intervals
(1 + ε)∆tn. As the sampling of the trajectory gets denser,
jerk and snap become negligible, and in the limiting case of
N →∞ we have that ε→ 0.

As an additional note, in our experiments we have found
that optimizing the trajectory smoothness with respect to
the time scaling function will not, in general, improve the
smoothness cost significantly. As a rule of thumb it can thus
be completely omitted, especially if computational efficiency
is of dire importance.

V. EXPERIMENTAL EVALUATION

We evaluated LexTOR on a holonomic KUKA omniRob
equipped with two SICK S300 laser scanners with a 270◦

field of view and 541 beams. Fig. 1 depicts the KUKA
omniRob in action, as well as the environment in which
the tests were performed, although different obstacles were
placed for different trajectory demonstrations. We recorded
the robot trajectory with Motion Analysis’ Cortex motion
capture studio for the ground-truth evaluation. To reduce the
noise due to the vibration of the pole on which the markers
are mounted, we smooth the recorded data with a normal

1 m

Taught
Optimized 40 cm
Optimized 20 cm
Optimized 10 cm

Fig. 3. Taught and optimized trajectories with location boundaries for the
Edgy test scenario, according to the motion capture studio. Three levels of
maximum distance are shown, respectively 10 cm, 20 cm, and 40 cm.

kernel with 20 ms of standard deviation. We implemented
the lexicographic optimization in MATLAB with CVX [8]
as front-end convex optimizer and SDPT3 [23] as back-end.
For the recording and execution of trajectories we relied on
the teach-and-repeat approach proposed by Sprunk et al. [21].
For the latter we used the reported parameters without further
fine-tuning control gains or time delays. As shown by Sprunk
et al. [21], the teach-and-repeat approach is accurate enough
to not require the use of both laser scanners; we thus use
only one scanner for the sake of simplicity.

A. Experimental setup

We test four distinct trajectories in order to validate our
approach under different scenarios, shown in Fig. 3 and
Fig. 4. For ease of exposition, we name them FigureEight,
Loop, Passage and Edgy. All of them are round-courses for
pure ease of practical evaluation, as this avoids the need to
reposition the robot for multiple executions.

We devise the scenarios to showcase different behaviors.
FigureEight provides a reference trajectory that is well suited
for smooth execution. Edgy evaluates the behavior of the
approach in the presence of strong cusps in the path of the
robot. Loop provides a test where both smooth execution
and a cusp are present. Passage showcases an instance where
the robot needs to pass through a narrow passage and hence
contains bounds of different size. We bounded all executions
to maximum velocities of 0.6 m/s in translation and 0.5 rad/s
in rotation. We set the bounds on the acceleration according
to the hard limits of the firmware, namely 0.8 m/s2 in
translation and 1 rad/s2 in rotation. We demonstrated the
trajectories with a joystick, resulting in irregular velocity and
acceleration profiles. The execution time of the demonstrated
trajectories ranges from 29 to 79 seconds.

We devise both qualitative and quantitative tests, with the
goal of verifying execution time, smoothness, accuracy, and
satisfaction of location constraint. For a fair comparison with
the human demonstration we optimize the input trajectories
with the same velocity limits of 0.6 m/s in translation and
0.5 rad/s in orientation, while also bounding the maximum
acceleration to be no larger than 0.4 m/s in translation and
0.4 rad/s in rotation, which are, in fact, more restrictive than
those of the taught trajectories.
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Fig. 4. Taught and optimized trajectories with location boundaries (shaded) for the FigureEight, Loop and Passage test scenarios according to the motion
capture studio. All three scenarios share the same scale reported in the center.

We impose a maximum Euclidean distance radius of 20 cm
and a maximum angular distance of 10◦ from each odometry
measurement of the reference trajectory. For the Passage
trajectory, we consider non-uniform distance bounds: we
change the latter values to be respectively 2 cm and 1◦, in
the narrow passage portion of the sequence. In an effort
to determine the behavior of our approach under more and
less restrictive location constraints, for the Edgy trajectory
we also consider two extra tests, in one we decrease the
Euclidean distance to 10 cm and angular distance to 5◦, in
the other we increase them to 40 cm and 20◦, respectively.

B. Qualitative analysis

Fig. 3 and Fig. 4 show the taught trajectories and a
sample execution of the optimized ones, as captured by the
motion capture studio, as well as the bounds in position.
The optimized trajectories always remains within the given
bounds, without the use of any map of the environment.

As the optimized trajectory does not follow exactly the
taught one, the anchor points might be further away from the
optimized trajectory. We are, nevertheless, able to accurately
repeat the trajectory by matching anchor points based on a
combined norm of rotational and spatial differences. Fig. 2
reports which anchor points were selected for the 20 cm
optimized trajectory of the Edgy scenario.

The resulting trajectories are not only smooth in position,
but also in velocity. Fig. 8 shows a comparison between
the recorded and optimized velocity profiles for the Loop
trajectory. The erratic behavior of the velocities demonstrated
by the human operator result in degraded execution times and
put significantly more strain on the robot, which may result
in faster wear of its components.

Our approach is not equivalent to a mere trajectory
smoothing followed by a retiming step. Changing the veloc-
ity or acceleration limits will not only affect the execution
time, but also the computed trajectory. Fig. 5 depicts an
instance of such a behavior, where we report the optimized
version of the Loop trajectory together with another opti-
mized version with halved maximum speeds.

1 m
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Optimized
Optimized,
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Optimized
Optimized,
half speed

Fig. 5. Close-up of the taught and optimized trajectories for different
velocity limits, as recorded by the motion capture. Halving the maximum
velocities not only affects the temporal execution of the trajectory, but also
the actual computed path.

C. Quantitative analysis

Fig. 6 shows the real execution times for the taught
trajectories against the optimized ones with 20 cm bounds.
We achieve a reduction ranging from 23% to 45% when
compared to the human demonstrations, despite lower ac-
celeration allowances. For the Edgy trajectory we achieve
timings consistent with the location constraints: 25 s with a
reduction of 14% for the more constricted configuration and
20 s with a reduction of 32% for the less constricted one.

In addition to the execution time, we evaluated the accu-
racy in tracking for both taught and optimized trajectories.
Given the absence of a ground-truth demonstration for the
optimized trajectories, we compute it from the taught one.
We synchronize the motion capture recording with the odom-
etry of the taught trajectory and then, for each sample of the
odometry, we apply to the motion capture recording the rigid
body transformation between the taught odometry and the
optimized one. Clearly, this approach introduces additional
errors, due to time misalignments and the leaver-arm effect
for the rigid body transformations. As a consequence, we
take the synthetic ground-truth to be a rough tool to evaluate
lower bounds on the accuracy of the approach.

Fig. 7 shows a box plot of the translational errors for
both taught and 20 cm optimized trajectories. Despite the
inaccuracies introduced by the synthetic ground-truth, we
consistently obtain median errors lower than 5 mm.
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Fig. 6. Average execution times of taught and optimized trajectories with
20 cm distance constraints for all four scenarios.
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Fig. 7. Translational error of taught and 20 cm optimized trajectories. The
boxes show minimum, maximum, and median errors, as well as upper and
lower quartiles. We evaluated approximately 10 executions per trajectory,
with a total of 90 executions. The errors for the optimized trajectories
provide an upper bound on the actual error, due to absence of ground-truth.

VI. CONCLUSION

In this paper, we proposed teach, optimize and repeat
(TOR), a novel paradigm for navigation that extends teach
and repeat methods. The paradigm is able to counter the hu-
man factor during demonstration by including an additional
optimization step between the teach and repeat phase, based
on user preferences. This results in repeat phases that require
less execution time and are less prone to wear or tear robot
components, while still remaining within chosen bounds of
the original demonstration.

We further devised a constrained trajectory optimization
framework, LexTOR, which optimizes both execution time
and trajectory smoothness in the lexicographic sense. Each
step of the algorithm can be expressed as a second order
cone program, thus allowing for efficient implementations.
Finally, with the aid of a motion capture system, we showed
the effectiveness of our approach, by thoroughly evaluating
it on a holonomic robot. Experiments show that LexTOR
produces trajectories that are faster and smoother than those
taught by the user, that are within the specified bounds, and
that can be executed with an accuracy of a few millimeters.
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