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Abstract Mobile robot localization is a mature field that over the years has demon-
strated its effectiveness and robustness. The majority of the approaches, however,
rely on a globally consistent map, and localize on it in an absolute coordinate frame.
This global consistency cannot be guaranteed when the map is estimated by the
robot itself, and an error in the map will likely result in the failure of the localization
subsystem. In this paper we introduce a novel paradigm for localization, namely rel-
ative topometric localization, by which we forgo the need for a globally consistent
map. We adopt a graph-based representation of the environment, and estimate both
the topological location on the graph and the relative metrical position with respect
to it. We extensively evaluated our approach and tested it against Monte Carlo local-
ization on both simulated and real data. The results show significant improvements
in scenarios where there is no globally consistent map.

1 Introduction

Mobile robot localization is a well studied field in robotics and several robust ap-
proaches to localization have been proposed in the past [11, 14, 19, 12]. The majority
of those approaches, however, assume that a globally consistent map of the environ-
ment is built beforehand by a mapping process. This map is then used to estimate
the pose of the robot in a single absolute reference frame, often without taking into
account the map uncertainties arising from the robot pose estimates during mapping.

Such maps are normally built by a separate mapping process, solving what is
called the simultaneous localization and mapping (SLAM) problem. Many modern
techniques for this problem are based on a least squares minimization approach over
a graph of measurements [13], whose error is assumed to be normally distributed.
In the presence of data association outliers, the Gaussian error assumption leads
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to maps that are not globally consistent. The need of a globally consistent map for
localization led many researchers to either apply robust statistics in the minimization
step [1, 30, 18, 24], or to measure the global consistency of the resulting maps [20].

In this paper we propose a novel paradigm to robot localization that relaxes the
assumption of a globally consistent map and a single absolute reference frame. We
believe that, for the majority of navigation tasks, a globally consistent map is not
necessary and one only needs global topological information and local metrical con-
sistency. Our paradigm, relative topometric localization (RTL), is based on a graph
representation of the environment, where each node represents a pose in the map
and each edge their relative transformation. The graph implicitly defines a manifold
structure with a chart associated to each node that parametrizes its local neighbor-
hood. Such maps are not unusual in robotics, since they are the internal represen-
tation of modern mapping approaches based on pose-graph estimation or bundle
adjustment. We also do not assume this map to be the result of any optimization
process, nor to be globally embeddable in a single Euclidean space.

We formulate the localization problem as jointly estimating the current reference
frame and the relative pose of the robot within its chart. Our paradigm has a set of
advantages with respect to approaches based on a single absolute reference frame:
1) it is inherently robust to maps that are not globally consistent; 2) it includes un-
certainties in the map estimate during localization; and 3) it operates on unoptimized
maps, removing the need for a SLAM back-end.

We thoroughly evaluated our approach on a large set of experiments in fully
simulated environments, environments sourced from real data, as well as on a real
robot tracked with a motion capture system. To verify our claims, we compared our
method with a Monte Carlo localization approach [26] on maps that have differ-
ent levels of global inconsistency. In an additional experiment, we also evaluated
our paradigm when the map is globally consistent but the environment changed its
appearance (e.g., furniture was added or removed). The experimental results demon-
strate that a relative topometric approach is indeed resilient to global inconsistencies
in the map. Further, the method provides localization accuracy in the order of mil-
limeters even under substantial changes in the environment or inconsistencies.

2 Related Work

Autonomous localization has been mainly addressed within probabilistic state es-
timation frameworks, with solutions based on extended Kalman filters (EKF) [19],
histogram filters [12] or particle filters, often referred to as Monte-Carlo localiza-
tion (MCL) [11]. Such approaches assume knowledge of a globally consistent map,
without considering any uncertainty on it apart from the error induced by grid-based
approximations. In this work, we relax the assumption of global consistency and we
explicitly consider uncertainties in the map stemming from the SLAM process.

In the context of SLAM and bundle adjustment, several authors explored the
concept of relative estimates. Howard et al. [2] introduced the idea of a manifold
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mapping for multiple robots. In their approach, the map is represented as a two-
dimensional manifold embedded in a higher-dimensional space. They introduce key
ideas of the manifold structure and present an application to multi-robot mapping.
Sibley et al. [27] proposed the relative bundle adjustment paradigm. They claim
that bundle adjustment is costly due to the choice of a single privileged reference
frame and propose to optimize in a metric space defined by a manifold instead of a
single Euclidean space. Their paradigm has been first extended by Blanco et al. [6],
to consider a set of possible sparsification strategies, and by Strasdat et al. [29], to
consider a second optimization window and to enforce a metric consistency within
this optimization window. We differ from those works for the fact that we address a
localization problem and also estimate a distribution over the reference frame. This
is needed in order to include possible multiple localization hypotheses.

Churchill and Newman [9] introduced the concept of navigation experiences,
i.e., robot paths with relative metrical information. They localize the robot in the
experiences by first using appearance-based data association methods to estimate
the initial node in the experience graph and then track the robot position using visual
odometry techniques. In contrast to our framework, their approach does not consider
uncertainties in the map, nor does it track the index of the reference frame over time.

Recently, the need of a globally consistent map for navigation has been ques-
tioned by some researchers. Konolige et al. [15] proposed a navigation system based
on a hybrid metric-topological map. They employ a laser scanner and localize the
robot with respect to one reference node in the graph. Dayoub et al. [10] extended
the approach to cameras and considered a set of image features associated at each
node in the graph. Our approach is closely related to these last two. The main differ-
ence is that we do not assume the graph to be the result of an optimization algorithm.
Additionally, we are able to consider uncertainties in the map estimates.

The concept of topometric localization has also been exploited by Badino et
al. [3]. The authors build a topological map as a vehicle travels along its route.
Each node is linked with a pose in the environment and the localization algorithm
estimates which node the robot is currently in. The robot pose is then the pose stored
in that node. Xu et al. [33] extended this to consider multiple roads and branchings
along paths. Both approaches differ from ours, as the real estimation part is purely
topological and the authors still rely on a global reference frame for the robot pose.

Ideas closely related to topometric localization are also present in teach-and-
repeat frameworks. Sprunk et al. [28] proposed a data-driven approach using laser
scanners and demonstrated millimeter-level accuracy without building any glob-
ally consistent map of the environment. McManus et al. [21] proposed an approach
based on 3D laser reflectivity that is able to handle long-range navigation in chal-
lenging environments. The map is a chain of poses, where each pose has a submap
associated to it. Localization is performed on the latter, relative to the corresponding
pose, and a set of heuristics to switch submaps is presented. Krüsi et al. [16] build
a similar metrical/topological map, but rely on ICP to perform localization on the
submaps with a local motion planner to avoid obstacles. Our approach differs from
teach and repeat paradigms since we do not localize only on a single route and we
further propose a sound estimation framework for tracking the reference frame.
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(a) Ground truth map (b) Optimized map with outliers

Fig. 1 Effect of outliers in the association on the global consistency of the resulting map. Intro-
ducing just 5 outliers in the data association (marked in red) renders the central part of the map
completely unusable for MCL.

3 Relative Topometric Localization

In this section we describe the relative topometric localization paradigm and relate
it to the metric one. In metric localization, one seeks to estimate the pose of the
robot at each time step, given the map of the environment and the history of sen-
sor measurements and controls. The main assumption is that the map is a globally
consistent metric representation of the environment, consisting of the absolute po-
sition of relevant features in the environment (e.g., cells in an occupancy grid or a
set of key-points for visual localization). The location of those features, as well as
the pose of the robot, is expressed with respect to a single reference frame, which
is the global coordinate frame of the map. Formally, this is equivalent to recursively
estimating the posterior p(xt | z1:t ,u1:t ,m), with robot pose xt , measurements z1:t ,
odometry readings u1:t

1 and map m.
This is often estimated by a finite set of particles, resulting in the well established

field of Monte Carlo localization (MCL) [11]. MCL has been proven to be a robust
approach for localization and is often deployed on robots when the map m is known
a-priori. Nevertheless, estimating the pose of the robot in an absolute frame of refer-
ence implicitly assumes the map m to be globally consistent, an assumption that can
easily be violated in the presence of outlier associations during the SLAM process.
Such a scenario can especially occur if the map of the environment is automatically
computed by the robot, without human post-processing, and the underlying SLAM
system introduces wrong associations due to, say, perceptual aliasing [1]. Fig. 1
showcases how the effect of a small amount of associations can impact the resulting
map and consequently cripple the estimate of MCL in a large portion of it.

1 Note that this is equivalent to the more traditional formulation with control inputs.
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3.1 Relative Topometric Paradigm

In the relative topometric paradigm, we relax the assumption of a globally consistent
metric map. As map representation, we follow an approach much akin to the one
proposed by Howard et al. [2]. We consider the map of the environment to be a
collection of patches that are locally homeomorphic to the Euclidean space, thus
inducing a manifold structure, without the need of defining a global embedding.

More precisely, the map is a graph of poses mi, i = 1, . . . ,N with a set of rela-
tive transformations wi, j ∈ SE(n) between them, and sensory data attached to them.
Each node i in the graph defines a local chart of the manifold, of which mi is the
origin. Here, we can assume that the projection of the sensory data of the nodes in a
neighborhood of i is roughly locally consistent. This, in turn, defines an open set in
which the chart is valid.

While the chart is only locally valid, we can still express the poses of the remain-
der of the map in this reference system by chaining the transformations wi, j along
the minimum distance spanning tree of the whole graph, with farther nodes having
increasingly erroneous relative position estimates.

Let zt =
[

z(1)t z(2)t . . . z(N)
t
]

be a vector of measurements at time t, where each

z(i)t arises from matching the current observations of the robot with the observa-
tions stored in the node i of the graph. We wish to estimate at each time step t
the vector of relative transformations between the poses mi and the robot, namely
∆xt =

[
∆x(1)t ∆x(2)t . . . ∆x(N)

t
]
∈ SE(n)N . In the ideal situation, where the manifold

can be globally embedded, ∆x(i)t =	mi⊕xt . Here, mi and xt respectively represent
the pose of the node and of the robot in an absolute coordinate frame.

Formally, this is equivalent to jointly estimating the posterior over the reference
frame rt (i.e., the index of the current chart for the manifold) and the relative poses
∆xt of the robot in that particular chart:

p(rt ,∆xt | z1:t ,u1:t ,w) = p(∆xt | rt ,z1:t ,u1:t ,w)p(rt | z1:t ,u1:t ,w). (1)

The distribution is composed of a discrete probability mass, associated with a con-
tinuous probability density function, which we assume to be a Gaussian. The former
represents the probability of the robot being within the open set in which the chart
is valid, the latter represents the distribution of the robot pose in that specific chart.
Following Bar-Shalom et al. [4], the estimation of (1) can be formulated within the
Dynamic Multiple Model Estimator framework. In this framework, the goal is to es-
timate the state of a system that obeys one of a finite number of system models. Each
model defines its own measurement and motion model and, during the estimation
process, the system may change its model of operation. In our case, we can consider
the choice of the reference frame as one model of our system, resulting in a finite
number of models equivalent to the number of nodes in our graph. The change of
model happens when the robot is not any longer in the valid set of the current chart
and a new chart must be used.
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Unfortunately, the full estimation problem requires tracking the whole sequence
of frames, which results in Gaussian mixture distribution with an exponentially in-
creasing number of terms. To reduce this complexity, approximated algorithms have
been proposed, such as the Interacting Multiple Model [4], Markov Chain Monte
Carlo [23], or Multiple Hypothesis Tracking [5].

In this paper, we focus on position tracking and we approximate the estimation
of (1) by considering only the maximum likelihood frame at each time step. We be-
lieve that this is a valid approximation for position tracking problems, which is also
confirmed by the experimental results presented below. We leave the full estimation
problem as future work.

4 Position Tracking in the Relative Topometric Paradigm

In this section we describe the proposed approximation of (1) and its instantiation
for position tracking problems. At each time step t, we approximate the distribu-
tion over the reference frames with a deterministic probability mass, centered at its
maximum r̂t , i.e.,

p(rt | z1:t ,u1:t ,w)≈ δ [rt − r̂t ], (2)

where δ [r] denotes the discrete impulse function. To compute the next estimate of rt
we thus need to find the index i over the possible reference frames that maximizes
the likelihood

p(rt = i | w,z1:t ,u1:t) = ∑
rt−1

p(rt = i | rt−1,z1:t ,u1:t ,w)p(rt−1 | z1:t ,u1:t ,w) (3)

∝ p(zt | rt = i, r̂t−1,u1:t ,w)p(rt = i | r̂t−1,z1:t−1,u1:t ,w) (4)
≈ p(zt | rt = i, r̂t−1,ut ,w,∆ x̂t−1)p(rt = i | r̂t−1). (5)

Here, ∆ x̂t−1, denotes the random variable associated to the posterior distribution
of ∆xt−1 estimated at the previous time step. We assume ∆ x̂t−1 to be approximable
by a Gaussian random variable with mean ∆ x̄t−1 and covariance ΣΣΣ t−1. Note that
from (3) to (4), we substituted approximation (2), applied Bayes’ rule on zt , and used
the independence assumption of the measurements. From (4) to (5) we followed the
same approach of the generalized pseudo-Bayesian estimator of first order (GPB1)
[4], namely, we assumed a transition model p(rt | rt−1) on the reference nodes, and
used the previous displacement estimate for computing the measurement likelihood.

In this work we restrict ourselves to a uniform p(rt | rt−1) over all nodes in a local
neighborhood of rt−1, although this can be easily generalized to more elaborate
models. As for the measurement likelihood, we computed it as follows. We first
predict the relative pose of the robot in the reference frame rt = i by propagating
the previous relative pose at time t−1 from the reference r̂t−1 through the relative
measurements w defined in the map. Under normality assumptions, the likelihood is
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then equal to N (zt − ẑt ;0,ΣΣΣ), where ẑt is the predicted observation relative to the
reference frame rt = i and ΣΣΣ is the innovation covariance matrix.

In the case of range sensors, which is the implementation target of this paper, the
map includes a laser scan per node, the predicted observation is the relative pose of
the robot in the reference frame of rt , while the current observation can be the result
of an ICP procedure [8].

Let m denote the stacked mi poses, in the local neighborhood of rt , say Vt , for
which the chart associated to rt is valid, as well as the pose ms with s = r̂t−1. Then,
to compute the distribution over the robot pose, we express (1) as the marginal over
m and ∆xt−1. Given the approximation defined in (2), we compute the distribution

p(∆xt | r̂t ,z1:t ,u1:t ,w)

=
∫∫

p(∆xt ,∆xt−1,m | r̂t , r̂t−1,z1:t ,u1:t ,w)d∆xt−1dm (6)

Under the assumption that the conditional distribution of ∆xt can be approxi-
mated reasonably by a normal distribution, we can estimate the mean ∆ x̄t of the
marginal by maximum likelihood inference over the joint space of the relative poses
∆xt , the map nodes m, and the previous relative poses ∆xt−1. The marginalization
step is performed by simply extracting the values corresponding to ∆xt from the
joint mean vector. The covariance ΣΣΣ t−1, on the other hand, can be computed by
linear error propagation through the optimization algorithm.

Note that the choice of reference frame (i.e., the chart) introduces a map locality
due to the domain of the homeomorphism, implicitly discarding nodes and mea-
surements of the graph not included in the domain.

Thus, dropping r̂t and r̂t−1 for simplicity, the joint likelihood is proportional to

p(zt |∆xt ,m)p(w |m)p(ut | ∆xt ,∆xt−1)p(∆ x̂t−1 |m,∆xt−1), (7)

where we assumed zt , w, and ut to be conditionally independent. Theoretically,
we cannot assume independence between w and ∆ x̂t−1, since ∆ x̂t−1 was estimated
at the previous time step by using w as well. To avoid overconfidence due to this
correlation, the resulting covariance estimate should be corrected. The correction
factor can be computed following the approach of Mourikis and Roumeliotis [22].
We, however, experimentally found its effect to be negligible.

For ease of notation we will henceforth refer to r̂t as r and r̂t−1 as s. Under the
chart of r, the new reference node acts as the origin of its homeomorphic Euclidean
space, with respect to which its neighborhood is expressed. We can thus consider a
set of relative map pose coordinates ∆m(r)

i ∀i ∈Vt , which in the ideal case would be
equivalent to 	mr⊕mi.

To simplify the understanding of the conditional independence structure of the
likelihood in (7), we provide in Fig. 2(a) the reference frames at work in the estima-
tion problem. Here, k ∈Vt , while the observations zt are assumed to provide SE(n)
relative measurements, for example via ICP matching. In the general formulation,
the latter is not required, and we commit to it only for the sake of clarity.
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∆m(r)
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z(k)t
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(a) Frames considered

∆m(r)
s ∆x(r)t−1

∆x(r)t∆m(r)
k

∆x̂(s)t−1

ut

z(k)t

ws,r

z(r)t
wk,r

(b) Corresponding factor graph

Fig. 2 Frames and relative transformations involved in the small-scale estimation the robot’s rela-
tive pose (left) and the factor graph associated to the same problem (right).

Under the assumption that zt , ut, and w are normally distributed, we can maxi-
mize the likelihood (7) by performing nonlinear least squares optimization on a re-
duced factor graph. Specifically, we construct a graph which has as vertices ∆m(r)

s ,
∆m(r)

k ∀k ∈ Vt , ∆x(r)t−1 and ∆x(r)t . The factors we introduce are respectively all the

valid measurements z(i)t , the odometry reading ut , the previous estimate ∆ x̂(s)t−1, and
all wi, j connecting the map poses that have been introduced in the factor graph.

Note that there needs to exist a factor correlating m(r)
s to the remaining map

vertices, as otherwise the previous estimate and the odometry reading would be
neglected. If no such factor exists, it can be computed by linear error propagation.

Finally, we can compute the mean ∆ x̄(r)t of the next estimate by setting the cur-
rent reference node to zero, conditioning the factor graph on it, and optimizing with
respect to the remaining vertices. The resulting factor graph associated to the exam-
ple in Fig. 2(a) is reported in Fig. 2(b). Since we are conditioning with respect to
the current reference node, the factors that connected it have become priors on the
other vertices. Note that in this formulation, there is no assumption on zt and it does
not necessarily need to be an SE(n) measurement, however, zt should be such as to
allow the overall problem to be non-singular and observable.

Having found the mean ∆ x̄(r)t by nonlinear least squares optimization, the esti-
mation of the robot’s relative position to the remaining map poses is split over two
methods. For the map poses ∆m(r)

k that appeared in the factor graph optimization,

we use the resulting mean estimate ∆m̄(r)
k and compute ∆ x̄(k)t = 	∆m̄(r)

k ⊕∆ x̄(r)t .
For the remaining map poses we compute the relative estimate by chaining together
∆ x̄(r)t and all the transformations from the current reference node to the target map
pose, over the minimum distance spanning tree of the full map (in this paper we used
uniform weighting). Notice that with this formulation we explicitly compute only
the uncertainty of ∆x(r)t , and we keep all other uncertainties as implicitly defined
through linear error propagation.
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(a) Simulated environment 1 (b) Simulated environment 2 (c) Real environment

Fig. 3 Environments considered in the experiments in addition to the more common SLAM
datasets. The objects marked in red do not appear in the unfurnished counterparts.

5 Experiments

We evaluated our relative topometric localization approach (RTL) on a 2D localiza-
tion problem with range measurements. We considered virtual measurements com-
puted by the Canonical Scan Matcher (CSM) with point-to-line metric [8] and its
first order covariance approximation [7]. We further rely on g2o [17] for the least
squares optimization and on our MCL implementation for comparison [26].

5.1 Experimental setup

We evaluated our approach in both simulation and real data. For a more realis-
tic simulation, we also sourced laser data from real datasets, as performed by Ol-
son [25]. For the simulation data, we employed the Gazebo simulator on an environ-
ment based on two real floor plans. For each environment we kept the unfurnished
version, and created a further one with added obstacles and furniture. Fig. 3(a) and
Fig. 3(b) show the two environments in question, with the additional obstacles and
furniture marked in red. For each of the four maps we recorded one mapping run and
ten localization runs connecting distant areas in the environment. For the pseudo-
simulated data, we tested against the Intel Seattle, Intel Oregon, MIT CSAIL, and
ACES datasets, which are publicly available. As ground truth, we used the aligned
SLAM output and computed scans by casting rays on this aligned map. As with the
simulated datasets, we recorded one mapping run and ten localization runs per con-
figuration. In the above cases, we computed laser scans with 360◦ of field of vision
and 360 rays. Each ray was corrupted with Gaussian noise with 1cm of standard
deviation and rounded to the closest centimeter.

For the real robot experiment we created an environment in our lab, both with
and without additional obstacles. We used a KUKA omnirob, equipped with two
Sick S300 laser scanners with 541 beams and 270◦ of field of vision. The ground
truth was approximated by using a motion capture system with 10 Raptor-E cameras
recording at 300Hz. Again, we recorded one mapping run and 10 localization runs
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per configuration. To synchronize the data from the motion capture and the robot,
we periodically stopped the robot and we only considered the poses in which the
robot was stopped for both evaluation and mapping.

The motion capture may also introduce errors due to the not perfectly even floor,
limited view-points of the cameras, and imperfect calibrations. Fig. 3(c) displays
the recorded laser scans aligned according to the motion capture as well as the ad-
ditional obstacles that were introduced in red. Note that the map is imperfect due to
the aforementioned issues, as such the quality of the evaluation for the real data is
significantly lower than for the simulation datasets.

We compared our approach, RTL, with MCL as well as two additional bench-
mark approaches: a relative approach similar to RTL, where we assume the map is
the result of an optimization process and is not subject to errors, (LSLOC) and MCL
on the ground-truth map (MCLGT). Note that LSLOC, is equivalent in spirit to the
approach of Konolige et al. [15] and Dayoub et al. [10]. For MCL and MCLGT
we used 5000 particles, as measurement model we used likelihood fields saturated
to 2m of maximum distance, and rendered the map at 1cm of resolution for maxi-
mum accuracy. We experimentally found that resolutions greater than 1cm did not
improve the estimate. For each dataset, we use the same unoptimized pose graph as
input to RTL and for computing the globally consistent map for MCL and LSLOC.

We consider three localization scenarios: Standard localization, where the given
maps are globally consistent; Localization with outliers:, where the maps have dif-
ferent levels of inconsistency; and Furnished vs. unfurnished localization, where
maps are globally consistent and we moved furniture between the mapping and lo-
calization phase. Since we are considering a tracking problem, we initialized the
starting pose of all methods with the ground truth.

For the outlier case, we considered one simulated environment and the Intel Seat-
tle dataset with two levels of outliers, respectively 5 and 20. We generate those out-
liers by associating the most likely matchings returned by FLIRT [31] that were at
least at 3m of distance. A sample map with five outliers is reported in Fig. 1.

5.2 Evaluation criteria

We evaluate the localization accuracy at each time step t by measuring the discrep-
ancy ε

(i)
t = 	x̆t ⊕ m̆i⊕∆x(i)t between the predicted relative displacements and the

actual ones, for each reference frame i. Here x̆t and m̆i respectively refer to the
ground-truth pose of the robot at time t and of the i-th element of the map.

We compute the error statistics according to the robot’s actual distance from the
reference frame, in order to quantify the accuracy of all the methods at short dis-
tances, which are of interest to the robot, but also at progressively larger distances.
We compute the shortest distances from the robot to the map poses by means of Di-
jkstra’s algorithm on the rasterized ground-truth map, with 1cm resolution. For each
time step t we bin the absolute values of the errors ε

(i)
t in terms of distance and use

as statistics the 5th, 25th, 50th, 75th, and 95th percentile over the whole trajectory
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Fig. 4 Box plot of the errors in translation and rotation for the standard test scenario on the simu-
lated datasets. The data was gathered over 40 localization runs.
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Fig. 5 Box plot of the errors in translation and rotation for the standard test scenario on the pseudo-
simulated datasets. The data was gathered over 40 localization runs.

of all runs. When computing these statistics we do not take into account runs that
diverged; we assume a method to diverge on any particular run if the average abso-
lute error was greater than 1m in translation or 60◦ in rotation in the last 10% of the
trajectory. Since MCLGT uses the ground-truth map for localization the statistics
are independent of the distance, we thus report for it a single set of statistics.
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Fig. 6 Box plot of the errors in translation and rotation for the standard test scenario on the real
datasets. The data was gathered over 20 localization runs.

5.3 Accuracy results

We report in Fig. 4 and Fig. 5 the errors in terms of translation and rotation for the
simulated and pseudo-simulated runs in the standard localization scenario. The box
plots are binned at 1m of discretization, where the [a,b) values refer to all distances
between a and b. The errors for the pseudo-simulated datasets are indeed larger than
the simulated ones, which suggest an improved realism in the data sourcing.

As expected, the errors increase with respect to the distance for all methods, as
even the most accurate SLAM map is subject to incremental error. Note that at larger
distances the error of RTL increases more as the local chart is increasingly inaccu-
rate. This is to be expected and is the trade-off between local and global accuracy.
RTL and LSLOC consistently achieve lower errors than MCL, particularly in terms
of orientation, and at short distances improve even on MCLGT. Nevertheless, given
the scale of the graphs (millimeters and fractions of degrees) such differences are
inconsequential.

Fig. 6 reports the accuracy results for the real datasets in the standard localiza-
tion scenario. The errors are larger than both the pseudo-sumulated and simulated
datasets, partially due to the inaccuracy of the motion capture framework, the vari-
ous unmodeled errors, and possibly due to the greater number of outliers in the laser
range readings. Contrary to the previous tests, there is no clear preference to which
method is most accurate. These results confirm the practical effectiveness of MCL
when its assumptions are satisfied, with RTL showing competitive performance.

Fig. 7 shows the accuracy results for the localization scenario with 5 outliers.
LSLOC and MCL respectively diverged 18 and 17 times out of 20 localization runs,
and even when converged the methods exhibit significantly large errors in both posi-
tion and orientation. This result showcases the brittleness of traditional approaches
which rely on the assumption of a globally consistent map. On the contrary, RTL is



Relative Topometric Localization in Globally Inconsistent Maps 13

E
rr

o
r 

[m
m

]

1500

3000

4500

0

5

10

15
E
rr

o
r 

[d
e
g
]

15

30

45

[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10)
Spatial distance [m]

0.00

0.08

0.16

0.24

RTL LSLOC MCL
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virtually unaffected by the outliers up to approximately 4m of distance. At longer
distances the relative position estimates may be obtained by chaining estimates
through the outliers, which significantly degrades the accuracy. Similarly, Fig. 8
reports the accuracy results for the localization scenario with 20 outliers. LSLOC
and MCL diverged in all runs, while RTL converged in all instances and shows sim-
ilar performance. Although we have observed no such instances, in principle, RTL
might be also trapped in a wrong reference frame and exhibit divergence, since we
are committing on a single estimate for the reference frame. This problem can be
counteracted by considering a distribution over the reference frames.

Fig. 9 and Fig. 10 report the errors in localization for the furnished vs. unfur-
nished test scenario, respectively on simulated and real datasets. For the simulated
data MCL diverged in 4 instances, while MCLGT in 7.

The MCL methods show significantly degraded accuracy when localizing on a
map which does not reflect the structure of the perceived environment, as also shown
in the literature [32]. We conjecture it is due to the fact that truncated likelihood
fields and beam-based observation models are not robust enough to non-negligible
discrepancies between the map and the observed environment. For future works it
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would be of interest to explore the conditions under which MCL results in degraded
estimates and if it is possible to improve the observation model to account for them.

RTL and LSLOC, on the other hand, are virtually unaffected by the presence
or absence of furniture. We believe this is due to the robustness of the ICP variant
implemented in CSM and due to the fact that the localization is constrained to follow
the connectivity of the graph and cannot “cross” a room wall, which can indeed
happen with a standard variant of MCL.
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5.4 Timing results

In our implementation, each localization step requires roughly 220ms of time on a
multithreaded Intel R© CoreTM i7-3770K CPU clocked at 3.50GHz. By comparison,
MCL with 5000 particles requires approximately 90ms. The current bottleneck is the
number of ICP matchings executed per time step. This can be drastically reduced by
introducing a better transition model p(rt | rt−1), which is currently merely uniform.

6 Conclusion

In this paper we introduced a novel localization approach, relative topometric local-
ization, that relaxes the assumption of global consistency of the map used for local-
ization. We represent the map as a pose graph endowed with sensory data for each
node, which induces a manifold-like structure that, contrary to a globally consistent
map, is not required to be fully embeddable in a Euclidean space. We reformulated
the localization problem as estimating the topological node on the graph and a rel-
ative metric rigid body transformation. In doing so we obtained a method that is
both robust to outliers in the map, takes into account the uncertainty in the mapping
process, and that is independent of whether the graph has been optimized or not.
We showed through extensive evaluation on both simulated and real data that our
method not only significantly improves the state of the art in terms of localization
accuracy when the global map consistency assumption fails, but also that for short
relative distances it is equally accurate, or better, than MCL for the nominal cases.
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