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Abstract— Human-centered environments are rich with a
wide variety of spatial relations between everyday objects. For
autonomous robots to operate effectively in such environments,
they should be able to reason about these relations and
generalize them to objects with different shapes and sizes. For
example, having learned to place a toy inside a basket, a robot
should be able to generalize this concept using a spoon and
a cup. This requires a robot to have the flexibility to learn
arbitrary relations in a lifelong manner, making it challenging
for an expert to pre-program it with sufficient knowledge to do
so beforehand. In this paper, we address the problem of learning
spatial relations by introducing a novel method from the
perspective of distance metric learning. Our approach enables
a robot to reason about the similarity between pairwise spatial
relations, thereby enabling it to use its previous knowledge
when presented with a new relation to imitate. We show how
this makes it possible to learn arbitrary spatial relations from
non-expert users using a small number of examples and in
an interactive manner. Our extensive evaluation with real-
world data demonstrates the effectiveness of our method in
reasoning about a continuous spectrum of spatial relations and
generalizing them to new objects.

I. INTRODUCTION

Understanding spatial relations is a crucial faculty of au-
tonomous robots operating in human-centered environments.
We expect future service robots to undertake a variety of
everyday tasks such as setting the table, tidying up, or
assembling furniture. In this context, a robot should be able
to reason about the best way to reproduce a spatial relation
between two objects, e.g., by placing an item inside a drawer,
or aligning two boxes side by side.

However, our everyday environments typically include a
rich spectrum of potential spatial relations. For example, each
user may have different preferences with respect to object
arrangements, which requires robots to be flexible enough to
handle arbitrary relations they have not encountered before.
Similarly, robots should be able to generalize relations they
have learned and achieve them using new objects of different
shapes or sizes. For these reasons, it is highly impractical to
expect an expert to pre-program a robot with the knowledge
it needs to handle all potential situations in the real world,
e.g., in the form of symbols. Instead, we aim for a lifelong
learning approach that enables non-expert users to teach new
spatial relations to robots in an intuitive manner.

One way to do this is to provide a robot with several
examples using different objects in order to learn a model
for a new relation, e.g., “inside.” On the one hand, this may
require generating large amounts of data to learn the new
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Fig. 1: We present a novel method based on distance metric
learning to reason about the similarity between pairwise
spatial relations. Our approach uses demonstrations of a
relation given by non-expert teachers (top row) in order to
generalize this relation to new objects (bottom row).

relation, which is impractical in setups in which a robot
learns from a non-expert teacher. On the other hand, this
requires learning a new model for each relation individually,
making it hard for the robot to reuse its knowledge from
previous relations.

In this paper, we address this problem from the perspective
of distance metric learning and focus on learning relations
between pairs of objects. We present a novel method that
allows the robot to reason about how similar two relations
are to each other. By doing so, we formulate the problem
of reproducing a relation using two new objects as one of
minimizing the distance between the reproduced relation and
the teacher demonstrations. More importantly, our approach
enables the robot to use a few teacher demonstrations as
queries for retrieving similar relations it has seen before,
thereby leveraging prior knowledge to bootstrap imitating
the new relation. Therefore, rather than learning a finite set
of individual relation models, our method enables reasoning
on a continuous spectrum of relations.

Concretely, we make the following contributions: i) we
present a novel approach from the perspective of distance
metric learning to address the problem of learning pairwise
spatial relations and generalizing them to new objects1, ii)
we introduce a novel descriptor that encodes pairwise spatial
relations based only on the object geometries and their
relative pose, iii) we demonstrate how our method enables
bootstrapping the learning of a new relation by relating it
to similar, previously-learned relations, iv) we present an
interactive learning method that enables non-expert users

1The Freiburg Spatial Relations Dataset and a demo video of
our approach running on the PR-2 robot are available at http://
spatialrelations.cs.uni-freiburg.de
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to teach arbitrary spatial relations from a small number of
examples, and v) we present an extensive evaluation of our
method based on real-world data we gathered from different
user demonstrations.

II. RELATED WORK

In the context of robotics, previous work has focused
on leveraging predefined relations in the form of symbolic
predicates for solving tasks, as in the case of combined
task and motion planning or in the context of relational
reinforcement learning [4, 8, 12, 22]. Rather than relying
on grounding existing symbols, other works have addressed
learning symbols and effects of actions to abstract continuous
states for the purpose of high-level planning [1, 2, 10, 14, 20].
As opposed to these works, we reason about the similarity
between relations by learning the distance between scenes,
allowing us to compute scenes that generalize a relation to
new objects.

Related to this is the work by Rosman and Ramamoor-
thy, which proposes constructing a contact point graph to
classify spatial relations [23]. Similarly, Fichtl et al. train
random forest classifiers for relations based on histograms
that encode the relative position of surface patches [5].
Guadarrama et al. learn models of pre-defined prepositions
by training a multi-class logistic regression model using
data gathered from crowdsourcing [6]. As opposed to those
works, we propose learning a distance metric that captures
the similarities between different relations without specifying
explicit classes.

Moreover, related to our work is the interactive approach
by Kulick et al. for learning relational symbols from a
teacher [16]. They use Gaussian Process classifiers to model
symbols and therefore enable a robot to query the teacher
with examples to increase its confidence in the learned
models. Similarly, our method enables a robot to generalize
a relation by interacting with a teacher. However, we do this
from the perspective of metric learning, allowing the robot
to re-use previous demonstrations of other relations.

Similar to our work, Zampogiannis et al. model spatial
relations based on the geometries of objects given their
point cloud models [27]. However, they define a variety
of common relations and focus on addressing the problem
of extracting the semantics of manipulation actions through
temporal analysis of spatial relations between objects. Other
methods have also relied on the geometries of objects and
scenes to reason about preferred object placements [11]
or likely places to find an object [3]. Moreover, Kroemer
and Peters used 3D object models to extract contact point
distributions for predicting interactions between objects [15].

Finally, our approach leverages distance metric learning
for reasoning about the similarity between relations. Metric
learning is a popular paradigm in the machine learning and
computer vision communities. Learned metrics have been
applied to address face recognition [7], image classification
[9] and image segmentation [26]. In the context of robotics,
metric learning has been used to address problems related to
object instance or place recognition [17, 24].

III. NOTATION AND PROBLEM FORMULATION

In this section, we formalize the problem we address in
this paper.

A. Object Representation

We consider the problem of learning spatial relations
between pairs of objects. We denote an object by o. In
this work, we assume to have no semantic knowledge about
objects such as their type, e.g., box. Instead, we aim to learn
relations based on object geometries and assume to have a
3D model of each object ok in the form of a point cloud
Pk. We consider only points on the surface of the objects.
We model the state using the 3D poses of objects in SE (3)
and express the pose Tk of ok relative to the world frame as
a homogeneous transform consisting of a translation vector
tk ∈ R3 and a rotation matrix Rk ∈ SO(3). We denote the
pose of ol relative to ok by kTl. Additionally, we assume
the world frame to be specified such that the −z-axis aligns
with the gravity vector g.

B. Pairwise Relations

We consider learning pairwise spatial relations between
objects, i.e., we consider scenes with two objects only. In
this work, we do not address the perception problem and
rely on existing techniques to segment the scene and compute
the object poses based on their point clouds. Accordingly, we
express a scene with ok and ol as a tuple s := 〈Pk,Pl, kTl〉.
In this work, we assume that one of the objects (ok) is labeled
as the reference object, and therefore express the scene using
the pose kTl of ol relative to ok. Given a scene s, we aim
to express the spatial relation between the two objects in
it. For this, we rely on a feature function (descriptor) f
to express the relation as a K-dimensional feature vector
r, i.e., f(s) = r ∈ RK . Moreover, our goal is to enable
the robot to reason about the how similar two scenes are
with respect to the pairwise relations in them. We capture
the similarity between s1 and s2 using a distance function
dist that computes the distance dist(r1, r2) ≥ 0 between
the two scenes with respect to their feature vectors r1 and
r2. In this work we do not consider relations involving
more than two objects, as they can be defined by combining
pairwise relations. Finally, we do not explicitly treat object
symmetries.

C. The Problem

The problem we address is threefold.
1) Representing relations: First, we seek a descriptor f

that enables us to capture the underlying spatial relation in
a scene based only on the geometries (point clouds) of the
objects, their relative poses, and the direction of gravity g.

2) Learning the distance between relations: Given f , we
aim to learn a distance metric dist for computing the distance
between two scenes. For this, we rely on training data
D = {s(1), . . . , s(N)} consisting of N demonstrated scenes.
Additionally, we assume to have a symmetric similarity
matrix Y of size N × N with unit diagonal values. The
value yi,j in the i-th row and j-th column of Y captures the



degree of similarity between scenes s(i) and s(j) in D. In this
work, we consider binary similarities y ∈ {0, 1}, such that 0
represents dissimilar relations and 1 means that the relations
in both scenes are identical. Note that we do not assume Y
to be completely specified, i.e., some entries may be missing.
Therefore, we aim for a method that can learn with partially-
labeled data with respect to scene similarities. Given D and
Y, our goal is to learn a distance metric dist that captures
the distance between scenes s1 and s2 based on their features
r1 = f(s1) and r2 = f(s2). We learn this metric such that
dist(r1, r2) is “small” if s1 and s2 represent similar relations,
and “large” if they represent dissimilar relations.

3) Generalizing a relation to new objects: Given f and
a distance metric dist, our goal is to learn a new, arbitrary
relation from a teacher. We assume the teacher provides a
small set of demonstrations D′ = {s(1), . . . , s(N ′)} of the
new relation, where 1 ≤ N ′ � N . Given two new objects
ok and ol, the robot has to “imitate” the demonstrated relation
in D′ by computing the pose kTl of ok relative to ol such
that the resulting scene s∗ = 〈Pk,Pl, kTl〉 is close to the
demonstrations with respect to the corresponding features.

Concretely, we seek the best kT∗l to a problem of the
form:

minimize L(R′, r∗)
subject to kTl ∈ SE (3), s∗ ∈ Sfeas,

(1)

where R′ = {r(1), . . . , r(N ′)} is the set of features for the
demonstrated scenes D′, r∗ = f(s∗) is the feature vector
of the test scene s∗, and L is a loss function describing the
distance between the demonstrations and the test scene based
on dist. Additionally, Sfeas denotes the set of physically
feasible scenes. In this work, we focus on computing the
desired pose between the two objects and do not consider
the problem of manipulating the objects to achieve this pose.
Therefore, we consider Sfeas as the set of scenes in which
ok and ol are not colliding.

IV. PROPOSED FEATURE REPRESENTATION

In this section, we present our model for f and propose
a descriptor for modeling pairwise spatial relations, thereby
addressing Sec. III-C.1. We model relations based only on
the spatial interaction between their point clouds Pk and Pl
given the direction of the gravity vector g. Note that in this
work, we do not address the correspondence problem be-
tween scenes and assume the teacher specifies the reference
object. We rely on the directions of the vectors between the
surface points of the objects as a signature of the underly-
ing relation between them. Defining these directions purely
based on a fixed (world) reference frame is sub-optimal as
this results in a descriptor that is affected by translations
and rotations of the scene. At the same time, computing
a local reference frame using one of the objects (e.g.,
using PCA) introduces the challenge of ensuring consistency
and reproducibility of the axes across different scenes. We
address this problem by computing angles between direction
vectors between points on both objects and the centroid of
the reference object ok, see Fig. 2. This is analogous to
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Fig. 2: Visualization of the descriptor computation for the
spatial relation between objects ok and ol. We consider
the gravity vector g at the centroid ck of the reference
object ok. We compute angles θ and ϕ based on direction
vectors involving all surface points pk and pl on ok and ol,
respectively.

methods for computing rotationally-invariant descriptors for
2D images such as RIFT [18]. Accordingly, we propose a
descriptor that is based on three histograms as follows:

f(s) := [hθ hϕ hd]
>. (2)

With the first histogram hθ, we capture the angular relation
between the two objects regardless of how the scene is
oriented in the global reference frame. We construct hθ as a
distribution over the angle θ between vectors (pk − ck) and
(pl − pk) based on all points pk ∈ Pk and pl ∈ Pl, i.e.,

θ = arccos

(
(pk − ck)

>(pl − pk)

‖pk − ck‖2 ‖pl − pk‖2

)
, (3)

where ck is the centroid of the reference object ok, see Fig. 2.
For the same relative pose kTl, hθ provides a unique

signature of the scene that is invariant to its translation
or rotation in the global reference frame. However, in the
context of everyday manipulation tasks, it is typically useful
to also reason about spatial constraints with respect to the
world frame, e.g., a supporting surface such as a table. For
example, this enables the robot to disambiguate scenes in
which the two objects are on top of each other from those
in which they are next to each other for the same kTl.

We achieve this disambiguation using the second his-
togram hϕ, which is a distribution over the angle ϕ around
the vector (pk − ck), see Fig. 2. We take this as the angle
between two planes. The first plane is defined by the two
vectors (pk − ck) and g, whereas the second is defined by
the two vectors (pk − ck) and (pl −pk). We compute ϕ as
the angle between the respective normal vectors n1 and n2

of those planes, i.e.,

n1 =
(pk − ck)× g

‖(pk − ck)× g‖2
,n2 =

(pk − ck)× (pl − pk)

‖(pk − ck)× (pl − pk)‖2
,

ϕ = arccos(n>1 n2). (4)

We populate hϕ by computing ϕ using all surface points
pk ∈ Pk and pl ∈ Pl. As the direction of g is fixed, rotating
the scene while maintaining kTl results in changes in ϕ, i.e.,
the discriminative behavior we seek. On the other hand, hθ
and hϕ are invariant to translations or rotations around g.



Whereas hθ and hϕ encode the relation with respect to
the relative rotation between the two objects, we encode the
desired distance between them using the third histogram hd.
We compute hd as a distribution over the Euclidean distance
‖pk − pl‖2 between points pk ∈ Pk and pl ∈ Pl. Rather
than doing so using all |Pk| |Pl| pairs of points {pk,pl}, we
consider the subset of pairs with the smallest 10% distances
over all pairs, as this is indicative of how close the two
objects are and is less sensitive to differences in object sizes.

We discretize both hθ and hϕ with a bin resolution of
20 deg, and discretize hd with a resolution of 6 cm. We
normalize all histograms using the number of points used
to compute them such that f(s) is independent of the object
point cloud densities and object sizes. The resulting descrip-
tor f(s) = r has 39 dimensions. To speed up computation,
besides considering only surface points, we also downsample
the point clouds.

V. DISTANCE METRIC LEARNING

In this section, we discuss how we learn a metric dist
that models the similarities between relations given the
feature representation r = f(s) above (see Sec. III-C.2).
For this, we leverage a popular metric learning technique
originally introduced to improve the performance of k-NN
classification: large margin nearest neighbor (LMNN) [25].

We follow the terminology of Weinberger and Saul and
define the set of target neighbors R+

i for an example ri
as the k nearest neighbors of ri that are labeled as similar,
i.e. yi,j = 1 for rj ∈ R+

j . These target neighbors define
a region around ri. We refer to all examples rk within
this region that are not similar to ri (i.e., yi,k = 0) as
imposters R−i . The original LMNN formulation identifies
R+
i and R−i by assuming training data that is labeled with

pre-specified classes. In our context, we achieve this based
on the similarity labels y without requiring class labels to be
specified by the teacher.

In the general form, LMNN learns a metric distφ
parametrized by φ by minimizing a loss function with
two objectives: i) for each training relation ri, pull target
neighbors rj ∈ R+

i close, and ii) push imposters rk ∈ R−i
away such that they are further than target neighbors rj by
at least a large margin ζ (see [25]), i.e.,

minimize
φ

∑
ri∈D,
rj∈R+

i

pull a similar neighbor rj close︷ ︸︸ ︷
distφ(ri, rj)

2 +

λ
∑

rk∈R−i

[
ζ + distφ(ri, rj)

2 − distφ(ri, rk)
2
]
+︸ ︷︷ ︸

push a dissimilar neighbor rk further than rj by at least ζ

,

(5)

where [d]+ = max(0, d) is the hinge loss and λ is a constant
that controls the trade-off between the two objectives.

In this work, we consider three LMNN-based methods for
learning a distφ parametrized by φ. The linear LMNN case
learns a generalized Euclidean (Mahalanobis) distance by
parametrizing distφ using a linear mapping L ∈ RK×K ,
i.e., φ(r) = Lr, see [25]. χ2-LMNN also learns a linear

mapping but uses the χ2 distance instead of the Euclidean
distance, see [13]. Finally, gradient-boosted LMNN (GB-
LMNN) models arbitrary non-linear mappings φ(r) of the
input space using gradient-boosted regression trees, see [13].

VI. REPRODUCING A NEW RELATION FROM A FEW
DEMONSTRATIONS

In this section, we present our approach for imitating a
new relation from a small number of teacher demonstrations
(Sec. III-C.3). We assume that the robot is already equipped
with a set of relation scenes D = {s(1), . . . , s(N)} and
a (partially-filled) N × N matrix Y consisting of their
similarity labels as in Sec. III-C.2. These are either provided
by an expert beforehand, or are accumulated by the robot
when learning previous relations over time. Using D and
Y, we assume the robot has already learned a prior distance
metric distφ0 parametrized by φ0 as described in Sec. V. This
is done offline and without knowledge of the new relation.

We now consider a teacher providing the robot with a
small set of demonstrations D′ of size N ′ for a new, arbitrary
relation. The teacher can use different pairs of objects, such
that all scenes in D′ are equally valid ways of achieving
this relation, i.e., yi,j = 1 for all s(i), s(j) ∈ D′. Given two
objects ok and ol and their respective models Pk and Pl,
our goal is to compute a pose kT∗l such that the resulting
scene s∗ = 〈Pk,Pl, kT∗l 〉 corresponds to the intention of the
teacher for the new relation, i.e., minimizing L in Eq. (1).

Given a metric distφ*
, there are different ways to model

L to express the distance between the features r∗ = f(s∗)
of the test scene and the features R′ of the demonstrations
D′. In general, as |R′| ≥ 1, Eq. (1) is a multi-objective
optimization problem seeking to minimize the distance be-
tween r∗ and all r′ ∈ R′. In such settings, it is typically
challenging to satisfy all objectives. Minimizing the (mean)
distance to D′ can thus lead to sub-optimal solutions that
“average” the demonstrated scenes. Instead, we consider each
demonstration to represent a mode of the target relation and
seek the best solution with respect to any of them as follows:

L(R′, r∗) := min
r′∈R′

distφ*
(r′, r∗). (6)

A. Interactive Local Metric Learning

One way to obtain distφ*
in Eq. (6) is to use the prior

metric distφ0
. However, we learned this metric using a set

of previous relations D and their similarities. Therefore, it
is not directly clear if distφ0 is able to generalize to novel
relations shown by the teacher.

We answer this question using an interactive approach. For
each demonstration in D′, we use distφ0 to retrieve the Q
nearest neighbor examples corresponding to scenes from the
database D. We query the teacher with these examples and
ask her to indicate whether they align with her intention
(y = 1) for the new relation or not (y = 0). In our
experiments, we achieved this by means of a graphical user
interface visualizing Q = 8 nearest neighbors per query. Let
DNN ⊂ D be the set of all nearest neighbor scenes for
D′. We measure the confidence in the ability of distφ0

to
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Fig. 3: Overview of our interactive approach for learning to reproduce a new relation. Given a small number of demonstrations
s(1), . . . , s(N

′) by a teacher and two objects in the test scene s∗, we aim to compute a pose kT∗l transforming s∗ in order
to imitate the demonstrated relation and generalize the intention of the teacher. Our approach enables the robot to leverage
its prior knowledge of scenes D representing other relations and the distances between them based on a metric distφ0

.

generalize to the new relation as the ratio εNN of scenes in
DNN for which the teacher indicated a similarity to the new
relation (i.e., y = 1).
εNN values larger than a threshold ε∗ indicate that we are

able to relate the new relation to ones the robot has seen in
the past. Therefore, we use distφ0

to compute Eq. (6), i.e.,
φ∗ = φ0. We empirically set ε∗ to 77% in our experiments.
On the other hand, εNN < ε∗ indicates that the new relation
is far in feature space from (target neighbor) relations in D.
We address this by learning a new local metric distφ*

using
the set of scenes D∗ = D′ ∪ DNN and labels Y∗ of size
N∗ × N∗, where N∗ = |D∗|. This is a smaller problem
(compared to learning the prior metric distφ0 ) in which Y∗

is completely specified. We set the similarity yi,j to 1 for all
s(i), s(j) ∈ D′. For rows i and columns j corresponding to
scenes s(i) ∈ D′ and s(j) ∈ DNN (or vice versa), we set yi,j
to the similarity labels obtained from querying the teacher.
We use the transitivity property to set the similarity between
s(j), s(k) ∈ DNN . For example, if the teacher labeled yi,j =
0 and yi,k = 0, we set yj,k = 1.

Finally, we highlight two main advantages of leveraging
the previous relations D and prior metric distφ0

. Firstly, we
enable the robot to consider whether its previous knowledge
is sufficient to reproduce the new relation or not. Secondly,
even for new relations that are significantly different from
previously-known ones, we are able to augment the teacher’s
demonstrations D′ with additional training data DNN con-
sisting of target neighbors and imposters retrieved from D
without requiring the teacher to demonstrate them.

B. Sample-Based Pose Optimization

Given the metric distφ*
to model Eq. (6), we present our

approach for solving Eq. (1) to compute kT∗l for reproducing
the new relation using ok and ol. In this work, we simplify
this problem by assuming that the reference object ok is
stationary and therefore only reason about desirable poses
of ol relative to it. Due to the discretization in computing

our descriptor f , we cannot rely on gradient-based methods
as our loss function is piecewise constant.

We address this using a sample-based approach. We
discretize the space of poses by searching over a grid of
translations ktl of ol relative to ok. For each translation, we
sample rotations kRl uniformly. We use the resulting kTl to
transform Pl and compute L based on the corresponding
feature value r∗ of the scene. Whenever we find a new
local minima during optimization, we check for collisions
between the two objects and reject infeasible solutions.
Finally, we take kT∗l as the feasible pose minimizing L over
all sampled poses. We implemented this process efficiently
by parallelizing the grid search over translations. Fig. 3
shows an overview of our method for reproducing a new
relation.

VII. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
of our approach. Through our experiments, we demonstrate
the following: i) our proposed descriptor is able to capture
different spatial relations and to generalize to the shapes and
sizes of the objects, ii) using distance metric learning, we
are able to capture the similarities between scenes even for
relations not encountered before, iii) our interactive learning
method enables non-expert users to teach new relations based
on small number of examples, and iv) we outperform several
baselines that do not learn a metric based on the similarities
between scenes.

A. Baselines

In our experiments, we used three variants of LMNN-
based metrics: vanilla (linear) LMNN, χ2-LMNN, and GB-
LMNN, which we learned as in Sec. V. We compared those
learned metrics to a variety of standard distance metrics. This
includes the Euclidean, χ2, Bhattacharyya, and the correla-
tion distances, as well as the Kullback-Leibler divergence
(KL) and the Jensen-Shannon divergence (JS).



B. Dataset

We recorded 3D models of 26 household objects and used
SimTrack to detect them and compute their poses in a scene
using a Kinect camera [21]. Using this setup, we recorded a
set of demonstrations D consisting of 546 scenes, see Fig. 4
for examples. For the purpose of evaluation, we manually
labeled the similarities Y between all scenes.

Fig. 4: Examples of the training scenes we recorded for our
evaluation. We recorded a set of 546 scenes and manually
provided ground truth labels for their similarities.

C. Nearest Neighbor Classification

In this experiment, we evaluated the ability of distance
metric learning to relate scenes based on the similarities of
their relations. We formulated this as a k-NN classification
problem, with k = 5, and evaluated using 15 random splits.
For each split we used 75% of the data for the training set
and 25% for the test set. We considered a success if at least
3 out of 5 of the retrieved nearest neighbors were similar to
the test example.

Method Accuracy(%)
Euclidean 82.32± 2.56

KL 82.61± 3.10
Correlation 82.66± 2.43

χ2 82.81± 3.20
Bhattacharyya 83.26± 3.15

JS 83.30± 3.14
χ2-LMNN 86.46± 2.84

LMNN 86.52± 1.98
GB-LMNN 87.60± 1.94

TABLE I: Performance of different methods for retrieving at
least 3 out of 5 target neighbors of scenes, averaged over 15
random splits.

The results are shown in Tab. I. LMNN-based metrics
outperform the baselines, i.e., the learned metrics can bet-
ter capture the distances between scenes. We achieved the
highest success rate of 87.6% using GB-LMNN. Note that by
directly computing the Euclidean distance in the original fea-
ture space, we are able to achieve a success rate of 82.32%.
This demonstrates that our proposed feature descriptor is
suitable for encoding arbitrary spatial relations. Fig. 5 shows
a qualitative example of the nearest neighbors of a test scene
using both the Euclidean distance and LMNN.

Query Scene Nearest Neighbors Euclidean

Nearest Neighbors LMNN

Fig. 5: Example of the 5 nearest neighbors of a query
scene using Euclidean distance (top) and LMNN (bottom).
LMNN better captures the distances between relations.
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Fig. 6: t-SNE visualization of six relations mapped using
LMNN. We trained this metric using three of the relations
only, yet it is able to capture the semantic similarity between
those relations and the test relations.

D. Distance to New Relations

In this qualitative experiment, we investigated the ability
of a learned metric to capture the similarities between rela-
tions that were not used for training. We trained LMNN with
data from three relations (upper row of Fig. 4), which can be
semantically described as “on top”, “inside”, and “next to”.
We used the learned metric to map all six relations in Fig. 4
to the new space and visualized the data using t-SNE, a
popular non-linear embedding technique for visualizing high
dimensional data [19]. We show this in Fig. 6. This quali-
tatively illustrates the separation between the three relations
used for training the metric. Moreover, the metric is able to
capture the semantic similarity between the relations used for
training and the new ones, which we denote by “inclined”,
“on top corner” and “inclined inside” (bottom row of Fig. 4).

E. Generalizing a Relation to New Objects

In this experiment, we evaluated our approach for re-
producing a demonstrated relation using two new objects,
see Sec. III-C.3. We recorded 30 demonstrations for each
of five new relations. We then selected two new objects
that were not used in the demonstrations and evaluated our
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Fig. 7: Results for generalizing a relation to two new objects.
GB-LMNN and LMNN outperform the other metrics in
identifying the correct ways of reproducing a relation with
two new objects. Our approach enables leveraging previous
demonstrations when querying the teacher to learn a new
relation. In each case, we evaluated the generalization given
five new demonstrations, which we then added to the set
of prior demonstrations D. The x-axis shows the cumulative
number of demonstrations over time.

method’s ability to generalize each of the five relations to
the new objects. In each case, we provided our method with
|D′| = 5 examples. Using those examples, we retrieved near-
est neighbor queries DNN from D as described in Sec. VI.
As we aimed for a quantitative evaluation in this experiment,
we implemented an “oracle” that provides the binary labels
for the queries automatically, and used this to learn a local
metric as in Sec. VI-A.

For evaluation, we provided our method with a set of 75
poses kTl between the new objects. Only 15 of them are
correct ways of imitating the relation in question, whereas
the rest represent other relations. For each pose, we computed
r∗ of the test scene and the corresponding L (Eq. (6)). We
sorted the poses according to L. Ideally, the correct poses
should be in the top 15 positions. We evaluated this using
the mean average precision.

After each such test, we added the five demonstrations D′
to the database D and extended Y with the new labels from
the nearest neighbor queries. We used this to re-learn the
prior metric distφ0

. We did this six times, each with five new
demonstrations, until the 30 demonstrations have been used.
We repeated the whole experiment 50 times using different
random orders of providing five demonstrations. We report
the results in Fig. 7 averaged over all runs and five relations.

The metrics we learned with GB-LMNN and LMNN out-
perform the other metrics in their ability to identify the
correct ways of reproducing a relation with two new objects.
Although in each case we compute Eq. (6) based on five new
demonstrations only, our approach enables those metrics to
re-use demonstrations added to D from the previous tests
to learn the local metric. Accordingly, GB-LMNN achieves
a mean average precision of 0.82 after having seen at
least five demonstrations in the past. This demonstrates the
ability of our approach to use previous demonstrations when
generalizing a new relation in a lifelong learning manner.

New Demonstrations

Fig. 8: Left: three demonstrations of a relation by a teacher
in our survey. Right: the generalized relation with two new
objects using our approach.

F. Interactive Learning of a New Relation

We conducted a small survey to evaluate our approach for
learning a new relation interactively. We recorded 250 scenes
consisting of 50 relations demonstrated by nine different
teachers. Each teacher provided five demonstrations per rela-
tion using different objects they chose. We used only three of
those demonstrations to learn each relation. In each case, we
queried the teacher with nearest neighbor examples from D
and used the result to generalize the three demonstrations D′
and reproduce one of the scenes we left out from the training
as in Sec. VI. We computed the best pose for reproducing
the relation using the sample-based approach in Sec. VI-B.

We showed the reproduced relations to their corresponding
teachers in a 3D visualization environment and asked them
to score the quality of the result with 0, 0.5, or 1, where
0 represents unsuccessful and 1 represents successful. The
teachers scored results from different baselines shown in
random order.

We show the mean scores in Tab. II. The reproduced
scenes using both LMNN and GB-LMNN metrics were
judged to be the best by the teachers, achieving an average
score of 0.72 and 0.71 respectively. Fig. 8 illustrates one such
generalization from our experiments. The results confirm
that our approach enables non-expert users to teach arbitrary
spatial relations to a robot from a small number of examples.

Method Score
Euclidean 0.49

Bhattacharyya 0.54
KL 0.56
JS 0.56
χ2 0.60

χ2-LMNN 0.63
LMNN 0.72

GB-LMNN 0.71

TABLE II: Mean scores for reproducing 50 relations from
nine different teachers. For each relation, the teacher scored
the result with 0 (unsuccessful), 0.5, or 1 (successful).

As a final qualitative evaluation, we carried out a small
survey in which we asked six participants to judge the
quality of scenes generated by our sample-based approach
in Sec. VI-B. For this, we selected 30 scenes computed by
LMNN, and which were scored with either 0.5 or 1 in the
experiment above. We asked the six participants to judge
whether the relations in those scenes were demonstrated by a
human or generated by a computer (whereas in fact they were
all computed using our approach). Despite the fact that we do
not consider physics checks (e.g., scene stability) or optimize



computed scenes to make them more realistic, 63.05% of the
scenes were thought to have been produced by a human.

VIII. CONCLUSION

In this paper, we presented a novel approach to the
problem of learning pairwise spatial relations and gener-
alizing them to different objects. Our method is based on
distance metric learning and enables a robot to reason about
the similarity between scenes with respect to the relations
they represent. To encode a relation, we introduced a novel
descriptor based on the geometries of the objects. By learning
a distance metric using this representation, our method is
able to reproduce a new relation from a small number
of teacher demonstrations by reasoning about its similarity
to previously-encountered ones. In this way, our approach
allows for a lifelong learning scenario by continuously
leveraging its prior knowledge about relations to bootstrap
imitating new ones. We evaluated our approach extensively
using real-world data we gathered from non-expert teachers.
Our results demonstrate the effectiveness of our approach
in reasoning about the similarity between relations and its
ability to reproduce arbitrary relations to new objects by
learning interactively from a teacher. In the future, we plan
to extend the approach to partial observations of point cloud
data.
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