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Abstract Controlling robots to perform tasks via natural language is one of the
most challenging topics in human-robot interaction. In this work, we present a robot
system that follows unconstrained language instructions to pick and place arbitrary
objects and effectively resolves ambiguities through dialogues. Our approach infers
objects and their relationships from input images and language expressions and can
place objects in accordance with the spatial relations expressed by the user. Unlike
previous approaches, we consider grounding not only for the picking but also for the
placement of everyday objects from language. Specifically, by grounding objects and
their spatial relations, we allow specification of complex placement instructions, e.g.
“place it behind the middle red bowl”. Our results obtained using a real-world PR2
robot demonstrate the effectiveness of our method in understanding pick-and-place
language instructions and sequentially composing them to solve tabletop manipula-
tion tasks. Videos are available at http://speechrobot.cs.uni-freiburg.de

1 Introduction

As robots become ubiquitous across human-centered environments the need for nat-
ural and effective human-robot communication grows. Natural language provides a
rich and intuitive way for humans and robots to interact due to the possibility of
referring to abstract concepts. Moreover, many real-world tasks can be effectively
described by a series of language instructions. In this work, we aim to develop an
approach that enables a robot to solve complex manipulation tasks by understanding
a series of unconstrained language expressions characterizing pick-and-place com-
mands. To do so, the robot has to locate unconstrained object categories based on
arbitrary natural language expressions, known as referring expression comprehen-
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Fig. 1 The goal of our work is to control a robot to perform tabletop manipulation tasks via
natural language instructions. Our approach is able to segment objects in the scene, locate the
objects referred to in language expressions, solve ambiguities through dialog and place objects in
accordance with the spatial relations expressed by the user.

sion, and understand spatial relations to generate object placing locations. In other
words, the robot needs to “ground” the referred objects and their spatial relations
from language in its world model.

However, understanding unconstrained language instructions is challenging due to
the complexity and wide variety of abstract concepts expressed via human language,
e.g. “fetch the yellow thing” and “place it left of the bottom object”. Moreover, the
expression might contain ambiguities because there are several “yellow things” in
which case the robot should be able to resolve the ambiguity through dialogue, as
shown in Figure 1. Finally, the robot needs to reason about where to place the “yellow
thing” relative to the “leftmost container” in order to reproduce the spatial relation
“right”, which is inherently ambiguous as natural language placement instructions
do not uniquely identify a location in a scene.

In this paper, we propose the first comprehensive system for controlling robots to
perform tabletop manipulation tasks by sequentially composing unconstrained pick-
and-place language instructions. Our approach consists of two neural networks. The
first network learns to segment objects in a scene and to comprehend and generate
referring expressions. The second network estimates pixelwise object placement
probabilities for a set of spatial relations given an input image and a reference object.
The interplay between both networks allows for an effective grounding of object
semantics and their spatial relationships, without assuming a predefined set of object
categories.We demonstrate the effectiveness of our approach by enabling non-expert
users to instruct tabletop manipulation tasks to a robot, based on sequences of pick-
and-place speech commands.
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2 Related Work

Our work is primarily concerned with the task of grounding natural language in-
structions and spatial relations in the context of the robot’s world model [1]. Locating
entities in images based on language is closely related to object recognition. Pre-
vious works in robotics [2, 3] have addressed semantic object retrieval by training
classifiers to recognize predefined object categories. These approaches are limited
in real-world scenarios as they are not capable of handling variation in the users
natural language descriptions and are restricted to a small number of objects.

Spatial relations also play a crucial role in understanding natural language in-
structions [4, 5], as objects are often described in relation to others in tasks such
as object placing [6, 7, 8] or human robot interaction [2, 9, 10]. Concretely, spatial
relations help the robot disambiguate multiple instances of the same object and to
define target areas for placing the picked objects. In our previous work, we introduced
a novel method to predict pixelwise object placement probability distributions for a
set of commonly used prepositions in natural language [7]. In contrast, we relax the
assumption of having a single reference object on the tabletop and add a grounding
model to effectively place arbitrary objects in a scene that contains multiple objects.

Recently, there has been significant progress made towards systems that can
demonstrate their visual understanding by generating or responding to natural lan-
guage in the context of images [11, 12, 13, 14, 15]. To learn joint visual-linguistic
representations, state-of-the-art approaches use convolutional neural networks to en-
code visual features and recurrent neural networks to process language, replacing
traditional handcrafted visual features and language parsers.We leverage advances in
modular networks [16, 17, 18] for referential expression comprehension. This allows
decomposing language into modular components related to subject appearance, lo-
cation, and relationship to other objects, flexibly adapting to expressions containing
different types of information in an end-to-end fashion.

Most related to our approach are the works by Shridhar et al. [9] and Hatori
et al. [4], as both use an interactive fetching system to localize objects mentioned
in referring expressions with bounding boxes. We tackle temporally more extended
tasks, using our model which enables complex object placement commands such as
“place the cup on top of the leftmost box”. Notably, sequentially composing pick-
and-place language instructions can lead to desirable high-level behaviours, such as
tidying up a tabletop or table setting for example. Finally, in contrast to the template-
based picking approaches of prior interactive fetching systems [9, 4] we leverage
state-of-the-art methods for grasping novel objects with 6-DOF grasps [19].

3 Method Description

In this section we describe the technical details of our method to control a robot to
perform tabletop manipulation tasks via natural language instructions. Our approach
relies on twomodels: a groundingmodel that identifies themost likely object referred
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Fig. 2 Overview of the system architecture. Our grounding network processes the input sentence
and visual object candidates detected with Mask-RCNN [20] and performs referential expression
comprehension. Additionally, it generates referential expressions for each object candidate to dis-
ambiguate unclear instructions. Once the reference object of a relative placement instruction has
been identified, a second network predicts object placing locations for a set of spatial relations.

by a language instruction and a neural network that predicts object placing locations
conditioned on a set spatial relation. An overview of the system is given in Figure 2.

3.1 Target Object Selection

We start off by detecting and segmenting all objects in the scene. We train a semantic
segmentation network based on Mask-RCNN [20] with a Resnet-101 backbone,
which extracts a set of region proposals or object candidates oi from an image. After
all objects on the scene are recognized, we need to identify which object the user
is referring to in its language instruction. Given an input image I and expression r ,
the target object selection is formulated as a task to find the best bounding box from
the set of predicted candidate boxes O = {oi}Ni=1. Our grounding model is based on
MAttNet [16], a modular referring expression comprehension network. To enable
human-robot communication in cases of ambiguous instructions, we have extended
it to support the generation of self-referential expressions, described in Section 3.2.

The candidate regions are encoded by a neural network consisting of three mod-
ular grounding components related to subject appearance, location and relationship
to other objects. These modules combine image features encoded by a Resnet-101
network with relational and geometric features pertaining to the neighborhood or
context of each candidate region. The language expression r is encoded in a word
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embedding layer, which encodes each word in the input sentence to a vector rep-
resentation, followed by a bi-directional Long Short-Term Memory (LSTM) and
a fully-connected (FC) layer. Additionally, the language network learns two types
of attention: attention weights that are computed on each word for each module
and are summarized as phrase embedding qm | m ∈ {subj, loc, rel}, and mod-
ule weights [wsubj,wloc,wrel] that estimate how much each module contributes
to the overall expression score. Each visual module computes scores for each ob-
ject candidate by calculating the cosine similarity between the vector representa-
tion of the instruction, and that of the candidate image region. Finally, the output
module takes a weighted average of these scores to get an overall matching score
S(oi | r) = wsubjS(oi | qsubj)+wlocS(oi | qloc)+wrelS(oi | qrel). During training,
we sample triplets consisting of a positive match (oi, ri) and two random negative
samples (oi, rj) and (ok, ri), where ok is some other object and rj is an expression
describing some other object in the same image to apply a hinge loss:

L1 =
∑
i

[λ1 max(0,m1 + S(oi | rj) − S(oi | ri))

+ λ2 max(0,m1 + S(ok | ri) − S(oi | ri))].
(1)

3.2 Resolving Ambiguities

If the referred object cannot be uniquely identified by the grounding model, the
system needs to ask for clarification from the human operator. Inspired by recent
advances in image caption generation and understanding [13, 21, 22], we incorporate
a LSTM based captioning module to our grounding network that allows the robot
to describe each detected object with a natural language description. Our referring
expression generation module is jointly trained with our grounding network and
shares the features used in the three modules related to subject appearance, location
and relationship to other objects. Specifically, the visual target object representation
vvisi is modeled by a concatenation of the ResNet-101 C3 and C4 features, followed
by one FC layer which is shared with the comprehension network and one exclusive
FC layer. To facilitate the generation of referential expressions that contain location
information, such as “the cup in the middle”, we leverage the representation learned
by the locationmodule vloci . This module combines a 5-d vector representing the top-
left position, bottom-right position and relative area to the image for the candidate
object, together with a relative location encoding of up to five surrounding objects of
the same category. Finally, we integrate the output of the relationship module vreli ,
which encodes the appearance and localization offsets of up to five category-agnostic
objects in the targets surroundings to enable modeling sentences such as “the teddy
bear on top of the box”. The final visual representation for the target object is then
a concatenation of the above features vi = [vvisi , vloci , vreli ]. The model is trained to
generate sentences ri by minimizing the negative log-likelihood:
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L2 = −
∑
i

log P(ri | vi). (2)

To generate discriminative sentences, we use a Maximal Mutual Information con-
straint proposed by Mao et al. [21] that encourages the generated expression to
describe the target object better than the other objects within the image. Concretely,
given a positive match (oi, ri) we sample a negative (ok, ri), where ok is some other
object, and optimize the following max-margin loss:

L3 =
∑
i

[λ3 max(0,m2 + log P(ri | vk) − log P(ri | vi)). (3)

In order to detect if an instruction is ambiguous, we leverage the max-margin loss the
comprehension model is trained with. Concretely, during training the max-margin
loss aims to guarantee that every correct pair of a sentence and an object has scores
by a margin m1 than any other pair with a wrong object or sentence. Therefore, if
at test time there are more than one objects within that threshold, we consider them
potential targets. For each candidate we generatemultiple self-referential expressions
via beam search and use the comprehension module to rerank these expressions and
select the least ambiguous expression, similar to Yu et al. [22]. We then let the
system ask the human “Do you mean ...?”. After asking the question, the user can
respond “yes” to choose the referred object or “no” to continue iterating through other
possible objects. Alternatively, the user can provide a specific correcting response
to the question, e.g., “no, the banana on the right”, in which case we re-run our
grounding module.

3.3 Relational Object Placement

Once an object has been picked, our system needs to be able to place it in ac-
cordance with the instructions from the human operator. We combine referring
expression comprehension with the grounding of spatial relations to enable com-
plex object placement commands such as “place the ball inside the left box”. Given
an input image I of the scene and the location of the reference item, identified
with our aforementioned grounding module, we generate pixelwise object place-
ment probabilities for a set of spatial relations by leveraging the Spatial-RelNet
architecture we introduced in our previous work [7]. We consider pairwise re-
lations and express the subject item as being in relation to the reference item.
We model relations for a set of commonly used natural language spatial preposi-
tions C = {inside, left, right, in front, behind, on top}. As natural language
placement instructions do not uniquely identify a location in a scene, Spatial-RelNet
predicts non-parametric distributions to capture the inherent ambiguity. A key chal-
lenge to learning such pixelwise spatial distributions is the lack of ground-truth data.
Spatial-RelNet overcomes this problem by leveraging a novel auxiliary learning for-
mulation, as shown in Figure 3. During training, pixel locations (u, v) are sampled
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Fig. 3 Our Spatial-RelNet [7] network processes the input RGB image and an object attention
mask to produce pixelwise probability maps Γ over a set of spatial relations. During training, we
sample locations (u, v) according to Γ, implant inside an auxiliary classifier network at the sampled
locations high level features of objects and classify the hallucinated scene representation to get a
learning signal for Spatial-RelNet. At test time the auxiliary network is not used.

according to the probability maps Γ produced by Spatial-RelNet. To get the learning
signal, high level features of objects are implanted into a pretrained auxiliary clas-
sifier fϕ to compute a posterior class probability over relations. This way, we can
reason over what relation would most likely be formed if we placed an object at the
given location.

4 System Implementation

4.1 Machine Learning Setup

During training, we sample the same triplets for both the object comprehension
module and the expression generation module. We set the margin m1 = 0.1 for the
comprehension ranking and m2 = 1.0 for the generation loss. We additionally use
MAttNet’s auxiliary visual attribute classification loss. We use the Adam optimizer
to train the joint model with an initial learning rate of 0.0004. For the contrastive
pairs, we set λ1 = 1, λ2 = 1 andλ3 = 0.1. We make the word embedding of the
comprehension and generation modules shared to reduce the number of parameters.
For implementation details of Spatial-RelNet, we refer to the original paper [7].

4.2 Robot Setup

To pick an object from language, we first identify the object with our grounding
model and extract the corresponding segmentation mask of the selected object. We
use an Amazon Echo Dot device to synthesize the voice instructions. We localize the
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object in 3D space and generate grasp poses with Grasp Pose Detection (GPD) [19],
which predicts a series of 6-DOF candidate grasp poses given a 3D point cloud for a
2-finger grasp. The reachability of the proposed candidate grasps are checked using
MoveIt!, and the highest quality reachable grasp is executed with the PR2 robot. For
placing the object, we first sample a location from the spatial distribution predicted by
our Spatial-RelNet model. We rely on keyword spotting to select the corresponding
predicted distribution. Next, we localize the pixel coordinate in 3D space and plan a
top-down grasp pose to the calculated 3D point. Finally, the end-effector is moved
above the desired location and then the gripper is opened to complete the placement.

5 Experiments

We evaluate our approach under two settings. First, we evaluate the capability of our
approach to comprehend and generate referring expressions for a wide variety of
objects on the RefCOCO dataset [11]. Next, we evaluate the ability of our robotics
system to follow pick-and-place language instructions in human-robot experiments.

5.1 RefCOCO Benchmark

The RefCOCO dataset contains images and corresponding referring expressions that
uniquely identify a wide variety of objects in the images. We compare our grounding
networks ability to comprehend and generate referring expressions against several
strong baselines on Table 1. For evaluating the comprehension, we compute the
intersection-over-union (IoU) of the selected region with the ground-truth bounding
box, considering IoU > 0.5 a correct comprehension. To evaluate the generation
module, we leverage standard machine translation metrics commonly used in image
captioning, such as METEOR and CIDEr. We observe that by jointly training the
comprehension and language generation modules, they regularize each other and
improve their respective performances, demonstrating the effectiveness of multitask
learning [23, 22, 24].

RefCOCO comprehension RefCOCO generation
val TestA TestB TestA TestB

Meteor CIDEr Meteor CIDEr
Mao [21] - 63.15 64.21 - - - -

INGRESS [9] 77 76.7 77.7 - - - -
SLR [22, 4] 79.56 78.95 80.22 0.268 0.697 0.329 1.323
MAttNet [16] 85.65 85.26 84.57 - - - -

Ours 86.15 87.18 85.36 0.29 0.753 0.33 1.33
Table 1 Referring expression comprehension and generation on theRefCOCOdataset, with human-
annotated ground-truth object regions.
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5.2 Robot Experiments

We evaluate our approach on two real-world scenarios: picking and placing ob-
jects according to user defined object arrangements and a tidy-up task. We will first
describe the setup of the object arrangement experiment. Our study involved 4 par-
ticipants recruited from a university community2. The robots workspace contained
two tables, as shown in Figure 1. One table contained previously unseen objects in
clutter. The second table contained a single reference object. The average number of
objects on the cluttered table was 5.6. The participants were asked to instruct a PR2
robot to arrange a desired target scene by picking objects from the cluttered table
and using relational expressions to place them on the second table. In addition to
the robots RGB-D camera we placed a second camera in front of the cluttered table
and performed online registration to compute a global point cloud. The tidy-up task
consisted of iteratively picking 4 colored objects from the cluttered table and placing
the same colored objects on the left container and the remaining objects on the right
container. In this experiment we were interested in evaluating the number of actions
the robot has to take to complete the task, given unambiguous instructions.

Table 2 shows the performance of our approach on a PR2 robot for the first
experiment. Our approach achieves a 78.3% target object selection accuracy and a
85.7% accuracy on selecting the reference object the placing will be relative to. The

Target Object Target Object Placing Base Placing Avg. Number Pick and
Selection Grasping Grounding Success of Feedback Place

Ours 78.3% (47/60) 74.4% (35/47) 85.7% (30/35) 83.3% (25/30) 0.63 (60/95) 63% (60/95)
Table 2 Performance of our approach on a real robot platform following natural language instruc-
tions to pick and place objects in a tabletop scenario.

higher accuracy of the latter is due to fewer candidate objects being on the placing
table and the participants preferring to use ambiguous expressions for the picking
instructions. The robot took ∼ 20 seconds to complete an action from the moment
the human started to speak. We report a grasping performance of 74.4% with GPD.
We find that some objects such as mugs are particularly difficult for GPD as it often
fails to find feasible grasps due to either occluded object parts or noisy measurements
on thin structures such as rims. Our object placement approach achieves a success
rate of 85.7%. We observe some failure cases for large object placements, because
of missing 3D priors of the objects to be placed. Thus, when placing a big box left of
a small box, it is possible that the chosen placement results in the big box partially
ending up on top of the small box. For the tidy up task, we report a mean task length
of 14.4 actions, due to several re-grasp attempts. Overall, our results demonstrate the
ability of our approach to allow non-expert users to instruct tabletop manipulation
tasks based on sequences of pick-and-place speech commands.

2 Further quantitative experiments were infeasible at time of submission due to COVID-19.
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6 Conclusions and Discussion

In this paper, we proposed the first robotic system that allows non-expert users
to instruct tabletop manipulation tasks by sequentially composing unconstrained
pick-and-place language instructions and can clarify a human operator’s intention
through dialogue. We demonstrate the effectiveness of our approach to encode high-
level behaviours in a highly challenging, realistic environment. Even though we are
far from achieving robots that can learn to relate human language to their world
model, we hope our work is a step in this direction.

While the experimental results are promising, our approach has several limita-
tions. First, relative object placement instructions do not allow for fine-grained target
specification due to its inherent ambiguity. Addressing this issue would require learn-
ing user preferences from feedback [25]. Second, we observe some failure cases for
large object placements, because of missing 3D priors of the objects to be placed. In-
tegrating 3D priors is a natural extension to enable optimizing placement poses [26]
and to reason over the effects of actions on the scene [27]. Third, we find that GPD
often fails to find feasible grasps due to either occluded object parts or noisy mea-
surements. Integrating methods that can complete occluded scene regions [28, 29]
or generate more diverse grasps [30] might help alleviating these problems. Finally,
our approach is limited to tabletop tasks that can be characterized by pick-and-place
actions. An exciting area for future work may be one that not only grounds object
semantics and spatial relations, but also grounds actions in order to learn complex
behaviours with language conditioned continuous control policies [31, 32].
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