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Policy Learning for Long-Horizon Robot
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Fig. 1: CALVIN is a benchmark to learn many long-horizon language-conditioned tasks over a range of four manipulation environments, designed
to be diverse yet carry shared structure, from multimodal onboard sensor observations. In the most difficult evaluation, the methods must generalize
to unseen entities by training on a large interaction corpora covering three environments and testing on an unseen scene.

Abstract—General-purpose robots coexisting with humans in
their environment must learn to relate human language to
their perceptions and actions to be useful in a range of daily
tasks. Moreover, they need to acquire a diverse repertoire of
general-purpose skills that allow composing long-horizon tasks
by following unconstrained language instructions. In this paper,
we present CALVIN (Composing Actions from Language and
Vision), an open-source simulated benchmark to learn long-
horizon language-conditioned tasks. Our aim is to make it possi-
ble to develop agents that can solve many robotic manipulation
tasks over a long horizon, from onboard sensors, and specified
only via human language. CALVIN tasks are more complex
in terms of sequence length, action space, and language than
existing vision-and-language task datasets and supports flexible
specification of sensor suites. We evaluate the agents in zero-
shot to novel language instructions and to novel environments.
We show that a baseline model based on multi-context imitation
learning performs poorly on CALVIN, suggesting that there
is significant room for developing innovative agents that learn
to relate human language to their world models with this
benchmark.
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I. INTRODUCTION

ALONG-STANDING goal for robotics and embodied
agents is to build systems that can perform tasks specified

in natural language. Concepts expressed in natural language
provide humans with an intuitive way to represent, summarize,
and abstract diverse knowledge skills. By means of abstraction,
concepts such as “open the drawer and push the middle
object into the drawer” can be extended to a potentially
infinite set of new and unseen entities. Additionally, humans
leverage concepts to describe complex tasks as sequences of
natural language instructions. This stands in contrast to current
robots, which typically lack this generalization ability and learn
individual tasks one at a time. Moreover, multi-task learning
approaches traditionally assume that tasks are specified to the
agent at test time via mechanisms such as goal images [1]
and one-hot skill selectors [2], [3] that are not practical for
non-expert users to instruct robots in everyday real-world
settings. As robots become ubiquitous across human-centered
environments the need for intuitive task specification grows:
how can we scale robot learning systems to autonomously
acquire general-purpose knowledge that allows them to com-
pose long-horizon tasks by following unconstrained language
instructions?

To address this problem we present CALVIN, a new open-
source simulated benchmark that links human language to
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robot motor skills, behaviors, and objects in interactive vi-
sual environments. In this setting, a single agent must solve
complex manipulation tasks by understanding a series of
unconstrained language expressions in a row, e.g., “open the
drawer . . . pick up the blue block . . . push the block into the
drawer . . . open the sliding door”. Furthermore, to evaluate
the agents’ ability for long-horizon planning, agents in this
scenario are expected to be able to perform any combination
of subtasks in any order. CALVIN has been developed from the
ground up to support training, prototyping, and validation of
language-conditioned continuous control policies over a range
of four indoor manipulation environments, visualized in Figure
1. CALVIN includes ∼24 hours teleoperated unstructured play
data together with 20K language directives. Unscripted playful
interactions have the advantage of being task-agnostic, diverse,
and relatively cheap to obtain [1], [4]. The simulation platform
supports a range of sensors commonly utilized for visuomotor
control: RGB-D images from both a static and a gripper
camera, proprioceptive information, and vision-based tactile
sensing [5]. We believe that this flexible sensor suite will allow
researchers to develop improved multimodal agents that can
solve many tasks in real-world settings. This is the first public
benchmark of instruction following, to our knowledge, that
combines: natural language conditioning, multimodal high-
dimensional inputs, 7-DOF continuous control, and long-
horizon robotic object manipulation. We provide an evalua-
tion protocol with evaluation modes of varying difficulty by
choosing different combinations of sensor suites and amounts
of training environments. This effort joins the recent efforts to
standardize robotics research for better benchmarks and more
reproducible results. To open the door for future development
of agents that can generalize abstract concepts to unseen enti-
ties the same way humans do, we include a challenging zero-
shot evaluation by training on large play corpora covering three
environments and testing on an unseen scene. The language
instructions used for testing are not included in the training
set and represent novel ways of describing the manipulation
tasks seen during training.

To establish baseline performance levels, we evaluate the
multi-context imitation learning (MCIL) approach that uses
relabeled imitation learning to distill many reusable behaviors
into a goal-directed policy [6]. This model is not effective
on the complex long horizon robot manipulation tasks in
CALVIN. While it achieves up to 53.9% success rate in short
horizon tasks, it performs poorly in the long-horizon setting.
We note that there is no constraint to use imitation learning
approaches to solve CALVIN tasks, as approaches that use
reinforcement learning to learn language-conditioned policies
can also be applied [7].

In summary, CALVIN facilitates learning models that trans-
late from language to sequences of motor skills in a realis-
tic simulation environment. This benchmark captures many
challenges present in real-world settings for relating human
language to robot actions and perception for accomplishing
long-horizon manipulation tasks. Models that can overcome
these challenges will begin to close the gap towards scalable,
general-purpose, language-driven robotics.

II. RELATED WORK

Natural language processing has recently received much at-
tention in the field of robotics [8], following the advances made
towards learning groundings between vision and language [9],
[10]. Recent successes in human-robot interaction include an
interactive fetching system to localize objects mentioned in
referring expressions [11]–[15] or grounding not only objects,
but also spatial relations to follow language expressions char-
acterizing pick-and-place commands [16]–[18]. By contrast,
CALVIN tasks require grounding language to a wide variety of
general-purpose robot skills. Prior work on mapping language
and vision to actions has been studied mostly in restricted
environments [19], [20] and simplified actuators with discrete
motion primitives [21]–[23]. A growing body of work also
looks at learning language-conditioned policies for contin-
uous visuomotor-control in 3D environments via imitation
learning [6], [24], [25] or reinforcement learning [7], [26],
[27]. These approaches typically require offline data sources
of robotic interaction, such as teleoperation or autonomous
exploration data, together with post-hoc crowd-sourced lan-
guage labels. However, the lack of standardized benchmarks
and algorithm implementations, makes it difficult to compare
approaches and to facilitate future research.

The most closely related benchmark to ours is AL-
FRED [22], which contains language instructions for combined
navigation and manipulation tasks with seven predefined action
primitives. In CALVIN, rather than classifying predefined
actions, the agent must learn to acquire a diverse repertoire
of general-purpose skills that allows composing long-horizon
tasks by following unconstrained language instructions in
closed loop control. Our tabletop environments are inspired
by the one shown in Lynch et al. [6] in order to have a
fair comparison to their MCIL approach, which we imple-
ment to establish baseline performance levels. We note that
although considered a state-of-the-art approach, no public
implementation of MCIL is available. In contrast to their work,
CALVIN contains more subtasks (34 vs 18), longer long-
horizon evaluation sequences (5 vs 4), provides a range of
sensors commonly utilized for visuomotor control and allows
testing zero-shot generalization by leveraging a range of four
manipulation environments and unseen language instructions.
Finally, CALVIN goes beyond the original MCIL setup by
adding a challenging visual grounding problem, where similar
language instructions for differently colored blocks are given
and the agent needs to identify which block is meant.

III. CALVIN

The aim of the CALVIN benchmark is to evaluate the learn-
ing of long-horizon language-conditioned continuous control
policies. In this setting, a single agent must solve complex
manipulation tasks by understanding a series of unconstrained
language expressions in a row, e.g., “open the drawer. . . pick
up the blue block. . . now push the block into the drawer. . . now
open the sliding door”. We note that in the benchmark we
only allow feasible sequences that can be achieved from a
predefined initial environment state. The CALVIN benchmark
consists of three key components, which are:
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Observation Space
RGB static camera 200× 200× 3
Depth static camera 200× 200
RGB gripper camera 84× 84× 3
Depth gripper camera 84× 84

Tactile image 120× 160× 2
EE position (3)

EE orientation (3)
Proprioceptive state Gripper width (1)

Joint positions (7)
Gripper action (1)

Action Space
Absolute cartesian pose EE position (3)

(w.r.t. world frame) EE orientation (3)
Gripper action (1)

Relative cartesian displacement EE position (3)
(w.r.t. gripper frame) EE orientation (3)

Gripper action (1)
Joint action Joint positions (7)

Gripper action (1)

Fig. 2: Observation and action spaces supported by CALVIN.

1) CALVIN Environment
2) CALVIN Dataset
3) CALVIN Challenge

A. The CALVIN Environment

CALVIN features four different, yet structurally related
environments (A, B, C, D) so that it can be used for general
playing as well as evaluating specific tasks. The environments
contain a 7-DOF Franka Emika Panda robot arm with a parallel
gripper and a desk with a sliding door and a drawer that can be
opened and closed. On the desk, there is a button that toggles a
green light and a switch to control a light bulb. Besides, there
are three different colored and shaped rectangular blocks. To
better evaluate the generalization capabilities of the learned
language groundings, all environments have different textures
and all static elements such as the sliding door, the drawer,
the light button, and switch are positioned differently. The
position of the desk, robot, and the static camera is the same
in all environments. Due to the general difficulty of language-
conditioned multi-task closed-loop control, we reduced the
complexity of the objects to unicolored primitive shapes.
If future advances in this field require new challenges we
will reflect this by extending CALVIN to environments with
more realistic and diverse objects. Physics are simulated using
the PyBullet physics engine [28], which supports fast GPU
rendering for large-scale parallel data collection.

1) Observation and Action Space: Unlike prior work which
relies on RGB images from an egocentric camera to perceive
its surroundings [1], [6], CALVIN offers a range of sensors
that can be used to develop and prototype agents that learn
task-agnostic control in the real world. Concretely, the agent
perceives its surroundings from RGB-D images from both
a fixed and a gripper camera. It additionally has access to
a vision-based tactile sensor [5] and to continuous internal

Fig. 3: CALVIN supports a range of sensors commonly utilized for
visuomotor control: RGB-D images from both a static and a gripper
camera, proprioceptive information, and vision-based tactile sensing
(bottom-left).

proprioceptive sensors. A visualization of the supported sensor
modalities is shown in Figure 3. The agent must perform
closed-loop continuous control to follow unconstrained lan-
guage instructions characterizing complex robot manipulation
tasks, sending continuous actions to the robot at 30hz. In order
to give researchers and practitioners the freedom to experiment
with different action spaces, CALVIN supports absolute and
relative cartesian actions, as well as actions in joint space. We
encourage the community to study flexible combinations of
observation and action spaces since the tasks require a varying
degree of precise control vs. coarse locomotion. While the
static camera and absolute cartesian actions are the natural
choices for tasks that call for a complete traversal of the
environment from one side to another, the gripper camera
and relative actions (w.r.t to the gripper frame) allow more
fine-grained control for tasks like stacking or grasping. Tactile
information can become important when the task requires the
robot to maintain a stable grasp on the handle while moving
the sliding door to the side. See Fig. 2 for a description of the
observation and action dimensionalities.

2) Tasks: We define 34 specific tasks (see Fig. 4) that can
be achieved in each one of the environments The environment
has the functionality to automatically detect which one of the
tasks has been completed in a sequence of steps, which can
serve as a sparse reward for reinforcement learning agents. The
criterion for task completion is defined in terms of a change
in the environment state between the initial and final step of a
sequence. This also enables the automatic task detection in any
variable-length sequence of offline data, since the environment
can be reset to the state of each one of the recorded frames.

B. The CALVIN Dataset

1) Unstructured Demonstrations: Learning generally re-
quires exposure to diverse training data. To effectively cover
state space, we collect twenty-four hours of teleoperated “play”
data in four environments with a HTC Vive VR headset,
spending an approximately equal time of six hours in each
environment. This corresponds to ∼2.4M interaction steps and
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Task Natural language instructions
rotate red block right “rotate the red block 90

degrees to the right”
“turn the red block right”

push blue block left “go slide the blue
block to the left”

“push left the blue block”
move slider left “grasp the door handle,

then slide the door to the left”
“slide the door to the left”

open drawer “grasp the handle of the
drawer and open it”

“go open the drawer”
lift red block “lift the red block

from the table”
“pick up the red block”

pick pink block “pick up the pink
from drawer block lying in the drawer”

place in slider “put the grasped
object in the slider”

stack blocks “stack blocks on top
of each other”

unstack blocks “collapse the stacked blocks”
“go to the tower of blocks
and take off the top one”

turn on light bulb “toggle the light switch
to turn on the light bulb”

turn off green light “push the button to
turn off the green light”

Fig. 4: Example crowd-sourced natural language instructions to
specify manipulation tasks in CALVIN.

∼40M short-horizon windows for relabeled goal conditioned
imitation learning [29], [30], each spanning 1-2 seconds. In this
setting, an operator is not constrained to a set of predefined
tasks, but rather engages in behavior that satisfies their own
curiosity or some other intrinsic motivation. Unscripted playful
interactions have the advantage of being task-agnostic, diverse,
and relatively cheap to obtain [1], [4]. We asked three people
to collect data, and these users were untrained and given no in-
formation about the downstream tasks. The only guideline we
gave data collectors was to “explore the environment without
dropping objects from the table”. This includes picking up and
placing objects, opening, and closing drawers, sliding doors,
pushing buttons, operating switches and undirected actions.
This style of data is very different from commonly used
task-specific data, which only consists of expert trajectories.
Playful interaction data by design is free-form, so there are no
categories associated with the data. This kind of unstructured
data is useful because it contains exploratory and sub-optimal
behaviors that are critical to learning generalizable and robust
representations, e.g., enabling retrying behavior. While expert
demonstrations often only show one of the many possible ways
to solve a task, play data is richer in the sense that it covers the
multimodal space of possible solutions. However, as opposed
to expert demonstrations, in play data some task instances

naturally occur less frequently than others, especially those
that have the completion of another task as a prerequisite.

2) Language Instructions: Approaches that learn language-
conditioned continuous control policies typically require post-
hoc crowd-sourced natural language labels aligned with its
corresponding robot interaction data [6], [7]. Instead of relying
entirely on crowd-sourced annotations, we collect over 400
crowd-sourced natural language instructions corresponding
to over 34 tasks and label episodes procedurally using the
recorded environment state of the CALVIN dataset. We note
that using this labeling scheme, only sequences that display
meaningful skills are labeled with language annotations. We
visualize example language annotations in Fig. 4. In order
to simulate a real-world scenario where it might not be
possible to pair all the collected robot experience with crowd-
sourced language annotations, we annotate only 1% of the
recorded robot interaction data with language instructions. Be-
sides language instructions, we provide precomputed language
embeddings extracted from MiniLM [31]. MiniLM distills a
large Transformer based language model and is trained on
generic language corpora (e.g., Wikipedia). It has a vocabulary
size of 30,522 words and maps a sentence of any length into a
vector of size 384. We note that there exist many choices for
encoding raw text in a semantic pre-trained vector space and
encourage the community to experiment with different choices
to solve for CALVIN tasks.

C. The CALVIN Challenge

CALVIN combines the challenging settings of open-ended
robotic manipulation with open-ended human language condi-
tioning. For example, a robot that is instructed to “place the
blue block inside the drawer” must be able to relate language
to its world model. Concretely, it needs to learn to identify
how a blue block and a drawer look like in its multimodal
perceptual observations1, and then it needs to reason over
the best sequence of actions to “place inside the drawer”.
Ideally, a general-purpose robot should be able to perform any
combination of tasks instructed with natural language in any
order. Thus, to accelerate progress in language-driven robotics,
we present a set of evaluation protocols of varying difficulty by
choosing different combinations of sensor suites and amounts
of training environments.

1) Training and Test Environments: CALVIN offers three
combinations of training and test environments with varying
difficulty:

Single Environment: Training in a single environment and
evaluating the policy in the same environment. This corre-
sponds to the setting of Lynch et al. [6].

Multi Environment: Training in all four environments and
evaluating the policy in one of them. This poses an additional
challenge since the policy has to generalize to multiple textures
and different locations of the sliding door, button, and switch.
On the other hand, the agents can benefit from increased data.

Zero-Shot Multi Environment: To open the door for future
development of agents that can generalize abstract concepts to

1Simulator states consisting of object positions and orientations are also
provided, but not used to better capture challenges of real-world settings.
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Long-horizon language instructions
“turn on the led” → “open drawer” → “push the blue blue block → “pick up the blue block ” → “place in slider”
“move slider left” → “lift red block from slider” → “stack blocks” → “toggle light” → “ collapse stacked blocks”

“open drawer” → “push block in drawer” → “pick object from drawer” → “stack blocks” → “close drawer”

Fig. 5: Example long-horizon language tasks sequences evaluated in CALVIN. We show the abbreviated subtask names instead of the full
language annotations due to space constraint.

unseen entities the same way humans do, we include a chal-
lenging zero-shot evaluation by training in three environments
and evaluating the policy in the fourth unseen one. This is
the hardest combination since the policy has never seen the
test environment during training. However, all elements of
the scene were present in different locations in the training
environments. While highly challenging, we believe it aligns
well with test-time expectations for service robots to be useful
in a range of daily tasks in everyday environments. Concretely,
in CALVIN agents need to generalize to a room where the
environment has different textures and all static elements such
as the sliding door, the drawer and the light turning button and
switch are positioned differently. Thus, a language-conditioned
policy should ideally be able to open a sliding door even if it
is differently positioned or looks visually a bit different.

2) Evaluation Metrics: All three environment combinations
are evaluated with the following metrics:

Multi-Task Language Control (MTLC): The simplest
evaluation aims to verify how well the learned multi-task
language-conditioned policy generalizes to 34 manipulation
tasks, which we visualize in Fig. 6. The evaluation begins
by resetting the simulator to the first state of a valid unseen
demonstration, to ensure that the commanded instruction is
valid. For each manipulation task 10 rollouts are performed
with their corresponding different starting states. The language
instructions used for testing are not included in the training set
and represent novel ways of describing the manipulation tasks
seen during training.

Long-Horizon MTLC (LH-MTLC): This evaluation aims
to verify how well the learned multi-task language-conditioned
policy can accomplish several language instructions in a row.
This setting is very challenging as it requires agents to be
able to transition between different subgoals. We treat the 34
tasks of the previous evaluation as subgoals and compute valid
sequences consisting of five sequential tasks. We only allow
feasible sequences that can be achieved from a predefined
initial environment state. We filter the evaluation sequences for
cycles, redundancies and similarities to arrive at 1000 unique
instruction chains. Examples for excluded sequences are “close
the drawer”. . . “place in drawer” (unfeasible), “move slider
right”. . . “move slider left”. . . “move slider right” (cyclic) or
“push blue block left”. . . “push red block left”(similar). We
reset the robot to a neutral position after every sequence to
avoid biasing the policies through the robot’s initial pose. We
note that this neutral initialization breaks correlation between
initial state and task, forcing the agent to rely entirely on
language to infer and solve the task. We include different
initial scene configurations in the evaluation to better evaluate
generalization capabilities. We visualize the evaluated subtask

Task Condition
Rotate
red/blue/pink
block right

The object has to be rotated clockwise more
than 60° around the z-axis while not being
rotated more than 30° around the x or y-axis.

Rotate
red/blue/pink
block left

The object has to be rotated counterclockwise
more than 60° around z while not being rotated
more than 30° around the x or y-axis.

Push
red/blue/pink
block right

The object has to move more than 10 cm to the
right while having surface contact in both
frames.

Push
red/blue/pink
block left

The object has to move more than 10 cm to the
left while having surface contact in both
frames.

Move slider
left/right

The sliding door has to be pushed at least 12
cm to the left/right.

Open/close
drawer

The drawer has to be pushed in/pulled out at
least 10 cm.

Lift
red/blue/pink
block table

The object has to be grasped from the table
surface and lifted at least 5 cm high. In the first
frame the gripper may not touch the object.

Lift
red/blue/pink
block slider

The object has to be grasped from the sliding
cabinet’s surface and lifted at least 3 cm. In the
first frame the gripper may not touch the object.

Lift
red/blue/pink
block drawer

The object has to be grasped from the drawer’s
surface and lifted at least 5 cm high. In the first
frame the gripper may not touch the object.

Place in
slider/drawer

The object has to be placed in the sliding
cabinet/drawer. It must be lifted by the gripper
in the first frame.

Push into
drawer

The object has to be pushed into the drawer. It
has to touch the table surface in the first frame.

Stack blocks A block has to be placed on top of another
block. It may not be in contact with the gripper
in the final frame.

Unstack
blocks

A block has to be removed from the top of
another block. It may not be in contact with the
gripper in the first frame.

Turn on/off
light bulb

The switch has to be pushed up/down to turn
on/off the yellow light bulb.

Turn on/off
LED

The button has to be pressed to turn on/turn off
the green LED light.

Fig. 6: List of all 34 tasks with their respective success criteria.

distribution in Figure 7. For each subtask we condition the
policy on the current language instruction and transition to
the next subgoal only if the agent successfully completes the
current task according to the environments state indicator.

3) Sensor Combinations: The aim of CALVIN is to develop
innovative agents that learn to relate human language from
onboard sensors by capturing many challenges present in real-
world settings. Most autonomous robots operating in complex
environments are equipped with different sensors to perceive
their surroundings. To foster development and experimentation
of language-conditioned policies that perform manipulation
tasks in the real-world, CALVIN supports a range of sensors
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0 1 2 3 4 5 6 7 8
Probability

Place in slider
Open drawer

Move slider right
Move slider left

Close drawer
Stack block

Place in drawer
Lift blue block table

Turn on lightbulb
Lift red block table

Turn on led
Lift pink block table

Turn off led
Turn off lightbulb

Lift red block slider
Lift pink block slider
Lift blue block slider

Push into drawer
Unstack block

Push red block left
Rotate blue block right

Push pink block left
Rotate red block right
Push blue block right

Rotate pink block right
Push red block right
Push blue block left

Push pink block right
Rotate blue block left
Rotate red block left

Rotate pink block left
Lift blue block drawer
Lift red block drawer

Lift pink block drawer

Task distribution across LH-MTLC

Rotate blocks
Push blocks
Move slider
Open/Close drawer
Lift blocks
Place in slider/drawer
Turn lightbulb on/off
Turn led on/off
Stack/Unstack blocks

Fig. 7: Visualization of the subtask distribution across the 1000
instruction chains used for the Long Horizon MTLC evaluation. We
show the percentage in which each subtask appears in the distribution.

commonly utilized for visuomotor control: RGB-D images
from both a static and a gripper camera, proprioceptive in-
formation, and vision-based tactile sensing [5]. We therefore
evaluate baseline agents for different sensors combinations.

IV. BASELINE MODELS

An agent trained for CALVIN needs to jointly reason over
perceptual and language input and produce a sequence of low-
level motor commands to interact with the environment.

A. Multicontext Imitation Learning

We model the interactive agent with a general-purpose
goal-reaching policy based on multi-context imitation learning
(MCIL) from play data [6]. To learn from unstructured “play”
we assume access to an unsegmented teleoperated play dataset
D of semantically meaningful behaviors provided by users,
without a set of predefined tasks in mind. To learn control,
this long temporal state-action stream D = {(xt, at)}∞t=0 is
relabeled [30], treating each visited state in the dataset as a
“reached goal state”, with the preceding states and actions
treated as optimal behavior for reaching that goal. Relabeling
yields a dataset of Dplay = {(τ, xg)i}

Dplay
i=0 where each goal state

xg has a trajectory demonstration τ = {(x0, a0), . . .} solving
for the goal. These short horizon goal image conditioned
demonstrations can be fed to a simple maximum likelihood
goal conditioned imitation objective:

LLfP = E(τ,xg)∼Dplay

 |τ |∑
t=0

log πθ(at | xt, xg)

 (1)

to learn a goal-reaching policy πθ (at | xt, xg). Multi-context
imitation learning addresses the inherent multi-modality in
free-form imitation datasets by auto-encoding contextual
demonstrations through a latent “plan” space with an sequence-
to-sequence conditional variational auto-encoder (seq2seq
CVAE). The decoder is a policy trained to reconstruct input
actions, conditioned on state xt, goal xg , and an inferred plan
z for how to get from xt to xg . At test time, it takes a goal
as input, and infers and follows plan z in closed-loop.

However, when learning language-conditioned policies
πθ (at | xt, l) it is not possible to relabel any visited state x to a

natural language goal as the goal space is no longer equivalent
to the observation space. Lynch et al. [6] showed that pairing
a small number of random windows with language after-the-
fact instructions enables learning a single language-conditioned
visuomotor policy that can perform a wide variety of robotic
manipulation tasks. The key insight here is that solving a single
imitation learning policy for either goal image or language
goals, allows for learning control mostly from unlabeled play
data and reduces the burden of language annotation to less than
1% of the total data. Concretely, given multiple contextual
imitation datasets D = {D0, D1, . . . , DK}, with a different
way of describing tasks, MCIL trains a single latent goal con-
ditioned policy πθ (at | xt, z) over all datasets simultaneously,
as well as one parameterized encoder per dataset.

B. Implementation Details

We follow the baseline architecture implementation reported
by Lynch et al. [6] unless stated otherwise. We train the agent
with the Adam optimizer and a learning rate of 10−4. We set
the weight controlling the influence of the KL divergence to the
total loss to β = 0.001. During training, we randomly sample
windows between length 16 and 32 and pad them until the
max length of 32. As in the original implementation, no image
data augmentations are applied and absolute cartesian actions
w.r.t the world frame are used. The encoder for the gripper
camera takes an image of 84 × 84 as input and consists of 3
convolutional layers with 32, 64, and 64 channels followed by
a 128 unit ReLU MLP. The encoder for the visual-tactile sensor
is based on a pre-trained ResNet-18 model. The feature vectors
produced by the different modality encoders are concatenated.
Depth images are concatenated channel-wise with the RGB
images in an early-fusion fashion. In contrast to [6], the gripper
fingers of the robot in the CALVIN environment cannot be
controlled independently, reducing the action output of the
network by one dimension. We note that the same training
hyperparameters are used for all splits.

V. EXPERIMENTAL RESULTS

The results comparing language-conditioned policies based
on multicontext imitation learning for the different evaluation
modes in CALVIN are shown in Figure 8. We note that there
is no constraint to use imitation learning approaches to solve
CALVIN tasks, as approaches that use reinforcement learning
to learn language-conditioned policies can also be applied [7].
We observe that the baseline with images of the static camera
achieves a success rate of 53.9% for the MTLC evaluation
setting, when training and testing the 34 manipulation tasks
on the same environment. The success rate stays comparable
when including a gripper camera, depth channels or tactile
sensing. We hypothesize that the reason for not seeing larger
improvements when adding the gripper camera is that the
policy might benefit from using relative actions instead of
global actions. A qualitative analysis indicates that the perfor-
mance depends significantly on the initial position of the robot,
suggesting the agent relies on context rather than learning to
disentangle initial states and tasks. It is possible this is due to
causal confusion between the proprioceptive information and
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Input Train→Test MTLC LH-MTLC
Static Camera Gripper Camera Tactile (34 tasks) No. Instructions in a Row (1000 chains)
RGB D RGB D RGB 1 2 3 4 5

4 7 7 7 7 D→D 53.9% 48.9% 12.9% 2.6% 0.5% 0.08%
4 7 7 7 7 A,B,C,D→D 35.6% 28.2% 2.5% 0.3% 0% 0%
4 7 7 7 7 A,B,C→D 38.6% 20.2% 0.2% 0% 0% 0%
4 7 4 7 7 D→D 51.8% 34.4% 5.8% 1.1% 0.2% 0.08%
4 7 4 7 7 A,B,C,D→D 49.7% 37.3% 2.7% 0.17% 0% 0%
4 7 4 7 7 A,B,C→D 38.0% 30.4% 1.3% 0.17% 0% 0%
4 7 7 7 4 D→D 54.2% 28.5% 3.2% 0% 0% 0%
4 7 7 7 4 A,B,C,D→D 47.9% 22.7% 2.3% 0.3% 0% 0%
4 7 7 7 4 A,B,C→D 43.7% 17.3% 0.8% 0.08% 0% 0%
4 4 4 4 7 D→D 46.1% 28.2% 4.6% 0.3% 0.08% 0%
4 4 4 4 7 A,B,C,D→D 40.7% 14.4% 1.8% 0.08% 0.08% 0%
4 4 4 4 7 A,B,C→D 30.8% 21.1% 1.3% 0% 0% 0%

Fig. 8: Baseline performance of MCIL [6] on the CALVIN Challenge for different combinations of training and test environments and sensor
suites.

the target actions [32]. Besides, we did not use image data
augmentations in the baselines to stay close to the original
implementation, but we hypothesize this might be beneficial.
Additionally, more elaborate sensor fusion approaches such
as mixture of experts [33], [34] or view-invariant contrastive
learning [35], [36] might be necessary to learn better multi-
modal state representations.

For the Long-Horizon MTLC evaluation we observe that
the agents perform poorly on CALVIN’s long-horizon tasks
with high-dimensional state spaces. The best MCIL model
achieves a success rate of 0.08% when following chains of
five language instructions in a row when training and testing
on the same environment. Additionally, it solves the first
subtask of the chain, starting from a neutral position, in
48.9% of the cases. We observe that the policy sometimes
correctly executes block manipulation tasks, but confuses the
red and blue block colors in the instruction. As the language
models embed sentences containing the words red and blue
similarly, backpropagating through the entire language model
and leveraging auxiliary losses that try to align visual and
language representations [37] might be beneficial to tackle the
complicated perceptual grounding problem.

Finally, the general performance drops significantly when
evaluating on the multi environment and zero-shot multi envi-
ronment settings, which do not follow the standard assumption
of imitation learning that training and test tasks are drawn
independently from the same distribution. In order to achieve
better zero-shot generalization capabilities, additional tech-
niques from the domain adaptation literature [36], better data
augmentation and a stronger focus on depth inputs, since they
are invariant to texture changes, might be helpful. As MCIL
is an offline learning method, we hypothesize that naı̈ve data
sharing between multiple domains can be brittle because it can
exacerbate the distribution shift between the policy represented
in the data and the policy being learned [38]. This motivates
further research into agents that can perform the complex long-
horizon language-conditioned manipulation tasks introduced
by CALVIN.

VI. CONCLUSION

In this paper, we presented CALVIN, the first public
benchmark of instruction following that combines natural
language conditioning, multimodal high-dimensional inputs,
7-DOF continuous control, and long-horizon robotic object
manipulation in both seen and unseen environments. As the
field of language-driven robotics evolves, a need arises to stan-
dardize research for better benchmarks and more reproducible
results. CALVIN has the goal of providing researchers with a
modular framework that has been developed from the ground
up to support training, prototyping, and validation of language-
conditioned continuous control policies. Further to that, we
hope, along with the help of the community, to continuously
expand the tasks available for both training and evaluation.

We use CALVIN to evaluate a conditional sequence-
to-sequence variational autoencoder, shown to be effective
in other long horizon language-conditioned manipulation
tasks [6]. While this model is relatively competent at ac-
complishing some subgoals, the overall success rates are
poor. The long horizon of CALVIN tasks poses a significant
challenge with sub-problems including the acquisition of a
diverse repertoire of general-purpose skills, object detection,
referring expression and action grounding, and task-agnostic
continuous control. We hope CALVIN will open the door
for the future development of agents that can relate human
language to their perception and actions and generalize abstract
concepts to unseen entities in the same way humans do.
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APPENDIX

A. Tasks

All tasks are defined in terms of change in the environment state between the first and the final frame of a sequence. In order
to see if a task was solved in an arbitrary sequence of frames of the CALVIN dataset, the environment is reset to the state
of the first and the last frame of that sequence. The tasks detector compares the two simulator states and checks which task
conditions are fulfilled. A key advantage of this strategy is that it enables efficient evaluation of sequences for task completion
independent of their length. Figure 9 shows a list of all task definitions.

Task Condition
Rotate red block right
Rotate blue block right
Rotate pink block right

The object has to be rotated clockwise more than 60° around the z-axis
while not being rotated for more than 30° around the x or y-axis.

Rotate red block left
Rotate blue block left
Rotate pink block left

The object has to be rotated counterclockwise more than 60° around the z-axis
while not being rotated for more than 30° around the x or y-axis.

Push red block right
Push blue block right
Push pink block right

The object has to move more than 10 cm to the right while having surface
contact in both frames

Push red block left
Push blue block left
Push pink block left

The object has to move more than 10 cm to the left while having surface
contact in both frames

Move slider left The sliding door has to be pushed at least 12 cm to the left.
Move slider right The sliding door has to be pushed at least 12 cm to the right.
Open drawer The drawer has to pulled out at least 10 cm.
Close drawer The drawer has to be pushed in at least 10 cm.
Lift red block table
Lift blue block table
Lift pink block table

The object has to be grasped from the table surface and lifted at least 5 cm high.
In the first frame the gripper may not touch the object.

Lift red block slider
Lift blue block slider
Lift pink block slider

The object has to be grasped from the surface of the sliding cabinet and lifted
at least 3 cm high. In the first frame the gripper may not touch the object.

Lift red block drawer
Lift blue block drawer
Lift pink block drawer

The object has to be grasped from the surface of the drawer and lifted at least 5 cm high.
In the first frame the gripper may not touch the object.

Place in slider The object has to be placed in the sliding cabinet.
It must be lifted by the gripper in the first frame.

Place in drawer The object has to be placed in the drawer.
It must be lifted by the gripper in the first frame.

Push into drawer The object has to be pushed into the drawer.
It has to touch the table surface in the first frame.

Stack blocks A block has to be placed on top of another block.
It may not be in contact with the gripper in the final frame.

Unstack blocks
A block that is stacked on another block has to be removed from the top,
either by grasping it or by pushing it down. It may not be in contact
with the gripper in the first frame.

Turn on light bulb The switch has to be pushed down to turn on the yellow light bulb.
Turn off light bulb The switch has to be pushed up to turn off the yellow light bulb.
Turn on LED The button has to be pressed to turn on the green LED light.
Turn off LED The button has to be pressed to turn off the green LED light.

Fig. 9: List of all 34 tasks with their respective success criteria.



10

B. Language Annotation Generation

The language annotations are extracted automatically from the recorded data with the following procedure: we randomly
sample sequences with a window size of 64 frames. For each sequence the task detector checks if a task has been solved
between the first and the last frame. Additionally, we check that neither that task nor any other task is solved in the first
half of the sequence. The intuition behind this is that we want to include the locomotion behavior prior to the actual task.
For example, before opening the drawer, the arm must navigate in the direction of the handle. This is important for learning
to solve tasks with language goals from arbitrary starting positions. If a sequence qualifies for labeling, we sample a natural
language instruction from a set of predefined sentences with approximately 11 synonymous instructions per task. In total, this
gives 389 unique language instructions for 34 tasks. The sequence in which the task “stack blocks” is solved could for example
get instructions such as “place the grasped block on top of another block” or “stack blocks on top of each other”. In order
to simulate a real-world scenario where it might not be possible to pair all the collected robot experience with crowd-sourced
language annotations, we annotate only 1% of the recorded robot interaction data with language instructions. The CALVIN
dataset conveniently includes precomputed MiniLM language embeddings for all instructions, but researchers are free to use
their own language model of choice on the raw input data.
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