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I. INTRODUCTION

“... spend the summer linking a camera to a computer and
getting the computer to describe what it saw.”

Marvin Minsky on the goal of a 1966 undergraduate sum-
mer research project [2].

A long-standing goal in robotics is to build robot systems
that can perform a wide range of everyday tasks given onboard
sensor data and instructions from the user. Doing so requires
the robot to acquire a diverse repertoire of general-purpose
skills and non-expert users to be able to effectively specify
tasks for the robot to solve. This stands in contrast to most
current end-to-end models, which typically learn individual
tasks one at a time from manually-specified rewards and
assume tasks being specified via goal images [16] or one-
hot skill selectors [13], which are not practical for untrained
users to instruct robots. Natural language presents a promising
alternative form of specification, providing an intuitive and
flexible way for humans to communicate tasks and refer to
abstract concepts. Despite the tremendous progress made in
visual and language understanding since this now famously
ambitious summer project from one of the AI pioneers, we are
far away from achieving robots that can learn to relate human
language to their world model. As robots become ubiquitous
across human-centered environments the need for intuitive
task specification grows: how can we scale robot learning
systems to autonomously acquire general-purpose knowledge
that allows them to compose long-horizon tasks by following
unconstrained language instructions?

Understanding and following unconstrained language in-
structions is a notoriously challenging problem, subsuming
many long term problems in AI [9, 28]. For example, a robot
presented with the command “fetch the banana and place it
left of the bottom object” must be able to relate language
to its low-level perception (what does a banana look like?).
It must perform visual and spatial reasoning about where to
place the “banana” relative to the “bottom object” in order to
reproduce the spatial relation “to the left of”, which is inher-
ently ambiguous as natural language placement instructions
do not uniquely identify a location in a scene. Additionally,
it must solve a complex sequential decision problem (what
commands do I send to fetch an object, or to do a relative
placement?). In my work, I have focused on addressing the
challenging problem of relating human language to a robot
perceptions and action by introducing techniques that leverage
self-supervision and structural priors to enable sample-efficient

Fig. 1. The goal of my work is to control a robot to perform tabletop
manipulation tasks via natural language instructions.

learning of language-conditioned manipulation tasks.

II. GROUNDING OBJECTS AND SPATIAL RELATIONS

Visual grounding of referring expressions has been ad-
dressed in robotics by training classifiers to recognize pre-
defined object categories [7, 23]. These approaches restrict
themselves to tasks covered by predefined visual concepts and
simple language expression templates. I developed solutions
that leverage advances in modular networks [30, 1] for joint
referential expression comprehension and generation [17].
This allows decomposing free-form language into modular
components related to subject appearance, location, and re-
lationship to other objects, flexibly adapting to expressions
containing different types of information in an end-to-end
fashion. I leveraged our approach to enable a PR2 robot to
sequentially compose unconstrained pick-and-place language
instructions, as shown in Figure 1. If the referred object
cannot be uniquely identified by the grounding model, the
system needs to ask for clarification from the human operator.
Inspired by recent advances in image caption generation and
understanding [11, 29], I proposed incorporating a captioning
module to our grounding network that allows the robot to
describe each detected object with a natural language de-
scription. To generate discriminative sentences, we leveraged
a maximal mutual information constraint that encourages the
generated expression to describe the target object better than
the other objects within the image. We demonstrated that by
jointly training the comprehension and language generation
modules, they regularize each other and improve their respec-
tive performances, showcasing the effectiveness of multitask
learning [5]. Exploiting multitask learning and modular net-
works, our architecture achieved a state-of-the-art performance
on the challenging RefCOCO benchmark [14] for referential



expression comprehension and generation.
Spatial relations play a crucial role in understanding natural

language instructions [8, 24] as objects are often described in
relation to others. Modeling spatial relations is a challenging
problem [18], as natural language placement instructions do
not uniquely identify a location in a scene. I advocate to
model such spatial relations using distributions to capture
the inherent ambiguity. To this end, I proposed a novel
approach that combines referring expression comprehension
with the grounding of spatial relations to enable complex
object placement commands such as “place the ball inside the
left box” without the need of pixelwise ground-truth data [19].
Concretely, in this work I proposed a convolutional network
for estimating pixelwise object placement probabilities for a
set of spatial relations from a single input image. We addressed
the problem of the unavailability of ground-truth pixelwise
annotations of spatial relations from the perspective of aux-
iliary learning. Though classifying two objects into a spatial
relation does not carry any information on the best placement
location to reproduce a relation, inserting objects at different
locations in the image would allow to infer a distribution
over relations. Most commonly, “pasting” objects in an image
requires access to 3D models and silhouettes and creates subtle
pixel artifacts that lead to noticeably different features and to
the training erroneously focusing on these discrepancies [6].
To this end, our approach receives the learning signal by
classifying hallucinated scene representations as an auxiliary
task. Concretely, deep features of objects are implanted into
a pretrained auxiliary classifier to compute a posterior class
probability over spatial relations. By rearranging deep features,
we can reason over what relation would most likely be formed
if we placed an object at the given location without modifying
the input image. Unlike previous approaches that considered
only grounding fetching instructions [8, 26], combining my
two aforementioned methods enabled us to tackle temporally
more extended tasks, leading to the first comprehensive system
for controlling a PR2 robot to sequentially compose uncon-
strained pick-and-place language instructions [17].

III. LANGUAGE-CONDITIONED POLICY LEARNING

Thus far, I have introduced a method for picking-and-
placing objects based on language instructions that can solve
ambiguities through dialog. However, if we want to command
the robot to solve more complex tasks, such as opening
a drawer, extending our approach is not trivial. Towards
developing generalist robots, it is not only imperative to
ground object semantics and spatial relations, but also to be
able to ground a diverse repertoire of robot skills. To this
end, I advocate defining skills as being continuous instead
of discrete [20], endowing the agent of task-agnostic con-
trol: the ability to reach any reachable goal state from any
current state [12]. In recent work, I have proposed a new
open-source simulated benchmark, coined CALVIN, that links
human language to robot motor skills, behaviors, and objects
in interactive visual environments [21]. In this setting, a single
agent must solve complex manipulation tasks by understanding

a series of language expressions in a row, e.g., “open the
drawer . . . pick up the blue block . . . push the block into the
drawer . . . open the sliding door”. Furthermore, to evaluate
the agents’ ability for long-horizon planning, agents in this
scenario are expected to be able to perform any combination
of subtasks in any order. Our framework has been developed
from the ground up to support training, prototyping, and
validation of language conditioned policies over a range of
four indoor environments. To establish baseline performance
levels, we evaluate an approach that uses relabeled imitation
learning to distill reusable behaviors into a language-based
goal-directed policy [15]. This is the first public benchmark
of instruction following, to our knowledge, that combines:
natural language conditioning, multimodal high-dimensional
inputs, 7-DOF continuous control, and long-horizon robotic
object manipulation. While recent advances have been made
in language-driven robotics by leveraging end-to-end learning
from pixels [10, 27, 15], there is no clear and well-understood
process for making various design choices due to underlying
variation in setups. In an effort to standardize research, I
conducted an extensive study of the most critical challenges
in learning language conditioned policies to identify which
components matter most [22]. I further identified architectural
and algorithmic techniques that improve performance, such as
a hierarchical decomposition of the robot control learning, a
multimodal transformer encoder, discrete latent plans and a
self-supervised contrastive loss that aligns video and language
representations. This open-sourced work is currently state-of-
the-art on the challenging CALVIN benchmark.

IV. FUTURE WORK

The overall goal of my work is to develop generalist robots
that can solve a wide range of everyday tasks from onboard
sensors and following natural language instructions. While
my current approach achieves state-of-the-art performance in
the CALVIN benchmark, training the same approach on a
real robot might require a large-scale data collection effort.
To this end, I am working on learning language-conditioned
visual affordances to improve policy sample-efficiency, by
extending a self-supervised approach to obtain affordance
labels I recently proposed [3]. Furthermore, to open the door
for the future development of agents that can generalize
abstract concepts to unseen entities the same way humans
do, I plan to take inspiration from foundation models, such
as GPT-3 [4] or CLIP [25]. The direction I wish to pursue
is to explore how natural language can act as a common
grounding across otherwise incompatible embodiments and
foundation models. Learning multimodal, multitask foundation
models with complementary forms of commonsense will un-
lock combinatorial generalization of robots to novel behaviors
and improve human-robot interaction by generating free-form
answers to contextual reasoning questions. Overall, I believe
that since Marvin Minsky’s summer project, these are the most
exciting times to work towards general-purpose robots that can
relate human language to their perception and actions.
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