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Abstract— Recent works have shown that Large Language
Models (LLMs) can be applied to ground natural language to a
wide variety of robot skills. However, in practice, learning multi-
task, language-conditioned robotic skills typically requires
large-scale data collection and frequent human intervention to
reset the environment or help correcting the current policies.
In this work, we propose a novel approach to efficiently
learn general-purpose language-conditioned robot skills from
unstructured, offline and reset-free data in the real world
by exploiting a self-supervised visuo-lingual affordance model,
which requires annotating as little as 1% of the total data with
language. We evaluate our method in extensive experiments
both in simulated and real-world robotic tasks, achieving state-
of-the-art performance on the challenging CALVIN benchmark
and learning over 25 distinct visuomotor manipulation tasks
with a single policy in the real world. We find that when
paired with LLMs to break down abstract natural language
instructions into subgoals via few-shot prompting, our method
is capable of completing long-horizon, multi-tier tasks in the
real world, while requiring an order of magnitude less data
than previous approaches. Code and videos are available at
http://hulc2.cs.uni-freiburg.de.

I. INTRODUCTION

Recent advances in large-scale language modeling have
produced promising results in bridging their semantic knowl-
edge of the world to robot instruction following and plan-
ning [1], [2], [3]. In reality, planning with Large Language
Models (LLMs) requires having a large set of diverse low-
level behaviors that can be seamlessly combined together to
intelligently act in the world. Learning such sensorimotor
skills and grounding them in language typically requires
either a massive large-scale data collection effort [1], [2],
[4], [5] with frequent human interventions, limiting the skills
to templated pick-and-place operations [6], [7] or deploying
the policies in simpler simulated environments [8], [9], [10].
The phenomenon that the apparently easy tasks for humans,
such as pouring water into a cup, are difficult to teach a robot
to do, is also known as Moravec’s paradox [11]. This raises
the question: how can we learn a diverse repertoire of visuo-
motor skills in the real world in a scalable and data-efficient
manner for instruction following?

Prior studies show that decomposing robot manipulation
into semantic and spatial pathways [12], [13], [6], improves
generalization, data-efficiency, and understanding of multi-
modal information. Inspired by these pathway architectures,
we propose a novel, sample-efficient method for learning
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Fig. 1: When paired with Large Language Models, HULC++
enables completing long-horizon, multi-tier tasks from abstract
natural language instructions in the real world, such as “tidy up
the workspace” with no additional training. We leverage a visual
affordance model to guide the robot to the vicinity of actionable
regions referred by language. Once inside this area, we switch to a
single 7-DoF language-conditioned visuomotor policy, trained from
offline, unstructured data.

general-purpose language-conditioned robot skills from un-
structured, offline and reset-free data in the real world by
exploiting a self-supervised visuo-lingual affordance model.
Our key observation is that instead of scaling the data
collection to learn how to reach any reachable goal state from
any current state [14] with a single end-to-end model, we can
decompose the goal-reaching problem hierarchically with a
high-level stream that grounds semantic concepts and a low-
level stream that grounds 3D spatial interaction knowledge,
as seen in Figure 1.

Specifically, we present Hierarchical Universal Lan-
guage Conditioned Policies 2.0 (HULC++), a hierarchical
language-conditioned agent that integrates the task-agnostic
control of HULC [10] with the object-centric semantic
understanding of VAPO [13]. HULC is a state-of-the-art
language-conditioned imitation learning agent that learns 7-
DoF goal-reaching policies end-to-end. However, in order to
jointly learn language, vision, and control, it needs a large
amount of robot interaction data, similar to other end-to-
end agents [4], [9], [15]. VAPO extracts a self-supervised
visual affordance model of unstructured data and not only
accelerates learning, but was also shown to boost general-
ization of downstream control policies. We show that by
extending VAPO to learn language-conditioned affordances
and combining it with a 7-DoF low-level policy that builds
upon HULC, our method is capable of following multiple
long-horizon manipulation tasks in a row, directly from
images, while requiring an order of magnitude less data
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than previous approaches. Unlike prior work, which relies
on costly expert demonstrations and fully annotated datasets
to learn language-conditioned agents in the real world, our
approach leverages a more scalable data collection scheme:
unstructured, reset-free and possibly suboptimal, teleoperated
play data [16]. Moreover, our approach requires annotating
as little as 1% of the total data with language. Extensive
experiments show that when paired with LLMs that translate
abstract natural language instructions into a sequence of
subgoals, HULC++ enables completing long-horizon, multi-
stage natural language instructions in the real world. Finally,
we show that our model sets a new state of the art on the
challenging CALVIN benchmark [8], on following multiple
long-horizon manipulation tasks in a row with 7-DoF control,
from high-dimensional perceptual observations, and specified
via natural language. To our knowledge, our method is the
first explicitly aiming to solve language-conditioned long-
horizon, multi-tier tasks from purely offline, reset-free and
unstructured data in the real world, while requiring as little
as 1% of language annotations.

II. RELATED WORK

There has been a growing interest in the robotics com-
munity to build language-driven robot systems [17], spurred
by the advancements in grounding language and vision [18],
[19]. Earlier works focused on localizing objects mentioned
in referring expressions [20], [21], [22], [23], [24] and
following pick-and-place instructions with predefined motion
primitives [25], [6], [26]. More recently, end-to-end learning
has been used to study the challenging problem of fusing
perception, language and control [4], [27], [28], [1], [10],
[9], [15], [5]. End-to-end learning from pixels is an attrac-
tive choice for modeling general-purpose agents due to its
flexibility, as it makes the least assumptions about objects
and tasks. However, such pixel-to-action models often have
a poor sample efficiency. In the area of robot manipulation,
the two extremes of the spectrum are CLIPort [6] on the
one hand, and agents like GATO [5] and BC-Z [4] on
the other, which range from needing a few hundred expert
demonstrations for pick-and-placing objects with motion
planning, to several months of data collection of expert
demonstrations to learn visuomotor manipulation skills for
continuous control. In contrast, we lift the requirement of
collecting expert demonstrations and the corresponding need
for manually resetting the scene, to learn from unstructured,
reset-free, teleoperated play data [16]. Another orthogonal
line of work tackles data inefficiency by using pre-trained
image representations [29], [6], [30] to bootstrap downstream
task learning, which we also leverage in this work.

We propose a novel hierarchical approach that com-
bines the strengths of both paradigms to learn language-
conditioned, task-agnostic, long-horizon policies from high-
dimensional camera observations. Inspired by the line of
work that decomposes robot manipulation into semantic and
spatial pathways [12], [13], [6], we propose leveraging a
self-supervised affordance model from unstructured data that
guides the robot to the vicinity of actionable regions referred

"Move the sliding door to the right"

Projected end-effector
position

......

Fig. 2: Visualization of the procedure to extract language-
conditioned visual affordances from human teleoperated unstruc-
tured, free-form interaction data. We leverage the gripper open/close
signal during teleoperation to project the end-effector into the
camera images to detect affordances in undirected data.

in language instructions. Once inside this area, we switch to
a single multi-task 7-DoF language-conditioned visuomotor
policy, trained also from offline, unstructured data.

III. METHOD

We decompose our approach into three main steps. First
we train a language-conditioned affordance model from
unstructured, teleoperated data to predict 3D locations of
an object that affords an input language instruction (Section
III-A). Second, we leverage model-based planning to move
towards the predicted location and switch to a local language-
conditioned, learning-based policy πfree to interact with the
scene (Section III-C). Third, we show how HULC++ can
be used together with large language models (LLMs) for
decomposing abstract language instructions into a sequence
of feasible, executable subtasks (Section III-D).

Formally, our final robot policy is defined as a mixture:

π(a | s, l) = (1− α(s, l)) · πmod(a | s)
+α(s, l) · πfree(a | s, l) (1)

Specifically, we use the pixel distance between the pro-
jected end-effector position Itcp and the predicted pixel from
the affordance model Iaff to select which policy to use.
If the distance is larger than a threshold ε, the predicted
region is far from the robots current position and we use the
model-based policy πmod to move to the predicted location.
Otherwise, the end-effector is already near the predicted
position and we keep using the learning-based policy πfree.
Thus, we define α as:

α(s, l) =

{
0, if |Iaff − Itcp | > ε

1, otherwise
(2)

As the affordance prediction is conditioned on language,
each time the agent receives a new instruction, our agent
decides which policy to use based on α(s, l). Restricting the
area where the model-free policy is active to the vicinity
of regions that afford human-object interactions has the
advantage that it makes it more sample efficient, as it only
needs to learn local behaviors.
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Fig. 3: Overview of the system architecture. HULC++ first processes a language instruction and an image from a static camera to predict
the afforded region and guides the robot to its vicinity. Once inside this area, we switch to a language-conditioned imitation learning
agent that receives RGB observations from both a gripper and a static camera, and learns 7-DoF goal-reaching policies end-to-end. Both
modules learn from the same free-form, unstructured dataset and require as little as 1% of language annotations.

A. Extracting Human Affordances from Unstructured Data

We aim to learn an affordance model Fa that can predict
a world location when given a natural language instruc-
tion. Unlike prior affordance learning methods that require
manually drawn segmentation masks [31], we automatically
extract affordances from unstructured, human teleoperated
play data [16]. Leveraging play data has several advantages:
it is cheap and scalable to collect, contains general behavior,
and is not random, but rather structured by human knowledge
of affordances. Concretely, play data consists of a long
unsegmented dataset D of semantically meaningful behaviors
provided by users teleoperating the robot without a specific
task in mind. The full state-action stream D = {(st, at)∞t=0}
is relabeled to treat the preceding states and actions as opti-
mal behaviour to reach a visited state [16]. Additionally, we
assume that a small number of random sequences, less than
1% of the dataset, are annotated with a language instruction
describing the task being completed in the sequence.

In order to extract visual affordances from unstructured
data, we use the gripper action as a heuristic to discover
elements of the scene that are relevant for task completion.
Consider the following scenario: a random sequence τ =
{(s0, a0), ..., (sk, ak)}, where k denotes the window size, is
annotated with a language instruction sg = l. If for any state
si in the sequence, the action ai contains a gripper closing
signal, we assume that there is an object that is needed for
executing the task l at the position of the end-effector. To
learn a visuo-lingual affordance model, we project the end-
effector world position to the camera images to obtain a pixel
pt, and we annotate the previous frames with said pixel and
the language instruction l, as shown in Figure 2. Intuitively,
this allows the affordance model to learn to predict a pixel
corresponding to an object that is needed for completing the
task l.

During test time, given a predicted pixel location, as-

suming an existing camera calibration, depth information
is needed to compute the 3D position where the model-
based policy should move to. Instead of relying on the
sensory depth observations, our model is trained to produce
an estimated depth, by using the position of the end-effector
during the gripper closing as supervision. A key advantage
of our formulation is that by predicting the depth from
visuo-lingual features, our model can better adapt to partial
occlusions that might occur in the scene.

B. Language-Conditioned Visual Affordances

Our visuo-lingual affordance model, see Figure 3, consists
of an encoder decoder architecture with two decoder heads.
The first head predicts a distribution over the image, repre-
senting each pixels likelihood to be an afforded point. The
second head predicts a Gaussian distribution from which the
corresponding predicted depth is sampled. Both heads share
the same encoder and are conditioned on the input language
instruction. Formally, given an input consisting of a visual
observation I and a language instruction l, the affordance
model Fa produces an output o of (1) a pixel-wise heatmap
A ∈ RH×W , indicating regions that afford the commanded
task and (2) a corresponding depth estimate d. We denote
this mapping as Fa(I, l) 7→ o = (A, d).

1) Visual Module: The visual prediction module produces
a heatmap A given an input (It, lt). To train it, we apply a
softmax function over all the pixels of A. This results in a
distribution V over the image where the sum of all the pixel
values equals to one.

V = softmax(A) =
exp(ai)∑N
j=1 exp(aj)

(3)

Similarly, the target T is constructed with the same shape as
V , by initializing all its values to zero. Then, we generate
a binary one-hot pixel map with the pixel of the projected



position that corresponds to the current state input. Finally,
we optimize the visual prediction module with the cross-
entropy loss:

Laff = −
N∑
i=1

ti log vi, (4)

where ti ∈ T and vi ∈ V . This optimization scheme [32]
allows the visual module to learn a multimodal belief over
the image, where the pixel with the highest value denotes the
most likely image location given the input. During inference,
we use the dense pixelwise output prediction A to select a
pixel location Ii:

Ii = argmax
(u,v)

V ((u, v) | (I, l)) (5)

The affordance prediction follows a U-Net [33] architecture,
where we repeatedly apply language-conditioning to three
of the decoder layers after the bottleneck, taking inspiration
from LingUNet [34].

2) Depth Module: As aforementioned, we can compute
a target for the depth module by transforming the pixel
of interest pt to the camera frame to obtain pcamt , where
the z coordinate of this point corresponds to the ground
truth depth pcamt,z . Although we compute the true value,
typical depth sensors present measurement errors. Therefore,
in order to design a system that models the depth error, we
use the ground truth depth information to train a Gaussian
distribution N (µ, σ) by maximizing the log likelihood.

Ldepth =
1

2

(
log σ2 +

(y − µ)2

σ2

)
(6)

As shown in Figure 3, the depth module consists of a
set of linear layers that take as input the encoded visuo-
lingual features. Here, the language-conditioning is done
by concatenating the natural language encoding to the first
two layers of the multilayer perceptron. The output of the
network are the parameters of a Gaussian distribution d ∼
N(µ, σ), which is sampled during inference to obtain the
depth prediction d. The total loss function used to train the
full affordance model is defined as a weighted combination
of the affordance module and depth prediction module losses:

L = βLaff + (1− β)Ldepth (7)

C. Low-Level Language-Conditioned Policy

In order to interact with objects, we learn a goal-
conditioned policy πθ (at | st, l) that outputs action at ∈ A,
conditioned on the current state st ∈ S and free-form
language instruction l ∈ L, under environment dynamics T :
S ×A → S. We note that the agent does not have access to
the true state of the environment, but to visual observations.
We model the low-level policy with a general-purpose goal-
reaching policy based on HULC [10] and trained with multi-
context imitation learning [9]. We leverage the same, long
unstructured dataset D of semantically meaningful behaviors
provided by users we previously utilized to learn affordances
in Section III-A. In order to learn task-agnostic control,
we leverage goal relabeling [35], by feeding these short

horizon goal image conditioned demonstrations into a simple
maximum likelihood goal conditioned imitation objective:

LLfP = E(τ,sg)∼Dplay

 |τ |∑
t=0

log πθ(at | st, sg)

 (8)

However, when learning language-conditioned policies
πθ (at | st, l) it is not possible to relabel any visited state
s to a natural language goal, as the goal space is no
longer equivalent to the observation space. Lynch et al. [9]
showed that pairing a small number of random windows
with language after-the-fact instructions, enables learning
a single language-conditioned visuomotor policy that can
perform a wide variety of robotic manipulation tasks. The
key insight here is, that solving a single imitation learning
policy for either goal image or language goals, allows for
learning control mostly from unlabeled play data and reduces
the burden of language annotation to less than 1% of the
total data. Concretely, given multiple contextual imitation
datasets D = {D0, D1, . . . , DK}, with different ways of
describing tasks, multi-context imitation learning trains a
single latent goal conditioned policy πθ (at | st, z) over all
datasets simultaneously.

D. Decomposing Instructions with LLMs

Guiding the robot to areas afforded by a language in-
struction with the affordance model and then leveraging the
low-level policy to execute the task, enables in principle to
chain several language instructions in a row. Although natural
language provides an intuitive and scalable way for task
specification, it might not be practical to have to continually
input low level language instructions, such as “open the
drawer”, “now pick up the pink block and place it inside the
drawer”, “now pick up the yellow block and place it inside

state = ‘drawer_open’: False, ‘blocks_on_table’: [‘red’],

‘buttons_on’: [‘green’]

# put away the red block.

open_drawer()

pick_and_place(‘red’, ‘drawer’)

close_drawer()

...

state = ‘drawer_open’: False, ‘blocks_on_table’: [],

‘buttons_on’: [‘yellow’]

# turn off the lights.

push_button(‘yellow’)

state = ‘drawer_open’: False, ‘blocks_on_table’: [‘red’,

‘green’, ‘blue’], ‘buttons_on’: [‘green’, ‘yellow’]

# tidy up the workspace and turn off all the lights
open_drawer()
pick_and_place(‘red’, ‘drawer’)
pick_and_place(‘green’, ‘drawer’)
pick_and_place(‘blue’, ‘drawer’)
close_drawer()
push_button(‘green’)
push_button(‘yellow’)

Fig. 4: Example prompt to decompose abstract instructions into
sequences of subtasks. Prompt context is in gray, input task
commands are magenta, and generated outputs are highlighted .



Tasks completed in a row
Training data Method Language

Finetuned 1 2 3 4 5 Avg. Len.

Ours + R3M 4 93% (0.007) 79% (0.002) 64% (0.008) 52% (0.003) 40% (0.001) 3.30 (0.006)
Ours 4 89% (0.014) 71% (0.018) 55% (0.025) 43% (0.028) 33% (0.015) 2.93 (0.090)
HULC 4 84% (0.009) 66% (0.023) 50% (0.023) 38% (0.030) 29% (0.029) 2.69 (0.113)100 %

HULC-original 7 82.7% (0.3) 64.9% (1.7) 50.4% (1.5) 38.5% (1.9) 28.3% (1.8) 2.64 (0.05)

Ours + R3M 4 88% (0.030) 69% (0.032) 52% (0.016) 38% (0.013) 27% (0.004) 2.75 (0.2705)
Ours 4 84% (0.035) 63% (0.061) 44% (0.062) 32% (0.064) 21% (0.053) 2.45 (0.274)50 %
HULC 4 79% (0.031) 54% (0.067) 37% (0.072) 26% (0.066) 17% (0.045) 2.15 (0.278)

Ours + R3M 4 78% (0.009) 56% (0.006) 36% (0.011) 23% (0.016) 14% (0.009) 2.068 (0.046)
Ours 4 81% (0.007) 56% (0.006) 37% (0.008) 24% (0.017) 15% (0.016) 2.15 (0.049)25 %
HULC 4 72% (0.045) 45% (0.026) 27% (0.022) 17% (0.022) 9% (0.026) 1.72 (0.135)

TABLE I: Performance of our model on the D environment of the CALVIN Challenge and ablations, across 3 seeded runs.

the drawer” to perform a tidy up task for instance. Ideally, we
would like to give the robot an abstract high level instruction,
such as “tidy up the workspace and turn off all the lights”.
Similar to Zeng et. al. [7], we use a standard pre-trained
LLM, to decompose abstract language instructions into a
sequence of feasible subtasks, by priming them with several
input examples of natural language commands (formatted as
comments) paired with corresponding robot code (via few-
shot prompting). We leverage the code-writing capabilities
of LLMs [36], [3] to generate executable Python robot code
that can be translated into manipulation skills expressed in
language. For example, the skill expressed by the API call
push_button(‘green’), is translated into “turn on the green
light” and then used to execute an inference of the policy.
The only assumption we make is that the scene description
fed into the prompt matches the environments state. We show
a example prompt in Figure 4.

IV. EXPERIMENTS

Our experiments aim to answer the following questions:
1) Does integrating the proposed visuo-lingual affordance
model improve performance and data-efficiency on following
language instructions over using an end-to-end model? 2) Is
the proposed method applicable to the real world? 3) When
paired with LLMs, can the agent generalize to new behaviors,
by following the subgoals proposed by the LLM?

A. Simulation Experiments

Evaluation Protocol. We design our experiments using
the environment D of the CALVIN benchmark [8], which
consists of 6 hours of teleoperated undirected play data
that might contain suboptimal behavior. To simulate a real-
world scenario, only 1% of that data contains crowd-sourced
language annotations. The goal of the agent in CALVIN is
to solve up to 1000 unique sequence chains with 5 distinct
subtasks instructed via natural language, using onboard sens-
ing. During inference, the agent receives the next subtask in
a chain only if it successfully completes the current one.

Results and Ablations. We compare our approach of
dividing the robot control learning into a high-level stream
that grounds semantic concepts and a low-level stream
that grounds 3D spatial interaction knowledge against
HULC [10], a state-of-the-art end-to-end model that learns
general skills grounded on language from play data. For a

fair comparison, we retrain the original HULC agent to also
finetune the language encoder, as this gives a boost in average
sequence length from 2.64 to 2.69. We observe in Table I,
that when combined with our affordances model, the perfor-
mance increases to an average sequence length of 2.93. By
decoupling the control into a hierarchical structure, we show
that performance increases significantly. Moreover, when
initializing our affordance model with pretrained weights of
R3M [29], a work that aims to learn reusable representations
for learning robotic skills, HULC++ sets a new state of the
art with an average sequence length of 3.30.

In order to study the data-efficiency of our proposed
approach, we additionally compare our model on smaller
data splits that contain 50% and 25% of the total play data.
Our results indicate that our approach is up to 50% more
sample efficient than the baseline. As it might be difficult
to judge how much each module contributes to the overall
sample-efficiency gains, we investigate the effect of pairing
our affordance model trained on 25% of the data with a
low-level policy trained on the full dataset. We report little
difference, with an average sequence length of 2.92.

B. Real-Robot Experiments

System Setup. We validate our results with a Franka
Emika Panda robot arm in a 3D tabletop environment that
is inspired by the simulated CALVIN environment. This
environment consists of a table with a drawer that can be
opened and closed and also contains a sliding door on top
of a wooden base, such that the handle can be reached by
the end-effector. Additionally, the environment also contains
three colored light switches and colored blocks. We use an
offline dataset from concurrent work [37], consisting of 9
hours of unstructured data and that was collected by asking
participants to teleoperate the robot without performing any
specific task. Additionally, we annotate less than 1% of the
total data with language, 3605 windows concretely, by asking
human annotators to describe the behavior of randomly
sampled windows of the interaction dataset. The dataset
contains over 25 distinct manipulation skills. We note that
learning such a large range of diverse skills in the real world,
from unstructured, reset-free and possibly suboptimal data,
paired with less than 1% of it being annotated with language,
is extremely challenging. Additionally, this setting contains
an order of magnitude less data than related approaches [4].



Task\Method Ours HULC [10] BC-Z [4]

Lift the block on top of the drawer 70% 60% 20%
Lift the block inside the drawer 70% 50% 10%
Lift the block from the slider 40% 20% 10%

Lift the block from the container 70% 60% 20%
Lift the block from the table 80% 70% 40%

Place the block on top of the drawer 90% 50% 30%
Place the block inside the drawer 70% 40% 20%

Place the block in the slider 30% 20% 0%
Place the block in the container 60% 30% 20%

Stack the blocks 50% 30% 0%
Unstack the blocks 50% 40% 0%
Rotate block left 70% 40% 10%

Rotate block right 70% 50% 20%
Push block left 70% 50% 20%

Push block right 60% 50% 10%
Close drawer 90% 70% 20%
Open drawer 80% 50% 10%

Move slider left 70% 10% 0%
Move slider right 70% 30% 0%
Turn red light on 50% 30% 0%
Turn red light off 40% 20% 0%

Turn green light on 70% 60% 10%
Turn green light off 70% 50% 10%
Turn blue light on 70% 50% 10%
Turn blue light off 70% 30% 10%

Average over tasks 65.2% 42.4% 16.6%

Average no. of sequential tasks 6.4 2.7 1.3

TABLE II: The average success rate of the multi-task goal-
conditioned models running roll-outs in the real world.

Baselines. To study the effectiveness of our hierar-
chical architecture, we benchmark against two language-
conditioned baselines: HULC [10] and BC-Z [4]. The first
baseline serves to evaluate the influence of leveraging the
affordance model to enable a hierarchical decomposition
of the control loop, as the low-level policy is tailored to
learning task-agnostic control from unstructured data. The
BC-Z baseline, on the other hand, is trained only on the data
that contains language annotation and includes the proposed
auxiliary loss that predicts the language embeddings from
the visual ones for better aligning the visuo-lingual skill
embeddings [4]. For a fair comparison, all models have the
same observation and action space, and have their visual
encoders for the static camera initialized with pre-trained
ResNet-18 R3M features [29]. For HULC++ this entails both,
the visual encoder for the affordance model and the visual
encoder for the static camera of the low-level policy. The
encoder for the gripper camera is trained from scratch.

Evaluation. We start off by evaluating the success rate of
the individual skills conditioned with language. After training
the models with the offline play dataset, we performed 10
rollouts for each task using neutral starting positions to avoid
biasing the policies through the robot’s initial pose. This
neutral initialization breaks correlation between initial state
and task, forcing the agent to rely entirely on language to
infer and solve the task. We recorded the success rate of
each model in Table II. We observe that the BC-Z baseline
has near zero performance in most tasks, due to insufficient
demonstrations. HULC is more capable, as it leverages the
full play dataset with an average of 42.4% over 10 rollouts,
but struggles with long-horizon planning, as do most end-to-
end agents trained with imitation learning. Overall, HULC++
is more capable with an average of 65.2% success rate over
25 distinct manipulation tasks, demonstrating the effective-

ness of incorporating a semantic viso-lingual affordance prior
for decoupling the control into a hierarchical structure.

Finally, we evaluate how many tasks in a row each method
can follow in the real world, by leveraging GPT-3 to generate
sequences of subgoals for abstract language inputs, such as
“tidy up the workspace and turn off the lights”. We report
an average number of 6.4 subgoals being executed for our
method, while the baselines tend to fail after completing 2
to 3 subgoals. See the supplementary video for qualitative
results that showcase the diversity of tasks and the long-
horizon capabilities of the different methods. Overall, our
results demonstrate the effectiveness of our approach to
learn sample-efficient, language-conditioned policies from
unstructured data by leveraging visuo-lingual affordances.

V. CONCLUSION AND LIMITATIONS

In this paper, we introduced a novel approach to ef-
ficiently learn general-purpose, language-conditioned robot
skills from unstructured, offline and reset-free data contain-
ing as little as 1% of language annotations.The key idea
is to extract language-conditioned affordances from diverse
human teleoperated data to learn a semantic prior on where
in the environment the interaction should take place given a
natural language instruction. We distill this knowledge into
an interplay between model-based and model-free policies
that allows for a sample-efficient division of the robot
control learning, substantially surpassing the state of the
art on the challenging language-conditioned robot manipu-
lation CALVIN benchmark. We show that when paired with
LLMs to translate abstract natural language instructions into
sequences of subgoals, HULC++ is capable of completing
long-horizon, multi-tier tasks the real world, while requiring
an order of magnitude less data than previous approaches.

While the experimental results are promising, our ap-
proach has several limitations. First, when sequencing skills
in the real world, an open question is tracking task progress
in order to know when to move to the next task. In this
work, we acted with a fixed time-horizon for sequencing
tasks in the real world, implicitly assuming that all tasks take
approximately the same timesteps to complete. Second, the
code-generation module to translate abstract language inputs
to sequences of subgoals assumes that the prompted scene
description matches the environment’s state, which could be
automated by integrating a perceptual system [2]. Finally,
an exciting area for future work may be one that not only
grounds actions with language models, but also explores
improving the language models themselves by incorporating
real-world robot data [38].
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APPENDIX

A. Affordance Model Ablations

In this section we perform more ablation studies of our method on the CALVIN environment. Concretely, to better study
the data-efficiency of our method, we perform ablation studies by pairing affordance and policy models trained with 25%
and 100% of the training data. We observe in Table III that the performance does not change much, demonstrating the
sample-efficiency of the visuo-lingual affordance model.

Training data Tasks completed in a row

Policy Affordance 1 2 3 4 5 Avg. Len.

25% 25% 81% 56% 37% 24% 15% 2.15
25% 100% 82% 58% 38% 24% 15% 2.18

100% 100% 89% 71% 55% 43% 33% 2.93
100% 25% 89% 72% 55% 42% 31% 2.92

TABLE III: Ablation of our approach trained with different data quantities for the affordance and low-level policy networks.

Next, we perform similar ablation studies for the depth prediction module trained on 25%, 50% and 100% of the dataset.
We report two metrics: mean pixel distance error and the mean depth error. We plot the pixel distance error for the validation
split in Figure 5, and observe that the error increases only in ∼ 3 pixels when training the model with 25% of the data
instead of the full dataset.

Fig. 5: Pixel distance and depth validation error for the affordance model’s depth prediction module trained with different data quantities.

Similarly, we observe that the depth error increases in ∼2 cm when training the model with 25% of the data instead
of the full dataset. These results show that the proposed visuo-lingual affordance model is very sample-efficient, making
it attractive for real world robotic applications, where collecting robot interaction data and annotating them with natural
language might be costly.

B. Hyperparameters

1) Low-Level Policy: To learn the low-level policy we train the model using 8 gpus with Distributed Data Parallel (DDP).
Throughout training, we randomly sample windows between length 16 and 32 and pad them until reaching the max length
of 32 by repeating the last observation and an action equivalent to keeping the end effector in the same state. We use a batch
size of 64, which with DDP results in an effective batch size of 512. We train using the Adam optimizer with a learning
rate of 2e− 4. The latent plan is a vector of categorical variables, concretely we use 32 categoricals with 32 classes each.
The KL loss weight β is 1e−2 and uses KL balancing. Concretely, we minimize the KL loss faster with respect to the prior
than the posterior by using different learning rates, α = 0.8 for the prior and 1−α for the posterior. In order to encode raw
text into a semantic pre-trained vector space, we leverage the paraphrase-MiniLM-L3-v2 model [39], which distills a large
Transformer based language model and is trained on paraphrase language corpora that is mainly derived from Wikipedia. It
has a vocabulary size of 30,522 words and maps a sentence of any length into a vector of size 384.

For the real world experiments, the static camera RGB images have a size of 150 × 200, we then apply a color
jitter transform with contrast of 0.05, a brightness of 0.05 and a hue of 0.02. Finally, we use the values for the
pretrained R3M normalization, i.e., mean = [0.485, 0.456, 0.406] and a standard deviation, std = [0.229, 0.224, 0.225].
For the gripper camera RGB image, we resize the image from 200 × 200 to 84 × 84, we then apply a color jitter
transform with contrast of 0.05, a brightness of 0.05 and a hue of 0.02. Then we perform stochastic image shifts
of 0 − 4 pixels to the and a bilinear interpolation is applied on top of the shifted image by replacing each pixel with
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Fig. 6: Visualization of a sample rollout for our approach in the CALVIN environment. For each column, we show the input language
instruction, the predicted affordance, the reached state by the model-based policy after executing the command, and the final reached state
by the learning-based policy for completing the requested task.

the average of the nearest pixels. Finally, we normalize the input image to have pixels with float values between −1.0 and 1.0.

2) Affordance Model: For the affordance model we use a Gaussian distribution to model the depth estimate. We normalize
the depth values with the dataset statistics. We train the network end-to-end using a learning rate of 1e− 4 with the Adam
optimizer and a batch size of 32 in a single GPU. During training, we resize the input images to 224 × 224 × 3, apply
stochastic image shifts of 5 pixels and apply a color jitter transform with contrast of 0.05, a brightness of 0.05 and a hue of
0.02 as data augmentation. We use the paraphrase-MiniLM-L3-v2 pretrained model [39] to encode raw text into a semantic
vector space. In our experiments, we observed that the affordance model starts learning accurate predictions for the 2d pixel
affordance faster than making proper depth estimations. In order to balance both tasks, we define a higher weight for the
depth loss Ldepth than for the affordance loss Laff by setting β to 0.1.

C. Qualitative Results

In order to better understand how the visuo-lingual affordance model, the model-based policy and the model-free policy
interact with each other, we visualize a rollout for one chain of the CALVIN benchmark in Figure 6. Given a language
instruction and a visual observation, the visuo-lingual affordance model predicts a location which affords the given instruction.
The model-based policy guides the robot to the vicinity of the afforded region. Once inside this area, we switch to the model-
free language-conditioned visuomotor policy that interacts with the environment.
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