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Abstract— One important aspect of autonomous driving lies
in the selection of maneuver sequences. Here the challenge is to
optimize the driving comfort and travel-duration, while always
keeping within the safety limits. Human drivers analyze and
try to anticipate the traffic situation choosing their actions not
only based on current information but also based on experience.
The decision making process can be treated as a planning
problem. Classical planning systems consider the autonomous
driving task as a global numeric optimization problem, which in
populated dynamic environments can become computationally
intractable. In addition, purely numeric computations hamper
the understanding of the decision making for the human user.
We propose a planning system that presents a multi-level
architecture, similar to the human reasoning process, which
combines continuous planning with semantic information. This
allows the planning system to deal with the complexity of the
problem in a computationally efficient way and also provides an
intuitive interface to communicate the decisions to the driver.
We validate our approach in simulation and through a set of
experiments carried out with a real vehicle and an integrated
traffic simulation also known as vehicle in the loop (VIL).

I. INTRODUCTION

Since the DARPA Grand Challenge, the interest in au-
tomated driving systems has increased not only within the
research community but also by the general public. Many
automotive manufacturers have brought driver assistance sys-
tems with different automation degrees to market, including
the lane departure warning, the adaptive cruise control (ACC)
or the lane change assistant. Compared to assistance systems,
where the last decision and the responsibility still fall back
to the driver, in a highly automated driving vehicle, the
driver does not need be continuously in control. The great
challenge of autonomous systems is to guarantee the safety
of the selected maneuvers during the autonomous driving
phase. The ability to react to unexpected situations should
be ensured under defined constraints. In addition, if the
system wants the human taking over control, safety should
be guaranteed while the driver is warned and at least until
the driver gets back into control.

This paper presents a framework to safely accomplish the
driving task. The approach is described using the example
of a highway entrance ramp scenario, is valid also for
interchanges and further highway scenarios. In entrance ramp
situations (Fig. 1) the ego vehicle has to achieve a mandatory
lane change on a limited space and to merge itself into the
traffic flow. The challenge is to perform the driving activity
based on the partially available knowledge of the situation.
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Fig. 1. Entrance Ramp Scenario

Even if the observed data can be complemented by back-
end information, the sensor range is still limited. Besides,
the behavior of the other road members is predictable only
partially and for a short time horizons. Therefore, the plan-
ning system is forced to deal with uncertainties and partial
knowledge.

Classical approaches consider the autonomous driving task
as a global optimization problem, resulting in intractable
computational effort. Other approaches present a top-down
architecture where some critical information is lost within
the layers. The trade-off between safety and computational
effort results in solutions that provide reactive lane changes,
that is they perform conservative lane changes only when the
freespace near the vehicle is big enough. This conservative
behavior overlooks valid and safe maneuvers that a human
driver would actually select.

In this paper we consider the overall problem as a
planning problem and present a novel framework based on
the integration of semantic and continuous planning. The
same planning domain is defined on different abstraction
levels for all the planning layers. The approach deals with
the partial information in an efficient and traceable way.
The planner clusters the different options, assesses them
and selects the best policy based on the expected future
reward. The integration of different abstraction levels allows
to deal with the increasing time horizon as well as with the
increasing uncertainties. It does not only take into account
the information provided by the environment but also the
observed and learned values from past situations. This results
in a proactive driving strategy that plans and executes the best
policy to reach a desired lane and the desired velocity.

This paper is organized as follows: the next section
presents a review of the related work. In Section III-B
the domain used by the planning task is formalized and
the framework is presented. Section III-A describes the
different abstraction levels of the planning task. Simulation
and experimental results are presented in Section IV.

II. RELATED WORK

The concept of legal safety as basis for the interaction
between human and automated drivers was proposed by Van-
holme et al. [1]. This concept was expanded to a lane safety



assessment based on the ICS (Inevitable Collision States)
and its stochastic equivalent PDS (Probabilistic Collision
States) [2]. One limit of this safety assessment is the infinite
branching factor because the number of possible scenarios
tends to infinity when the horizon time increases. Althoff
et al. [3] simplified this problem considering the extreme
possible behavior (maximal acceleration and deceleration)
for the other road users. Their online formal verification can
guarantee safety for all times but the method can lead to
extremely conservative behaviors because they only accept
a solution for the ego vehicle if no overlap with other road
users happens during the whole horizon. Nevertheless, an
evaluation of the risk is necessary for the whole maneuver
and the safety needs to be guaranteed under defined con-
straints for the immediate time horizon.

Many proposed architectures rely on a top-down archi-
tecture where the lower level optimizes a safe trajectory
for a selected longitudinal or lateral goal [4], [5], [6], [7],
[8]. The main problem of the top-down architecture is its
level dependency. If the high level fails to make its decision,
the lower module can only return that no solution was
found forcing the high level to propose another solution,
consequently loosing critical time in dangerous situations.
Therefore it is important to guarantee that the subgoals
selected by the higher layers of the architecture are still fea-
sible on the lower layers. A combination of hybrid automata
and decision tree is the architecture proposed by Ardelt et
al. [9], integrating a discrete decision architecture within the
continuous data processing. Ardelt et al. [10] evaluate the
utility of each lane considering measurement uncertainties.
Some works concentrate on the cooperation between road
users. Schwarting et al. [11] present a cooperative decision
making algorithm that anticipates and solves predictable
conflicts. Based on the game-theory, a combined prediction
and planning framework is presented by Bahram et al. [12].
All these methods optimize the immediate utility for the
lane change or lane keep decision, also considering the
cooperation between vehicles but they do not take into
consideration its further effects, in other words, this methods
work within a short horizon time but do not provide a
medium term strategy.

The Planning Domain Definition Language (PDDL) [13],
was introduced as an attempt to unify the planning languages.
Since then, several planning formalisms have been developed
and extended to integrate temporal dependencies [14], [15]
or to model continuous domains [16]. Planning formalisms
provide the tool to deal with the complexity, improving the
knowledge representation and the reasoning process. Dorn-
hege [17] presents a semantic planning where the high and
low level work more tightly integrated for a robotic planning
task. Zhao et al. integrate ontology-based knowledge into the
decision making system [18].

In order to get over the computational disadvantages of a
down-top approach and the information-loss of a top-down
approach and to achieve integration and coherence between
different abstraction levels, in this contribution the system
combines symbolic and continuous planning. Besides, it

handles with the lack of information and the uncertainties
derived from the behavior of other traffic participants.

III. APPROACH

The objective of this work is to provide an adequate
framework to allow the autonomous vehicle a safe drive
maintaining the requested goals and providing robustness
over other traffic users behavior for a further horizon time.

When considering the planning horizon, there is a trade-
off between the accuracy of the information and the time
horizon, that means the further the planning horizon is
considered the more imprecise is the prediction of the scene
evolution. This characteristic is not a problem for a human
driver, because they are used to combine an anticipatory
behavior evaluating the current situation and their evolution
with a more reactive behavior dependent on the immediate
actions, for example a driver wants to change to the left lane
to drive faster, selects a gap between two vehicles, drives
towards this gap and is able to adapt his velocity if another
unexpected vehicle merges in front of him. In a similar
way, this paper presents a multilevel architecture, where
the different levels interact with each others in different
abstractions degrees. A higher level works on the generic
lane and velocity selection according to the current traffic
flow, an intermediate level provides a longitudinal and lateral
strategy given the desired lane and velocity and the lower
levels implement on a short horizon the requested sub-goals.
The general framework and its domain is presented as well as
the intermediate level, responsible for planning and executing
the driving activity on medium time horizon, the tactical
planning.

A. System Overview

Many classical planning algorithms are based on a dis-
cretized model of the continuous solution space, where a
guided search like A* or D* generates a plan near to the
optimal one. The complexity of the solution increases with
the resolution of the discretization leading to the branching
factor problem, where the set of different possibilities to be
selected tends to infinity.

In order to deal with the branching factor, the proposed
planner presents a multilevel architecture where the first
levels work with higher abstraction of the domain and longer
time horizon and the lower levels operate with more precision
for a shorter time horizon. Firstly the vehicle receives infor-
mation about the environment through the different sensors
and back-end communication, this information is processed
in the Environmental Model and given to the Maneuver
Planner. At the highest level the Maneuver Planner selects
the desired lane and maximal velocity (Global Planner). The
intermediate level (Tactical Planner) considers the behavior
of the surrounding road users to identify and cluster the
different possibilities to keep driving on the lane or changing
into the neighbor lane, and selects the best policy for the
current situation. Then, the Trajectory Planner provides a
drivable and collision-free trajectory towards the goal that
the trajectory tracking and the vehicle controller follow by



Fig. 2. System Overview

controlling the vehicle’s actuators and thus, closing the circle.
Fig. 2 shows the process.

The main difference of this system with a top-down archi-
tecture is its parallelism. The planning combines an abstract
decision making process with numerical mechanisms. This
leads to a complete and structured exploration, identification
and assessment of the different options during the planning
task. The abstraction of maneuver clusters allows the planner
to reduce the complexity overriding the infinite branching
factor of the planning task. Besides, the abstraction level
allows a better traceability of the planner and can be directly
used as interface to communicate with the driver. To achieve
a complete understanding of the world and the correct
interaction within the levels, the problem needs to be defined.

B. Problem and Task Description

The decision making process takes place on the above
presented Maneuver Planner. This paper focuses on the lane
change and lane keep strategies but the framework is defined
for the whole planning process.

According to Dornhege [17], a planning instance is defined
to be a pair I = (Dom,Prob) where the domain Dom
describes the model of the world and the generic actions
and the problem Prob instantiates the current world. The
planning domain is a tuple of a finite set of predicate
symbols, each one with an associated arity, a finite set of
function symbols that represent numerical values and a finite
set of schematic operators. A schematic operator is a tuple
formed by a precondition, an effect and the function that
maps the operator cost. The main operators for the driving
task are keep the lane {KL} and change the lane {CL}.

As presented by Kuipers et al. [19], the ontology of the
topological level can be defined considering the world as
a 2D abstraction. A region is a two dimensional subset
of the environment that can be defined by one or more
boundaries. A path describes part of the environment as
a one dimensional subspace and can be directed. A place
describes a part of the environment as a zero dimensional
subspace. The same element can be defined through different
dimensional subspaces depending on the abstraction needed

Fig. 3. Exit-ramp represented as 2D abstraction and 1D abstraction

by the planner. For example, a lane is characterized as a re-
gion with at least one drivable boundary defined through one
reference path, two lateral boundaries and two longitudinal
boundaries. A local planner provides the lateral and longitu-
dinal trajectories driving within the defined boundaries and
considering the 2D description of the lane (it can be desired
to drive towards a centerline and deviations are accepted
within the lane boundaries but punished). The higher level
planner is concerned with the lane selection over time,
therefore, it reasons over the 1D dimensional abstraction of
the lanes and the connectivity. Fig. 3 presents an example
of a highway. The two-dimensional abstraction of the world
does not consider the street profile explicitly. Nevertheless,
this information is relevant in those situations where the
available power of the vehicle is reduced. For example, a
vehicle driving with a trailer could have less power available
for an overtake maneuver. Also if the weather conditions
change due to rain or snow, the available transmission force
to the road will determine the vehicle behavior and has
to be considered during the planning step. Through the
context specification at the problem definition, the available
acceleration can be limited so that the inclination, load and
friction are implicitly included.

The problem Prob = (T,Obs,Ags, C,Goal) is described
by a 5-tuple consisting of the current topology, the objects
and agents interacting on it and the context and goal state
specifications. Objects are located on the road. Some of them
are not drivable obstacles as for example barrier boards on
roadworks, which can reduce the available section for the au-
tonomous vehicle. Objects can also signal a modification of
the road attributes (maximal velocity, connectivity between
lanes...) or represent a new boundary. Different from objects,
agents are proactive, temporary continuous, autonomous and
reactive [20]. They are also not drivable, and usually dy-
namic. As autonomous entities they follow their own goals.
Different models like physic-based models, maneuver-based
models or interaction-aware based models [21] can be used
for their prediction. The prediction is an useful input for
the planning algorithm but the algorithm also needs to be
able to deal with the lack of information. Therefore an
assessment parameter derived from uncertainties is integrated
into the selection policy. In Section III-C, the integration
of the prediction information within the planning process is
explained in more detail.

The world and its entities are fully defined and instantiated
with the domain and the problem definition. The driving task
takes place on a defined location (based on street topology),
where different objects can be placed, some of them changing
the attributes of the location. There are different agents



moving and iterating on the location: traffic users which
follow the road topology and are conscious of the traffic rules
and no road users (like animals or pedestrians). The vehicle
follows two different goals: maintenance goals (always drive
safe) and achievement goals (drive on the selected lane with
a selected velocity).

C. Tactical Planning

This work focuses on the medium horizon planning,
the description of the Global Planner is not focus of this
paper. The main functionality of the Tactical Planner is to
identify the different maneuver sequences to reach a selected
lane and velocity (which can be a function or an input
from the driver), quantify the cost of each of them, select
the best policy and forward the strategy to the trajectory
planning. This planner level combines a semantic abstraction
of the configuration space with a continuous estimation of
the scene evolution. The configuration space is abstracted
into gap spaces allowing the planner to reason over the
cluster of all possible motion behaviors related to each gap.
This abstraction provides the planner a simplified interface
to reason over time and restrict the search space for the
numerical optimizer. So a lane keeping strategy includes the
possibilities of continuing on the current lane as keep on
driving on current front gap or keep on driving considering
the gap generated for a predicted merging vehicle or brake
until stillstand on the current lane. A lane change strategy
includes all the possibilities of changing whether to the left
or right lane into the different defined gaps.

The tactical planner is composed by five different submod-
ules, as shown in Fig. 4. Gap Generation processes the agent
list to provide a list of current and potential gaps. A gap is
defined by a front and a rear limitation. Those restrictions
of the available space could be generated by agents or static
restrictions as an ending lane. For each relevant lane, the
relevant agents are sorted with respect to their longitudinal
distance, generating the gap information. Phantom vehicles
are included at the sensor range limits. For the vehicles
with a lane change prediction, two different gap sets are
generated to consider both, the scenario in which it does not
change the lane and also the scenario in which it changes

Fig. 4. Tactical Planner Work-flow

the lane. Both scenarios are forwards simulated, the cost
are computed and weighted proportionally to the belief of
a lane change to be successful. Once the gaps are generated,
a feasibility and assessment evaluation is performed. The
current lane is evaluated for the available distance in front
considering the front vehicle, potential merging vehicles
and other obstacles at Lane Keep assessment. On a similar
way at Lane Change Assessment for the neighbor lanes and
based on the gap list, the reachable gaps for a lane change
are identified and an associated utility cost is calculated.
The feasibility and assessment functions are also presented.
The block Policy Selector has two different tasks, firstly it
selects the most suitable maneuver from the available set and
gives it to the optimization module Maneuver Optimization.
And secondly it selects the most adequate maneuver once
they are optimized. The Maneuver Optimization is based
on classic discrete graph search where starting from the
current position and velocity, each node is expanded using
a set of predefined accelerations. For practical reasons, the
maneuvers are restricted to maximum of one acceleration,
one deceleration and three constant velocity phases. The
block Maneuver Optimization could use other optimizer
instead the graph search if it is required. To assure a safe
behavior, on the first place the most conservative maneuver is
selected and optimized and then, depending on the available
computing time, further options are explored. Thus, a fall-
back policy is considered during each step.

D. Feasibility and Assessment

The operators for lane change and lane keep policies are
plausibilized (Lane Change Assessment, Lane Keep assess-
ment) based on a reachability analysis for available gaps.

For the current lane, the front vehicle and potential front
merging vehicles are analyzed and the lane keeping policies
for the comfort and also for the safety limits are plausibilised
and included with their associate cost and success assessment
in the policy list. Then the lane change policies are computed
for the comfort limits and included in the policy list. The total
cost computation is defined as cMF = w1·c∆v +w2·cLCD +
w3·cgap + w4·cSA.
This term considers the physical values obtained by the
environmental model and the success rate on past situations.
The value is a weighted combination of the variations on
velocity, the estimated time span to do the lane change, the
temporal gap size and the probability of the successful lane
change.

• Cost for Velocity Deviation (c∆v )
The ego vehicle should try to drive as close to the
desired velocity (vdes) as possible, respecting the safety
distance to the other road users. Equation (1) evaluates
the maximal velocity deviation from the desired one
during the maneuver.

c∆v =
max(|∆v(t)|)

vdes
(1)

• Cost for Estimated Lane Change Duration (ceLCD )



Usually the minimal estimated time for the ego lane
changes teRG provides the relevant information to com-
pare between strategies. Lane changes that finished
later are penalized because they imply a risk of the
situation to change. For spatial restrained situations (as
ending lanes or highway nodes) the available distance is
converted into available time (tmax). For not restrained
situations, a generic available time is considered. As
shown in (2) the cost is calculated with a quadratic
function so that the cost increases faster when the
estimated time tends towards the limit of the available
time.

ceLCD =

{
∞, teRG > tmax

( teRG

tmax
)2, teRG ≤ tmax

(2)

• Cost for Temporal Gap Size (cgap)
A minimum criteria for the gap acceptance is defined
as gapmin. This value represents the minimal inter-
vehicular gap size. Smaller gap sizes get an infinite cost
(are not accepted) while bigger values get a normalized
cost assessment. The gap size (gapsize = tfollow +
∆tadaption) is defined as the sum of the required adap-
tion time (tadaption) to reach the front vehicle velocity
(if it is driving faster) and the resulting intervehicular-
time (tfollow = ∆s

vadapted
) between the front vehicle and

the rear vehicle.

cgap =

{
∞, gapsize < gapmin
gapmin

gapsize
, gapsize ≥ gapmin

(3)

• Cost for Learned Success Assessment (cSA)
The success assessment evaluates the consequences of
a scene evolution different from the predicted one.
The most likely evolution is evaluated and forwards
simulated within the cost function term. The success
assessment gives, based on learned values from past
situations, an associated cost for the probability that the
situation evolves worse than predicted and a selected
gap becomes not reachable. So the uncertainties in
the behavior of other traffic participants are considered
through the cost value cSA calculated as the probability
of an unsuccessful lane change given a selected maneu-
ver: cSA = 1 − p(Success|selectedManeuver)

For the computation of this cost parameter, a set of
simulations with different start configurations was run and a
neural network with two layers and 30 nodes was trained. For
each simulation, once lane change started, the information
of the selected gap and the result of the maneuver (the lane
change was successfully completed on the selected gap or
not) are saved and given as target value for the network.
As input vector the feature vector is defined through the
intervehicular time, the intervehicular distance and the time
to collision between the ego vehicle and the main vehicles
involved in the maneuver. Those vehicles are the front and
rear vehicles defining the goal gap of the desired lane and
the vehicle in front of the ego vehicle on the current lane.

Once a selected maneuver is optimized, its cost value is
updated: cMS = cc + coLCD + cgap + cSA

• Cost for Comfort (cc)

cc =
max (∆a)

acomf − deccomf
(4)

being acomf and deccomf the maximal values for ac-
celeration and deceleration on comfort mode.

• Cost for optimized Lane Change Duration (coLCD )
Similar to (2), using the resulting optimized time toRG

instead of the estimated time to reach gap teRG

With the updated cost, the best policy is selected and given
to the Trajectory Planner to provide a collision-free and jerk
minimal trajectory for the short horizon.

The system is able to deal with dynamic environments
because the foresight planning structure considers the most
likely evolution of the situation but also integrates the
past experience values and includes the vehicle dynamic
limitations. The next section presents the simulation and
experimental results.

IV. EXPERIMENTS

The system was validated within two different
frameworks. The first one was simulative and the second
one was carried out on a prototype vehicle and a simulated
traffic environment (VIL). The experiments setup consists
of an entrance ramp scenario as defined in Fig. 1. The
vehicle has to achieve the lane change before the current
lane ends to be successful. In case it cannot achieve the
lane change, the vehicle has to break into standstill at the
end of the lane, then the maneuver is not successful but still
safe. For practical reasons, the Global Planner is replaced
with an external input of desired velocity and desired lane.
The module Trajectory Planner is the defined by Rathgeber
et al. [7]. The planner has an intern model of the motion of
other agents, independent from the planning structure. For
those experiments the model was defined as follows:

Agents Motion Model
The velocity of a lead vehicle vlead, is defined as the
combination of a constant acceleration (CA) and constant
velocity (CV ) as shown in (5). The lead vehicle keeps its
current acceleration (alead) during a defined ta and then
drives with a constant velocity. The defined velocity profile
will also be considered for the lap vehicle on a first step.
From the moment when the ego vehicle makes a lane change

Fig. 5. Test Vehicle with dGPS



Fig. 6. Longitudinal Jerk, minimal TTC and Lane Change Duration

(tLC), a reactive behavior enhances the longitudinal behavior
of the lap vehicle vlap as described in (6). The deceleration
during the reactive part (decLC) is defined as a relaxation of
the following behavior of the Intelligent Driver Model [22].
As we do not control the deceleration parameters from other
road users a maximal conservative deceleration (bmax) based
on experience is assumed.

vlead(t) = vlead(t0) + alead(t0) ·min(ta, t), t ≥ 0. (5)

vlap(t) =

{
vlap(t0) + alap(t0) ·min(ta, t), t < tLC

vlap(LC) + decLC ·∆tLC , t ≥ tLC .
(6)

decLC =

{
bmax, vlap > vego & slap ≥ ssafety

0, else
(7)

A. Simulated experiments
The system was firstly evaluated on several entrance ramp

scenarios. As shown in Fig. 1, the ego vehicle is forced to
merge into the neighbor lane before the entrance ramp lane
ends, several vehicles are driving on the contiguous lane and
the ego-vehicle has to select the most adequate strategy. The
scenario runs in a Co-Simulation of MATLAB/Simulink R©
and the traffic simulator Pelops [23]. Pelops offers different
driver-types based on the work of Wiedemann [24] that are
used for the simulation of the surrounding vehicles.

The experiment consist of 140 scenarios. Each one of
the simulated vehicles drives with a different driver profile
in order to evaluate the limitations of the planner and the
dependency of the parameters to successfully achieve the
mission.

The experiment was tested on four different systems, a
baseline of a merely reactive application and three different
configurations of the proposed approach:

• C1 is the baseline, where the lane change is only
allowed when the current gap is free.

• C2 is the proposed approach with the first three param-
eters of the cost estimation and with a heuristic velocity
selection instead of maneuver optimization.

• C3 is the proposed approach without the learned model,
with a maneuver optimization through graph search.

• C4 is the proposed approach with the learned success
probability and a maneuver optimization through graph
search.

Fig. 6 presents the longitudinal jerk of the complete lane
change maneuver and the Lane Change Time for the suc-
cessful lane change. The minimal Time to Collision (TTC)

TABLE I
SIMULATION RESULTS

Approach success rate computational time critical situations
C1 90.9% 0.0022 ms 8.7%
C2 94.9% 0.0037 ms 1.4%
C3 95.6 % 0.2839 ms 4.3%
C4 96.4 % 0.2848 ms 0.7 %

for all the experiments is also presented. Literature considers
TTC values as relevant under 5 seconds and critical under 2
seconds.

The longitudinal jerk gives an idea of the comfort of the
maneuver. The TTC is an indicator of the vehicle’s safety
during the drive. The time until Lane Change indicates the
time span between the lane change desire and the success-
fully completed lane change. Table I summarizes the rate of
successfully accomplished lane changes, the computational
time and the rate of critical situations (TTC ≤ 2seconds)
for each strategy.

Lower values of longitudinal jerk point out a more com-
fortable behavior of the strategies C2 and C4 over C1 and C3.
The TTC improves substantially with the use of a proactive
strategy (C2, C3, C4) compared with a reactive strategy.
Regarding the warn rate based on TTC, the values of a
proactive strategy get firstly worse with the introduction
of a maneuver optimization but then improve with the
inclusion of the learned success probability. The proactive
strategy improves generally the success rate of a lane change
when the space is limited. The consideration of the prior
experiences when selecting the strategy increases the success
rate further. The computational time increases due to the
maneuver optimization (C3, C4), but it is still computable in
real time on the vehicle platform.

B. Real experiments

Simulations provide a useful tool to realize sensitivity
analysis. To validate the correct integration of the planning
approach with the vehicle, the system was also evaluated on
a vehicle-in-the-loop configuration. The real vehicle (Fig. 5)
drives on a test track and the road users run on an integrated
traffic simulation. The planner runs on a real time platform
Autobox R©.

Fig. 7 shows a situation with a proactive strategy, where
the vehicle reduces its velocity during a lane change to keep
the safety distance with a slower front vehicle, when it is
safe accelerates and finishes the lane change. The blue line
represents the selected longitudinal and lateral trajectories
and the red-ones are the measured state of the vehicle. The
Figure shows how our planning framework is able to provide
maneuvers that are smooth and feasible on the real system.

C. Discussion

The experiments show that the use of a proactive strategy
increases the success rate for a lane change compared
with a merely reactive strategy. The success rate of the
proactive strategy can be increased improving the maneuver



Fig. 7. Vehicle dynamics during the lane change maneuver

optimization for a selected gap, computing the maneuver
over the time horizon with more detail. Nevertheless, the
longitudinal jerk and the TTC statistics become at the first
time lightly worse. This effect probably occurs because of
the detailed optimization is more sensitive to changes of the
selected gap over the time. The results improve with the
introduction of a learned success probability. The planning
including the learned success probability performs better
without increasing the risk of the maneuver.

The model presents still some limitations. The assumption
of other vehicles braking behind us within conservative limits
allows us to change into gaps that are closing, that is, we
assume a cooperative reaction of the other vehicles to our
lane change. Nevertheless, on situations with high traffic
density the original predicted gap size could be still too
small and the proactive algorithm would not accomplish
the lane change. This situations could be mastered with an
cooperative strategy for gap opening, which is out of the
scope of this paper.

Real experiments show a successful smooth integration of
the planning on the real vehicle. It allows a safe validation
of critical situations and enables the future step of driving
with sensors on real traffic.

V. CONCLUSIONS
This paper presented a system that provides a robust

framework for the autonomous driving task through the
integration of semantic and numeric reasoning between
different planning levels. It also introduced an uncertainty
assessment method based on learned situations. The system
has a highly flexible structure that allows to include different
implementation levels depending on the available informa-
tion and computational power. We presented experimental
results obtained in simulation and on a real vehicle with
virtual surrounding traffic. Future work will include the
evaluation in real traffic situations.
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