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Abstract— On the highway, human drivers continuously
make decisions adapting their driving behavior. In some of
these, for example near highway ramp-entrances, they adjust
intuitively their own behavior in order to facilitate the merging
of the incoming vehicles. On highly automated vehicles, this
decision should be taken by the system. In such situations, not
only the own goal should be optimized but also the comfort of
the surrounding traffic. The ability to plan adequate courtesy
behaviors improves public acceptance of autonomous systems
and the comfort of the surrounding vehicles without consider-
ably decreasing the own comfort. We present a novel method
that automatically adapts the driving behavior, integrating the
merging intention of other vehicles. In contrast to other systems,
robustness is achieved by considering not only the most likely
evolution, but also the expected value of the possible outcomes
in real time. The flexibility of this method allows us to integrate
it within different planning systems. We are therefore able to
offer courtesy behaviors to other vehicles, thereby improving
the collective comfort and also safety of the situation. We
evaluate the method in simulation and in real world experiments
with our test vehicle. Results show an improvement of the
aggregate traffic comfort and in addition a reduction of critical
situations, as a result of applying our courtesy behavior to
different planning strategies.

I. INTRODUCTION

Vehicles of different automated levels are already ope-
rating on the streets and interacting with purely manually
human-driven vehicles. One challenge lies in situations that
a human driver solves in an intuitive way and that are still
non-trivial for the machine.

Particularly interesting are those situations that arise from
the politeness of the traffic participants. For many merging
situation as presented in Figure 1, human drivers antici-
pate the merging intention of other vehicles driving on the
neighbor lane and select a cooperative behavior. Drivers also
expect such cooperative behavior from automated vehicles.
In dense traffic situations, the vehicle should be able to adapt
its strategy in such situations where a light decrease of the
own comfort considerably improves the collective one. For
example if a merging vehicle is reaching the end of lane or
approaching a slower vehicle, the ego vehicle could decide
to open a gap by decelerating or changing the lane.

This paper focuses on such cooperative behaviors. After
the identification of a conflicting situation for a potential
merging vehicle, our vehicle assesses the options between
behaving cooperatively or following its own interest. The
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Fig. 1: On a merging scenario, incoming vehicles should
select the appropriate gap to merge and vehicles in the main
flow can cooperate to facilitate the maneuver.

challenge is to optimize safety and comfort over the evo-
lution of several possible scenes without the explosion of
computational costs.

Many works address the prediction of other traffic partici-
pants behavior. However, this behavior is only partially pre-
dictable and only accurate for a short time horizon. Classical
planning systems consider only the most likely evolution of
the situation, neglecting less likely actions that could result
in more dangerous situations. On the other extreme, some
approaches include all possible scene evolutions resulting in
too conservative systems or too high computational load to
be used for real-world applications.

The decision-making should deal with the uncertainties
derived from the behavior of other traffic participants in
an efficient way. This means that the trade-off between
computational load, comfort and safety should be optimized.
The focus of this work concerns the integration of the
intention of the merging vehicles within the decision-making
process.

In this paper we present a courtesy behavior method that
enhances several existing planning approaches. This method
allows to assess the adequacy for the ego vehicle to adapt
its own strategy in order to facilitate the merging maneuver
of a potential merging vehicle. As the main contribution the
improvement of two already existing planning approaches
using our method is presented. The limits between a good



intention and planning algorithm and the re-planning ability
of the system are also analyzed.

II. RELATED WORK

Human drivers analyze and anticipate the traffic situation.
In a similar manner, autonomous vehicles should integrate
a prediction of the behavior of other participants into their
driving task.

The problem of robots interacting on populated human
environments is not only focus of autonomous driving but
also point of interest of other robotic fields. Bennewitz et
al. [1] presented a method to predict the trajectories of per-
sons and improve the navigation behavior of a mobile robot.
Kuderer [2] and Kretzschmar [3] present a cooperative navi-
gation model for mobile robots interacting with pedestrians.
Nevertheless, when navigating on freeways and highways,
the topology is more structured and the velocities of the
traffic participants are higher, which requires consideration
of specific solutions.

In a near future, as presented by Hobert [4], the intercom-
munication between vehicles and infrastructure (V2X) will
allow to acquire a precise information about the intentions of
the traffic participants and the evolution of the situations. The
authors of [5] proposed an on-ramp merging system which
assessed the road traffic conditions and transmit the instruc-
tions to the vehicles on the surrounding area. The system
performs well but relies on an advanced infrastructure. V2X
technology presents encouraging results but the technology
is still not mature enough.

Thourought the last years several prediction methods for
traffic participants have been intensively studied in the lit-
erature. Different motion models like physic-based models,
maneuver-based models or interaction-aware based models
can be used for the prediction [6]. The integration of pre-
diction and intention information within the decision-making
process plays a crucial role in the system performance.

In [7] the authors compute the complete set of the
collision-free start and end points of trajectories for each
vehicle. This kind of intensive computations provide accurate
results in detriment of the online capability of the system.
Other strategies take the current most likely prediction and
rely on a continuous update of the available information and
fast re-planning system, as the multilevel planning system
presented by Menéndez-Romero et al. [8]. Carvalho et al. [9]
integrate the most likely cut-in prediction information to
improve the autonomous cruise control. The combination of
the most likely prediction with a fast re-planing works for
most of the situations quite well, but still does not consider
other possible interactions between the agents involved.

Iterative planning strategies combine the planning and pre-
diction tasks. Wei et al. [10] propose an intention prediction
based strategy generation. In [11] the authors suggest a game
theoretic approach which can model the re-planning capa-
bilities of the drivers. In [12] the decision-making is based
on Partially Observable Markov Decision Process (POMDP).
The multi-policy decision-making presented by Cunningham
et al. [13] also simulates the scene evolution using the most

likely evolution of the other agents involved in order to
reason about the policies. The problem with such iterative
planning approaches is that they only consider the most
likely evolution of the other traffic participants. Especially in
longer prediction horizons the model predictions can become
inaccurate and overlook some critical situations.

One step further, our proposed system not only anticipates
the behavior of other traffic participants to improve their own
safety but also plans a cooperative behavior to improve the
aggregate traffic comfort.

III. APPROACH
The objective of this work is to provide our system with

a courtesy behavior, which identifies the intention of other
traffic participants and assesses the cost of adapting the own
ego strategy. We achieve this by integrating an intention
prediction algorithm into the decision-making. Thereby we
gain a better foresight of the scene evolution by including
all possible outcomes to provide our system with robustness
over false predictions. Decisions are made based on maxi-
mizing the expected utility of the involved traffic participants.

A. Problem and Task Description

We semantically determine the possible actions for the
ego and the conflicting vehicle as shown in Tables I and II.
All possible ego actions are clustered as No Cooperative
(NC) and Cooperative (CO). Thus, the action space of
the ego vehicle is defined as Aego := {NC,CO}. For the
conflicting vehicle normal, courtesy and forced merge actions
are combined into the No Yield actions (NY ), corresponding
to merging in front of the ego vehicle, and the Yield actions
(Y ). Thus, the action space of the conflicting vehicle is
defined as Acv := {Y,NY }. The Cartesian product A =
Aego ×Acv defines the joint action space.

Our goal is to choose an action for the ego vehicle so that
the combined expected utility (U(a)) is maximized, i.e.,

a∗ego = argmax
a∈Aego

E(U(a))

= argmax
a∈Aego

∑
acv∈Acv

p(acv | aego) · U(aego, acv).
(1)

This makes necessary to predict the intention of the merging
vehicle p(acv | aego), which is presented in the next sec-
tion. The description of the expected utilities is given in
Section III-C.

B. Prediction Module

In the state-of-the-art methods, the costs of actions are
computed for the most likely actions of other traffic partici-
pants. But these approaches lack the robustness against false
predictions. Our aim, on the other hand, is to predict the
probability of unlikely behavior of other traffic participants,
specifically the misprediction probability for the conflicting
vehicle. Using this probability we can compute the expected
utility of an ego action considering two possible decisions
of the conflicting vehicle.

In order to predict the probability of unlikely outcomes, we
use an ensemble learning based Gentle Boost classifier [14].



TABLE I: Ego Vehicle Actions.

NC Follow solely the ego objectives

CO
CKL

Cooperation by deceleration
when keeping lane

CCL Cooperation by changing lane

TABLE II: Conflicting Vehicle Actions.

Y Yield the right-of-way to the ego vehicle and merge after it
NM Normal merge into available space in front of the ego vehicle

NY CM Courtesy merge - ego vehicle provides space for merging
FM Forced merge - no available space, ego vehicle has to react

The classifier’s feature vector ~x consists of the Time-to-
Lane-End (TTL) of the merging vehicle, the time headway
(THWego-cv) between the ego and the conflicting vehicle, the
velocities and positions of both vehicles relative to the ending
lane (~x = [TTL, THWego-cv, vego, vcv, xego, xcv]). Its output
is the merging decision, thus either Y or NY .

In order to learn the classification tree, we generate a
scene with the ego and the conflicting vehicle at 300135
different initial configurations. We simulate it in the model
predictive control framework of [11] to label the data. For
the simulation, we used a conflicted vehicle model based on
the merging models proposed by [15]. Then the classification
tree is trained using a Gentle Boost classifier with 40 learners
(classification trees) and 20 maximum splits with 20-fold
cross validation. The output of the classifier is either Y
or NY , thus not probabilistic. In order to compute how
certain the prediction is, we use Monte Carlo sampling with
Gaussian distributions around xego0 , xcv0 , vego0 and vcv0 with
N = 400 samples. The votes for each class are counted
within the sampling region and the ratio is computed to get
the probability of each class.

The Monte Carlo sampling approach has three advantages.
First, it provides the probability of an action of the conflicting
vehicle, which is required for computing the expected utility
in Section III-C. Second, it is robust to measurement errors,
since we generate samples around the current measurement
values. And third, it is robust to false classifications, because
the 2-class classification is not binary but probabilistic.

This prediction provides us an accurate prediction of the
intentions, but its computational load is too high. For this
reason we also implemented a second prediction module, a
Multinomial Regression Classifier.

We obtained an accuracy of 99.2% for the Gentle Boost
Classifier and an accuracy of 97.3% for the Multinomial
Regression Classifier. The Multinomial Regression Classifier
fits directly a probability value, for the classification we
accepted as positive probabilities over 0.5. The accuracy
is computed as TP+TN

TP+TN+FN+FP where TP are the true
positives, TN the true negatives, FN the false negatives and
FP the false positives. Table III shows the recall TP

TP+FN

and precision values TP
TP+FP resulting for both classifiers.

The accuracy and precision values are better for the Gentle

TABLE III: Values for different classifiers.

Gentle Boost Multinomial Regression
Classifier Classifier

Precision Recall Precision Recall
Y 92.85% 94.78% 82.22% 74.67%

NY 99.64% 99.50% 98.25% 98.87%

Boost classifier, but the experiments presented in Section IV
show that a good performance can also be achieved with the
regression classifier.

C. Decision Making

The goal of our approach is to deal with the uncertainties
derived from the behavior of other traffic participants and
provide a cooperative behavior if necessary. For this pur-
pose, we enhance the planning strategy with the information
coming from the prediction, providing a courtesy strategy.

The selection of the strategy is based on an utility function.
The utility for an individual vehicle Ũ(ax), where x ∈
{ego, cv}, is defined as the inverse of the total cost, which is
a combination of a safety and a comfort therm. The comfort
cost is defined as the accumulated acceleration over the time.
The safety cost, is the accumulated maximal risk defined
on [16].

For each of the ego strategies the scene is forward simu-
lated, firstly for the most likely predicted merging decision
and once again for the opposite merging action. The common
expected utility of an action combination U(aego, acv) is
defined as the combination of the individual utilities, i.e.,

U(aego , acv ) = Ũaego
(acv ) + λ · Ũacv

(aego) (2)

The parameter λ in Equation 2 is the cooperation coefficient,
from λ = 0 for purely egoistic up to λ = 1 for highly
cooperative behavior.

Our goal is to choose the ego action which has the
maximum expected utility. Hence, we marginalize out the
action acv of the conflicting vehicle from the common
expected utility Equation 1. Since in the proposed framework
we analyze the behavior of the conflicting vehicle for a
fixed ego strategy, the probability of the given ego action
is assumed to be equal to 1 for each of the NC and
CO actions. Using the Kolmogorov’s conditional probability
axiom we have p(acv|aego) = p(aego, acv). Thus, conditional
probability can be used instead of joint probability in order
to evaluate unlikely actions weighted by their probability.
The conditional probability is provided by the prediction
classifier.

This way, the Maneuver Planner Module is able to inte-
grate and assess different scene evolutions with their asso-
ciated probabilities of occurrence and select the ego action
with the highest expected utility.

IV. EXPERIMENTS

This work presents a method to enhance the decision-
making strategy with cooperative behavior avoiding the
infinite branching factor of all possible trajectory evolutions
over the time. To evaluate it we used the same system



configurations described below, modifying only the parts
corresponding to the decision-making.

A. System configuration

Figure 2 presents the work-flow of our system. Firstly, the
vehicle receives information about the environment through
the different sensors and backend. This information is pro-
cessed by the Environment Model. The other traffic partici-
pants behavior is predicted by the Prediction Module. Then,
the Maneuver Planner Module selects the best policy for the
current situation and provides a drivable and collision-free
trajectory. This trajectory is tracked and the vehicle controller
controls the actors, closing the control loop.

Sensors Environment Model

backend

Maneuver PlannerPrediction

Trajectory Tracking

Vehicle ControllerActors

Fig. 2: Environment and vehicle control loop.

The Maneuver Planner Module consists of a decision-
making module and a trajectory planning module. For our
experiments we integrated two different non-cooperative
decision-making implementations. The first one corresponds
to a graph search over the discretized space, denoted as
Driving Strategy (DS) [11]. The second planning strategy,
Maneuver Planning (MPL) [8], searches over the space of
actions induced by the available gaps. Both strategies present
a Non-Cooperative (NC) behaviour as they follow solely the
ego vehicle objectives. We enhanced both planning strategies
with the presented courtesy behavior (CO) approach and
generated the planning strategies DS-CO and MPL-CO.
The trajectory planning and trajectory tracking are for both
systems based on the approach described by Rathgeber [17].

The simulation runs in a Co-Simulation of
MATLAB/Simulink R© and the traffic simulator Pelops [18].
Pelops provides a realistic driver behavior for the other
traffic participants. The real-world tests were performed on
our test vehicle. There the information is obtained by the
sensors and an environment model module sends the agents,
objects and topology information to our system, which runs
on the real time platform Autobox R©.

B. Evaluation Metrics

The setup consists for both the real-world and simulated
experiments of a merging ramp scenario, where a merging
vehicle has to perform a mandatory lane change into the ego
lane. In order to evaluate the performance of our proposed
method, different safety and comfort metrics are evaluated:

experiment1Scene

x = 0m xend = 250m

xego
0

xcv
0

vego0
vcv0

Fig. 3: Initial configuration for simulated experiments

Safety Evaluation:
• maxTTC−1: Maximum inverse Time to Collision

(TTC) over time. Note that TTC−1 is considered instead
of TTC to also average the cases when TTC is infinite.

Comfort Evaluation:
• maxDecEgo: maximal longitudinal deceleration of the

ego vehicle.
Conflict Resolution Efficiency:
• tMerging: The conflict resolution efficiency of the

proposed approach is evaluated using the merging time.

C. Simulated experiments

The performance of the courtesy behavior strategy was
evaluated working with different planning strategies. For
this test, we used the Gentle Boost Classifier presented in
Section III-B for the merging prediction and DS and MPL
strategies with the courtesy and no courtesy configurations
as described in IV-A. Both strategies are computed on 200
ms task time.

We have generated random initial configurations of
the scene shown in Figure 3. During the experi-
ments, the entrance ramp’s length was 250 m and
x ego
0 , x cv

0 , vego
0 and vcv

0 were varied randomly between 0
to 200 m and 60 to 130 km/h respectively. The vehicles start
with a constant velocity at the center of their lanes.

TABLE IV: Simulation Results for different strategies.
Metrics were averaged over 469 cases.

Approach maxTTC−1 maxDecEgo Merging Computation
Time Time

DS-NC 0.080 s−1 -1.22 m/s2 5.910 s 0.195 s
DS-CO 0.068 s−1 -1.03 m/s2 5.440 s 1.545 s
MPL-NC 0.049 s−1 -1.04 m/s2 7.576 s 6.667e-06 s
MPL-CO 0.023 s−1 -1.67 m/s2 5.206 s 1.350 s

Table IV shows the metrics for the different configurations
and the computational time corresponding to the prediction
and the decision-making modules. The enhancement of the
DS with a cooperative module allows to improve all the
considered metrics. A reduction of the maxTTC−1 indicates
that on average, the most critical time point becomes safer.
The lower deceleration values also indicate that the ego
reaction has a better foresight for the planning. Similarly,
the merging times are improved by the cooperative strategy.
With the non cooperative approach for the MPL (MPL-
NC), the ego vehicle optimizes only its own utility and it
does not decelerate. Therefore, the merging vehicle selects
a conservative behavior yielding the right-of-way to the ego
vehicle and merging after it. In this case, the ego vehicles



TABLE V: Simulation Results depending on the rate time. Metrics were averaged over 469 cases.

Approach Computation Time Task Rate maxTTC−1 maxDecEgo Merging Time
MPL-NC 6.667e-06 s 200 ms 0.049 s−1 -1.04 m/s2 7.576 s
MPL-NC 6.667e-06 s 40 ms 0.048 s−1 -1.14 m/s2 5.400 s

MPL-CO GB (N = 400) 1.350 s 200 ms 0.023 s−1 -1.67 m/s2 5.206 s
MPL-CO GB (N = 35) 0.145 s 200 ms 0.051 s−1 -1.03 m/s2 5.242 s

MPL-CO MR 4.427e-05 s 200 ms 0.039 s−1 -1.09 m/s2 5.502 s

pursues a merely egoistic approach and the average merging
time increases considerably. The enhancement of the MPL
approach with a courtesy behavior, reduces the merging time
and the values of maxTTC−1, by increasing the average
deceleration values. It provides a safer and faster conflict
resolution by braking. However, the results including predic-
tion (DS-CO and MPL-CO) present too high computational
times, making it unsuitable for real time applications.

For this reason we integrated the intention prediction
with the Multinomial Regression Classifier explained in
Section III-B. From here on, we focus the study on the MPL
strategy because it offered more computational reserves. We
also evaluated different task times of the decision-making
strategy according their online capabilities.

Table V shows the results. The MPL-NC presents results
of the reactive strategy, without prediction for two different
task times, in order to study the influence of faster updates.
MPL-CO GB presents the courtesy strategy with the Gentle
Boost Classifier for the prediction information presented in
Section III-B. We variate the number of samples to obtain
a online-capable computational time. The MPL-CO MR
integrates the courtesy strategy with the Multinomial Regres-
sion Classifier. The non cooperative strategy improves the
merging time by computing in a faster task rate, it becomes
more reactive and increases the braking rate. Nevertheless,
the maxTTC−1 metrics remain similar. An improvement on
the maxTTC−1 values is obtained by the MPL-CO GB (400
samples) over the non cooperative strategy, whereas with an
online capable number of samples samples (35) it remains
similar. The use of Multinomial Regression for the predic-
tions allows to find a balance between the computational
time and the metrics improvement over a merely reactive
approach. Hence, the MPL-CO with Multinomial Regression
Classifier was selected for our real-time experiments.

D. Real-world experiments

The courtesy strategy was also evaluated on our test vehi-
cle. The experiments should be reproducible to compare the
results and therefore they were carried out in the controllable
environment of a test track. To perform these experiments we
placed a virtual end of lane in front of the merging vehicle,
which we activated based on the relative distance between
both vehicles.

We aimed to compare the enhancement of our strategy
with and without using the courtesy behavior. The merging
vehicle was instructed to perform the lane change indepen-
dent of the ego vehicle. This situation represents the use
case when the merging vehicle overlooks the vehicles driving

on the merging lane or underestimates the danger of the
situation. We drive a set of 14 configurations with different
initial velocities (vego: 65− 100km/h, vcv: 60− 80km/h).
We took several repetitions for each measurement and in
order to provide a more accurate overview we also simulate
the scene with our traces.

Figure 4 presents the resulting metrics for the different
configurations. The decrease of maxTTC−1 values indicates
that the experiments are less critical for our courtesy setup.
In addition, for these experiments the deceleration values
are lightly lower. The simulation with traces also provides a
reference between the quality of simulations results and real-
world experiments. Their similarity indicates that simulated
results are also representative of real-world behavior.
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Fig. 4: Metrics for real-world experiments with and without
the courtesy behavior strategy.

Figure 5 shows the velocities and positions of a real-world
measurement with our MPL-CO strategy active, as well as
the scene evolution (Figures 5e to 5h). Plots 5a and 5c show
the longitudinal and lateral distance between the ego vehicle
and the conflicting vehicle from the ego perspective. Plot 5b
presents the velocity of the ego vehicle and the velocity of
the merging vehicle differentiating between the classification
on the right lane and on the ego lane. Plot 5d presents the
longitudinal acceleration planned and measured of the ego
vehicle. We observe that the longitudinal reaction of the
ego vehicle begins about two seconds before the conflicting
vehicle is classified at the ego lane.

E. Discussion

Simulation results show how the enhancement of a driving
strategy with courtesy behavior improves the comfort of
the merging vehicle, reducing its merging time. In addition,
the safety metrics (TTC−1) for the ego vehicle are also
improved due to the foresight planning. Advantages of a
foresight planning over a fast re-planning are particularly
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Fig. 5: Experiments results in the real-world, for an active courtesy strategy.

illustrated in the measurements of the real-world experi-
ments. For critical situations, where the merging vehicle
overlooks the ego vehicle, the selection of a cooperative
strategy allows the ego vehicle to adapt itself in a comfortable
way, outperforming the no-cooperative strategy.

For the prediction in our cooperative strategies we used the
methods presented in Section III-B, however other prediction
methods could provide more accurate information and opti-
mize the computation time. We focused on merging lanes,
but the situation is similar to other use cases like merging
vehicles which overtake slower vehicles. The challenge is to
estimate correctly the intention of potential merging vehicles,
but the assessment of a courtesy behavior could be also
applied in those situations. The real-world experiments were
driven on a supervised environment.

V. CONCLUSIONS

We presented an approach that provides an automated
vehicle with courtesy behaviors. During conflicting situations
we assess different possible scene evolutions. It takes into
account not only the most likely behavior of the other traffic
participants, but also the opposite one to cooperate with
them. We presented how this method can complement several
decision-making strategies based on a generic prediction
algorithm. The simulation results show that this courtesy
behavior improves the results of already existing decision-
making strategies. We show that our approach can be adapted
to the computational requirements and therefore be online
capable. Finally, experiments with our test vehicle illustrate
the usability for real applications. An important future step
is to test the system intensively in public environments.
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