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Abstract— Methods to accurately capture the motion of
humans in motion capture systems from optical markers
are important for a large variety of applications including
animation, interaction, orthopedics, and rehabilitation. Major
challenges in this context are to associate the observed markers
with skeleton segments, to track markers between consecutive
frames, and to estimate the underlying skeleton configuration
for each frame. Existing solutions to this problem often assume
fully labeled markers, which usually requires labor-intensive
manual labeling, especially when markers are temporally oc-
cluded during the movements. In this paper, we propose a
fully automated method to initialize and track the skeleton
configuration of humans from optical motion capture data
without the need of any user intervention. Our method applies
a flexible T-pose-based initialization that works with a wide
range of marker placements, robustly estimates the skeleton
configuration through least-squares optimization, and exploits
the skeleton structure for fully automatic marker labeling. We
demonstrate the capabilities of our approach for online skeleton
tracking and show that our method outperforms solutions that
are widely used and considered as state of the art.

I. INTRODUCTION

Recently, methods to accurately capture the motion of
people gained increasing interest for variety of applications
including interaction, animation, orthopedics, and rehabilita-
tion. The advantages of marker-based optical motion capture
systems are that they provide automatic calibration proce-
dures and precise position information about the markers
at a high frame rate. Compared to markerless approaches,
marker-based methods are typically more accurate and at
the same time are more robust against occlusions [14].
Accordingly, they are perfectly suited to accurately capture
even fast movements of people.

However, inferring the body pose in terms of the skeleton
configuration, i.e., the global pose and the joint angles
of the underlying skeleton, from raw 3D marker position
data is a challenging task. Although the camera system
provides accurate 3D marker positions, their association
to the individual markers placed on the person is initially
unknown. This data association problem is called labeling
and is usually solved by analyzing the geometric structure
of the set of detected 3D marker positions, which requires
tedious and time-consuming manual work even with state-
of-the-art software. Furthermore, markers are occasionally
occluded by parts of the body or objects around the tracked
person, which makes the labeling of the remaining and
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Fig. 1. Skeleton pose estimation. Top: Human with passive optical
markers attached to the body. Bottom: Observed markers and the skeleton
configuration as estimated by our fully automated method.

especially the re-appearing markers even more challenging.
Finally, given the labeling of the markers, inferring the
skeleton configuration requires to take into account that the
markers are only attached to the skin or to clothes. Hence,
the skin movement causes the markers to slightly move with
respect to the bones during the activity, so that the skeleton
configuration needs to be inferred in a robust way.

In this paper, we propose a novel fully automatic skeleton
tracking technique. Our method is flexible and includes the
labeling of passive markers, which can be placed on arbitrary
positions on the human body, without any manual effort.
We propose to use a parameterized standard human skeleton
model, which we automatically adapt to humans of different
size, and assume that each marker is attached to one of the
limbs of this skeleton. Our approach to skeleton tracking
jointly estimates the labeling of the observed markers and the
skeleton configuration. In contrast to other approaches, our
method exploits the information about the human skeleton
during the labeling step and therefore provides a more
informed data association.

Our approach initializes the skeleton tracking based on a
T-pose executed by the person being tracked (see Fig. 1). Our
method uses this initialization step to scale the skeleton to the
person’s size and aligns the skeleton to the person’s limbs.
During tracking, it then in an alternating fashion labels the
observed markers and optimizes the skeleton configuration
in an expectation-maximization-like procedure [6]. Thereby,
it exploits both the marker positions of the most recent frame
and the current skeleton configuration to obtain a consistent



labeling and to reliably identify re-appearing markers that
were temporally occluded.

We implemented our approach and evaluated it in exten-
sive experiments. The results demonstrate the effectiveness
and reliability of our approach and show that it outperforms
Cortex, a state-of-the-art commercial solution for tracking
articulated objects. Furthermore, we present results indicat-
ing that our method is highly efficient and enables online
skeleton tracking on a standard desktop computer.

II. RELATED WORK

The problem of inferring the structure and motion of
objects based on the observation of markers attached to
these objects has been studied intensively in the past. A
common approach is to detect connected rigid bodies and
to estimate the structure of the underlying skeleton in terms
of the joints connecting these segments. Ringer and Lasenby
[15] cluster observed 3D markers using the variance of the
pairwise distance over all frames. Given the association of all
markers to the segments, they determine their offsets, similar
to our work. Similarly, de Aguiar et al. [5] and Kirk et al.
[10] propose a method to cluster the observed markers to
rigid bodies and estimate the center of rotation between the
resulting limb segments.

Several authors estimate the joint rotation centers and the
joint angles of a human skeleton from clusters of labeled
2D and 3D marker positions while taking into account
skin movement artifacts [1, 2, 11]. Cerveri et al. [2] and
Klous and Klous [11] even infer the skeleton structure and
its configuration by calculating a statistics over all frames,
which allows only offline processing of the captured data. In
contrast, the method proposed by Aristidou and Lasenby [1]
as well as our approach are able to track the skeleton online
frame by frame without observing all frames first.

In many applications, for example when tracking humans,
the underlying skeleton structure is known in advance. In
particular, Contini [3] describes a standard human skeleton
model, which we also use in the work described here. Zordan
and Van Der Horst [18] propose a force based approach to fit
such a human skeleton model to observed markers. Similar
to our work, Xiang et al. [16] estimate the configuration of a
human skeleton and utilize the knowledge about joint limits.
One can either use medical studies [7] to determine these
joint limits or learn them for individual humans by observing
their motions [9].

All the approaches described above assume known marker
labels to estimate the underlying skeleton model, or they
solve the marker labeling independently of the skeleton
estimation process. In contrast to these methods, we propose
a marker labeling technique that exploits the knowledge
about the current skeleton configuration. Similarly, Herda
et al. [8] present a method to estimate the labeling of the
markers in each frame and Yu et al. [17] aim to track multiple
targets by fitting rigid bodies into the observed point cloud.
Both approaches are able to deal with occluded markers but
they require to manually label the markers in the first frame.

Fig. 3. This figure illustrates two linked joints si and its parent segment
p(si), their local coordinate systems and the transformation between the two
segments. Furthermore, it illustrates an observed point and its normalized
projection and distance to the segment si, which is used to compute the
likelihood for the assignment of the observed marker to a segment.

In contrast, our approach performs labeling and skeleton pose
estimation automatically without any user assistance.

In addition to the academic approaches described above,
there are commercial solutions available for tracking articu-
lated objects. We compare our work to Cortex developed
by Motion Analysis [4] that provides online labeling of
objects after a prior manual initialization and model training
procedure. However, as opposed to our method, Cortex
entirely separates the labeling from the skeleton tracking and
therefore requires tedious manual post-processing to achieve
results that are comparable to those obtained with our system.

III. BASICS

The goal of this section is to give a formal problem
definition and to present the foundations of online marker-
based skeleton tracking.

A. Problem Definition

At each discrete time step t, we assume to receive a frame
of data Ft that is a set of unlabeled 3D points {oi,t}. Each
point oi,t ∈ Ft is the observed 3D position of a marker
attached to one of the limbs of a person. The goal of our
method is to estimate the skeleton configuration C for each
frame, i.e., to estimate the global pose and the joint angles of
the underlying skeleton. In particular, we use a human skele-
ton model that consists of 14 connected segments si ∈ S
having overall 45 degrees of freedom and that is based on
medical data [3]. However, the 3D observations are subject
to measurement noise and the markers are usually placed
on the skin. During the movements of the body this induces
non-deterministic variations of 3D position of the markers
also with respect to the segments of the skeleton. Therefore
we consider the full posterior probability p(C | F ) and
estimate the maximum likelihood skeleton configuration of
the skeleton configuration given the observations. This entails
to label the observed points, i.e., to find the association
function χt : Ft → M that assigns each point to a marker
label mj ∈ M , which is one of the key challenges of the
method presented in this paper.

B. Skeleton Model

In this work, we use a hierarchical skeleton model, where
the pose of each segment si is defined by its local pose with
respect to the coordinate system of its parent segment p(si).
In particular, we denote the quaternion that describes the
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Fig. 2. Overview of the proposed method for automated skeleton estimation. Based on the observed markers in the first frame our method adjusts the
skeleton model to the estimated height and fits the skeleton into the observed point cloud using the principal axes of arms and legs (middle and right).
Furthermore, it initializes the marker labeling and their association to skeleton segments. Left: In each successive frame, most observed points are labeled
based on the preceding frame by nearest neighbor association. Repeated optimization of the skeleton configuration and association based on the current
skeleton estimate robustly labels the remaining points.

orientation of segment si in its parent’s coordinate system
at time step t as q

p(si)
si (t) and the position as t

p(si)
si (t),

respectively. Fig. 3 shows an example of a segment si and
its parent segment p(si). Consequently, the global orientation
qgsi(t) of segment si at time step t is recursively given by

qgsi(t) = qgp(si)(t)� qp(si)si (t) , (1)

where � is the quaternion product. Similarly, the global
position tgsi(t) of segment si is recursively given by

tgsi(t) = tgp(si)(t) + qgp(si)(t)� tp(si)si (t). (2)

The position t
p(si)
s0 (t) = tgs0(t) and orientation q

p(si)
s0 (t) =

qgs0(t) of the root segment, which is the hip segment in our
experiments, describes the global pose of the skeleton. The
positions t

p(si)
si (t) of the remaining segments correspond to

their parent’s lengths and are therefore static and specified by
the skeleton model. As a result, the skeleton configuration C
consists of 14 orientations that correspond to the joint angles
and the global position of the skeleton. This results in overall
14 · 3 + 3 = 45 degrees of freedom of C.

We assume each marker mj to be rigidly attached to
one of the segments of the skeleton and introduce the
function ξ :M → S that maps each marker to a segment.
The local position of a marker mj in the coordinate system
of its corresponding segment is denoted as p

ξ(mj)
mj . Thus,

the position of marker mj in the global coordinate system
at time step t is given by

pgmj
(t) = tgξ(mj)

(t) + qgξ(mj)
(t)� pξ(mj)

mj
. (3)

IV. PROBABILISTIC MARKER-BASED SKELETON
TRACKING

In general skeleton tracking, one aims at estimating the
skeleton configuration C1:t from time step 1 to t given
the frame of unlabeled, noisy 3D observations of markers
F1:t = {oi,1:t}. In particular, we consider the likelihood
L(C1:t | F1:t) of the skeleton configuration given the obser-
vations. However, the association of markers to segments ξ1:t
and the labeling of the observations χ1:t are latent variables

in our observation model. Thus, to compute the likelihood

L(C1:t | F1:t) = p(F1:t | C1:t)

=
∑

χ1:t,ξ1:t

p(F1:t, ξ1:t, χ1:t | C1:t) (4)

we marginalize over these latent variables. Since the max-
imization of Eq. (4) is infeasible in practice, we rely on
the popular EM algorithm, which iteratively determines the
maximum likelihood skeleton configuration

C∗1:t = argmax
C1:t

∑
χ1:t,ξ1:t

p(F1:t, ξ1:t, χ1:t | C1:t) . (5)

In particular, the EM algorithm consists of two steps. First,
the E-step computes the expectation value of the latent
variables E(χ1:t, ξ1:t | C(k)

1:t , F1:t) given the configuration
C

(k)
1:t . Second, the M-step computes the configuration C(k+1)

1:t

that maximizes the likelihood under these expectations.
However, evaluating all possible marker and segment asso-

ciations over all frames is not feasible in practice. Therefore,
we propose the following approximations:

1) We assume the association ξ to be static and only
compute it once in the initialization phase.

2) We consider online skeleton tracking and therefore
recursively compute the likelihood. Hence, we assume
the latent variables of the preceding frame to be known
so that the recursive E-step reduces to computing
the expectation value E(χt | C1:t, F1:t, χ1:t−1) and the
recursive M-step computes C(k+1)

t .
3) We apply the Hungarian method for optimal assign-

ment to efficiently approximate the expectation value
of the latent variables in the E-step. This maximum
likelihood assignment technique is also known as hard
EM in the literature.

Fig. 2 illustrates the resulting algorithm for online skeleton
tracking. In the initialization phase, we determine the initial
skeleton configuration as well as the association function
ξ. For every incoming frame at time Ft, we first label the
observations based on the labeling of the preceding frame
and optimize the skeleton configuration to obtain an initial
guess for the EM skeleton estimation. We then iteratively



find the most likely labeling χt given the current skeleton
configuration (E-step) and optimize the configuration Ct
(M-step). In the following, we describe the individual steps
of our algorithm for automatic skeleton tracking in detail.

V. T-POSE INITIALIZATION

In this section, we present the initialization step of our
method to estimate the skeleton configuration of a person
given the 3D position of observed markers that are attached
to the body, as illustrated in Fig. 2.

The goal of the initialization step is to estimate the initial
skeleton configuration C0, to determine the initial labeling
χ0, i.e., to assign a marker label to each observed point in the
first frame of observations F0, and to determine ξ0, i.e., to
assign each marker label to one of the skeleton segments. We
assume that the person initially stands in the T-pose, in which
the person stands on the floor, stretches both arms and legs,
and holds the arms approximately horizontally sidewards as
shown in Fig. 1. Furthermore, we assume that there is one
marker placed on top of the person’s head. Fig. 2 (middle)
illustrates the initialization process.

First, we obtain the height of the person by extracting the
uppermost marker observation. Given the height, we scale
the skeleton model, i.e., the local position vectors t

p(si)
si

of all segments si ∈ S \ {s0}, to match the size of the
observed person. By considering the anatomy of humans,
we identify the subset of points that belong to the legs
and to the arms and compute their first principal axes, as
illustrated in Fig. 2 (right). We align the skeleton model to
these axes through least-squares optimization to obtain the
initial skeleton configuration C0. Note, that our initialization
method is robust against deviations from the perfect T-pose
due to the optimization-based alignment.

We initialize the bijective association function χ0 : F0 →
M by assigning each observed point oi,0 to the marker
mi. For each observed point oj , we compute the projection
n(oj , si) and distance d(oj , si) to the corresponding segment
si = χ0(oj), normalized by the segment’s length and radius,
respectively. Thus, as illustrated in Fig. 3, points with the
value of n and d in the interval [0, 1] form a tube that has
approximately the size of the corresponding body part. We
define the likelihood of a point oi to belong to a segment si
as

L(si | oi) = f(n(oj , si)) f(d(oj , si)) , (6)

where f is a function that has high values in the interval
[0, 1] and converges to 0 outside this interval. As a result,
we assign high likelihood to points located inside the tube
that represents the body part corresponding to segment si.
In particular we choose

f(x) = φ((x+ θ1)θ2) φ((1− x+ θ1)θ2) (7)

with
φ(x) =

0.5x√
1 + x2

+ 0.5. (8)

The parameters θ1 and θ2 determine the convergence prop-
erties of f . Then, we assign each point to the segment it is

most likely attached to:

ξ(mj) = argmax
sj∈S

L
(
sj | χ−10 (mj)

)
. (9)

Finally, we compute the initial estimate of the relative posi-
tion p

ξ(mj)
mj of all markers with respect to their corresponding

segments.
To resolve the ambiguity between the two possible head-

ings of the person in T-pose, we maintain both hypotheses at
first and dismiss one hypothesis as soon as it gets unlikely
due to the joint limits of the skeleton (Sec. VI-C).

VI. JOINT LABELING AND SKELETON ESTIMATION

Skeleton tracking aims at maximizing the likelihood of
the skeleton configuration Ct given the unlabeled, noisy
observations of markers in an online fashion. As illustrated
in Fig. 2, we initialize the labeling based on the preceding
frame in a nearest neighbor association. Given the initial
skeleton configuration, we simultaneously perform the label-
ing of marker observations and the estimation of the skeleton
configuration through an EM procedure, which alternately
updates the labeling based on the skeleton configuration and
estimates the skeleton configuration given the labeling.

A. Labeling based on the Preceding Frame
We initialize the labeling of every incoming frame of

observations based on the labeling and the skeleton config-
uration of the preceding frame. Due to the high frame rate
of motion capture systems usually most of the markers only
move a short distance between two consecutive frames. In
our approach, we initially label these markers through nearest
neighbor association given the preceding frame.

In particular, we optimally associate the labeled observa-
tions of frame Ft−1 to the unlabeled observations of frame
Ft given the spacial distance as a cost function. Additionally,
we define the threshold θPF

max as an upper limit for a valid
association to avoid a wrong labeling in cases where one
marker disappears and another marker appears at the same
time. We determine the optimal one-to-one assignment using
the Hungarian method [12]. This method assigns each obser-
vation of Ft to one observation of Ft−1 such that the sum of
the distances is minimized. The resulting labeling function is
χt(oi,t) = χt−1(oj,t−1) for each pair (oi,t,oj,t−1) that has
been assigned by the Hungarian method. Note, that we can
adapt the thresholds θPF

max online for each marker individually
based on statistics over the previous frames to account for a
changing velocity of the markers.

B. Labeling based on the Skeleton Configuration
If a marker was occluded during some frames and reap-

pears, or if it moves more than the threshold θPF
max, we

cannot label it based on the preceding frame. However, the
current skeleton configuration Ct provides a prediction of the
position of each marker, given by the global marker positions
pgmj

(t). According to Sec. VI-A, we use the Hungarian
method [12] to assign all remaining observations to markers
that have not already been labeled based on the preceding
frame. Here, we assign only observed points to markers in
a radius of θS

max to be more robust against outliers.



C. Skeleton Estimation

Given the full or partial labeling χt of the marker ob-
servations of the current frame Ft and the relative position
p
ξ(mj)
mj of each marker mj ∈ M with respect to its corre-

sponding segment, we estimate the skeleton configuration Ct.
In particular, we estimate the maximum likelihood skeleton
configuration of p(Ct | Ft) taking into account the uncer-
tainty of observations and the joint limits of the skeleton.
Due to the optical measurement process and skin effects, we
assume Gaussian noise on the 3D observations of markers
with respect to the segments of the skeleton. Thus the M-
step translates to optimizing the skeleton configuration with
respect to the mean squared error of the marker distances
and the joint limits of the skeleton.

For each observation oi,t, we compute the reprojection,
i.e., the estimated global position given Ct, of the marker as-
signed to this observation pgχt(oi,t)

(t) by evaluating Eq. (3).
We aim to find the configuration of the skeleton that
minimizes the quadratic reprojection error, which is the
quadratic distance between this reprojection and the actual
observation. To improve the performance of the skeleton
pose estimation, we include penalties for joint configurations
that are outside of certain limits defined by considering the
natural configurations of the skeleton, forcing for example
the knee to move in one degree of freedom. Thus, the overall
optimization function at time step t,

f(Ct) =
∑
i∈It

∥∥∥pgχt(oi,t)
(t)− oi,t

∥∥∥2 + l(Ct) , (10)

sums over the set It of labeled marker observations and takes
into account the joint limit cost function l(Ct).

We determine the skeleton configuration Ct using the
optimization framework g2o [13], which provides modular
and flexible gradient descent optimization. Particularly, we
formulate the skeleton estimation problem as a graph, in
which the skeleton configuration is contained in a variable
node, the relative marker positions are contained in fixed
nodes, and the components of the error function f(Ct) are
computed in unary and binary edges. The gradient of f(Ct)
with respect to the skeleton parameterization Ct is computed
by means of numerical differentiation. This optimization
procedure usually converges after a few iterations, even
during fast movements and when initialized with the skeleton
configuration Ct−1 of the preceding frame.

VII. EXPERIMENTAL RESULTS

We evaluated the presented algorithm on various motion
capture recordings of different test subjects and marker sets.
Each data set was recorded with a Motion Analysis motion
capture system with ten Raptor-E cameras at 100 Hz frame
rate. Our method was able to process data online at 100 Hz
on an Intel R© CoreTM i7-2600K CPU with 3.40 GHz.

A. Initial association of markers to limbs

In a first set of experiments, we evaluated the initialization
method (see Sec. V) that associates observed markers to the
skeleton segments. Therefore, we compared the association
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Fig. 4. The number of observed markers (solid) and the number of wrongly
or not labeled markers (dashed) of our proposed method compared to the
commercially available software Cortex and to a baseline method.

of our method to manually labeled ground truth data. For
markers that were located in the joint area between two
segments, for example the elbow or the knee, we allowed
the association to both segments. As parameter for the
association of markers to limbs in Eq. (7) we chose θ1 = 5
and θ2 = 0.2. In 24 experiments, our approach associated
99.1% of overall 969 markers to the correct segment.

B. Performance of the marker labeling

A key challenge during the estimation of the skeleton pose
of a human is to associate the observed points to the correct
marker labels in each frame. To evaluate and compare the
labeling performance of our method, we manually annotated
five publicly available datasets1 of overall 10 min motion
capture data, including walking, sitting on a chair, stretching
arms and legs, and jumping. Fig. 4 shows for each dataset and
for our method as well as the following three alternatives the
number of observed markers (Observations) and the number
of markers that were either not or falsely labeled:
• Preceding frame: Our method with labeling based on

the preceding frame only.
• Cortex online: Motion Analysis Cortex without manual

post processing.
• Cortex manual: Motion Analysis Cortex where each

dataset was manually post-processed for 1 h.
Overall, our approach was able to correctly label 99.6% of all
markers whereas Cortex online correctly labeled only 79.8%
of the data without manual post processing. After one hour

1http://www.informatik.uni-freiburg.de/∼kudererm/

http://www.informatik.uni-freiburg.de/~kudererm/
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Fig. 5. Histogram of the movement of markers between two consecutive
frames for correctly associated markers (a) and incorrectly associated
markers (b) when assigned by the Hungarian method in a typical capture.
Note the substantially distinct scales of the y-axes, which shows that the
bulk of the markers are correctly associated based on the preceding frame.

of manual post processing for each dataset, Cortex manual
correctly labeled 93.6% of the data. Obviously, labeling of
markers based on the preceding frame only is not sufficient,
as occluded markers are not correctly labeled when they
reappear. Thus, our approach provides the best performance
in fully automatic marker labeling for skeleton tracking.

C. Data Association Threshold Experiments

Labeling based on the preceding frame is sensitive to the
parameter θPF

max, which determines the maximum distance for
optimal data association in the Hungarian method. We can
adjust this parameter for each marker online using statistics
over the previous frames. Thus, we can adapt the threshold
to changing velocities of individual markers. To initialize the
thresholds, we evaluated the movements of markers in a typ-
ical capture of natural movements. Fig. 5 shows a histogram
of correctly (left) and incorrectly (right) associated markers
based on the preceding frame with θPF

max set to ∞. Note, that
the scales of the two figures deviate largely, which indicates
that most of the markers are labeled correctly. All correctly
associated markers moved less than 5 cm compared to the
preceding frame. The incorrectly labeled observations are
mostly due to occlusions. Therefore, in all of our experiments
we chose the initial value θPF

max = 5 cm.

D. Ambiguity of the Initial Pose

As described above, our method initially tracks both poten-
tial headings of the person until the constraints in the joints
and especially in the knee joints disambiguate the situation.
To evaluate the robustness of our approach to determine the
heading we evaluated its performance on 24 datasets with
two different humans and six different marker setups. In all
of the 24 datasets, our method chose the correct heading after
1.78 sec in average, with a standard deviation of 0.93 sec.

VIII. CONCLUSIONS

In this paper we presented a fully automatic method to
estimate the underlying skeleton configuration of a human
based on the position of markers perceived in a motion
capture system and freely attached to the human. Our method
uses the popular EM algorithm to compute the most likely
skeleton configuration by estimating the unknown association
of observations to marker labels in each frame. In contrast to

existing approaches, which typically require tedious manual
post processing, our method solves the estimation of the
marker labeling without any user intervention. In an ex-
tensive set of experiments we demonstrate that our method
outperforms even a commercially available and state-of-the-
art method for skeleton pose estimation.

REFERENCES

[1] A. Aristidou and J. Lasenby. Real-time marker prediction
and CoR estimation in optical motion capture. The Visual
Computer, 29, 2013.

[2] P. Cerveri, A. Pedotti, and G. Ferrigno. Kinematical models
to reduce the effect of skin artifacts on marker-based human
motion estimation. Journal of Biomechanics, 38(11), 2005.

[3] R. Contini. Body segment parameters II. Artificial Limbs, 16
(1), 1972.

[4] Motion Analysis Corp. Cortex, 2013. URL http://
www.motionanalysis.com/html/industrial/cortex.html. Version
4.0.0.1387.

[5] E. de Aguiar, C. Theobalt, and H.-P. Seidel. Automatic
learning of articulated skeletons from 3D marker trajectories.
In Second Int. Symposium on Advances in Visual Computing
(ISVC), Part I, 2006.

[6] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society. Series B (Methodological), 1977.

[7] R. Hepp and R. Debrunner. Orthopädisches Diagnostikum.
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[13] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A general framework for graph optimization.
In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

[14] S. Obdrzalek, G. Kurillo, F. Ofli, R. Bajcsy, E. Seto, H. Jimi-
son, and M. Pavel. Accuracy and robustness of kinect pose
estimation in the context of coaching of elderly population. In
Engineering in Medicine and Biology Society (EMBC), 2012
Annual Int. Conf. of the IEEE, 2012.

[15] M. Ringer and K. Lasenby. A procedure for automatically
estimating model parameters in optical motion capture. In
Proc. of the British Machine Vision Conf., 2002.

[16] Yujiang Xiang, Salam Rahmatalla, Jasbir S Arora, and Karim
Abdel-Malek. Enhanced optimisation-based inverse kinemat-
ics methodology considering joint discomfort. Int. Journal of
Human Factors Modelling and Simulation, 2(1), 2011.

[17] Q. Yu, Q Li, and Z. Deng. Online motion capture marker
labeling for multiple interacting articulated targets. Computer
Graphics Forum, 2007.

[18] V.B. Zordan and N.C. Van Der Horst. Mapping optical motion
capture data to skeletal motion using a physical model. In
Proc. of the 2003 ACM SIGGRAPH/Eurographics symposium
on Computer animation, 2003.

http://www.motionanalysis.com/html/industrial/cortex.html
http://www.motionanalysis.com/html/industrial/cortex.html

	Introduction
	Related Work
	Basics
	Problem Definition
	Skeleton Model

	Probabilistic Marker-based Skeleton Tracking
	T-Pose Initialization
	Joint Labeling and Skeleton Estimation
	Labeling based on the Preceding Frame
	Labeling based on the Skeleton Configuration
	Skeleton Estimation

	Experimental Results
	Initial association of markers to limbs
	Performance of the marker labeling
	Data Association Threshold Experiments
	Ambiguity of the Initial Pose

	Conclusions

