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Abstract—To act intelligently in dynamic environments, a
system must understand the current situation it is involved
in at any given time. This requires dealing with temporal
context, handling multiple and ambiguous interpretations, and
accounting for various sources of uncertainty. In this paper we
propose a probabilistic approach to modeling and recognizing
situations. We define a situation as a distribution over sequences
of states that have some meaningful interpretation. Each situ-
ation is characterized by an individual hidden Markov model
that describes the corresponding distribution. In particular, we
consider typical traffic scenarios and describe how our frame-
work can be used to model and track different situations while
they are evolving. The approach was evaluated experimentally
in vehicular traffic scenarios using real and simulated data.
The results show that our system is able to recognize and
track multiple situation instances in parallel and make sensible
decisions between competing hypotheses. Additionally, we show
that our models can be used for predicting the position of the
tracked vehicles.

I. INTRODUCTION

A fundamental requirement for an autonomous system

to be able to act intelligently is the continuous monitoring

and understanding of the current situation it is involved

in. Knowing what is going on is relevant for predicting

what will happen, which in turn can be used to make

informed decisions, avoid risks, and, in general, improve the

performance of the system. Situation recognition, however,

is not an easy task even if the state of the system or its

environment can be estimated accurately. To robustly recog-

nize the current situation at any given time, the temporal

context needs to be taken into account. Additionally, the

system must be able to deal with ambiguities, since there

may be more than one possible interpretation, and some of

them might be contradictory. Furthermore, the system needs

to deal with uncertainty in the environment, sensor noise,

and inaccuracies in its models. On top of this all, the system

must recognize situations as they are evolving, that is, in an

online fashion.

In this paper, we present a framework for modeling and

online-recognition of situations. Although the framework

is generic, we focus on a driver assistant application in

traffic scenarios and consider situations that typically occur

in highway-like driving settings. The situations detected by

our current system include passing, following, and aborted

passing situations.

Within our framework, the process of change is viewed

as a series of snapshots, each describing the state of the

system at a particular time. Based on this characterization,

we speak of situation types and situation instances, where
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Fig. 1. Schematic representation of the proposed framework for situation
modeling and recognition. Each situation type is described by an individual
HMM λi. A situation instance exists as long as the corresponding HMM
recognizes the state sequence being generated.

a situation instance is defined as a state sequence that has

some meaningful interpretation. A situation type, on the other

hand, is the set of all situation instances that are grouped

under the same interpretation.

We take a model-based approach in which hidden Markov

models (HMMs) are used for characterizing and recognizing

situations. Each situation type is described by an individual

HMM, which specifies the admissible state sequences that

correspond to an occurrence of the given situation.

A graphical representation of the proposed framework is

shown in Fig. 1. The state space model in the lower part

of the figure corresponds to a dynamic Bayesian network

that characterizes the system. The upper part of the figure

corresponds to a layer of different situation-HMMs, which

are evaluated against the estimated state xt at each point in

time t.

The contribution of this paper is a practical approach for

modeling and recognizing situations in an online setting.

As mentioned above, we show how our framework can be

used for characterizing typical situations in a vehicular traffic

scenario, and how situation instances can be tracked while

they are developing. Experimental results using real and

simulated data show that our system can recognize and track

multiple situation instances in parallel, and make sensible

decisions between competing hypotheses. Additionally, we

show that our models can be used for predicting the position

of the tracked vehicles.

The remainder of this paper is organized as follows. In

the next section, we review related work. Then, Section III

describes our framework for situation modeling and recog-

nition. In Section V we finally present experimental results

illustrating the advantages of our technique.

II. RELATED WORK

In the field of intelligent agents, space and time modeling

has been approached using qualitative knowledge represen-



tation and reasoning, like, for example, using the situation

calculus [1] or the event calculus [2]. Despite the existence

of these formalisms that simultaneously represent space and

time, most modern approaches combine spatial and temporal

calculi. Muller’s [3] spatio-temporal theory, for example,

is basically a first-order axiomatization of spatio-temporal

entities based on RCC [4]. Wolter and Zakharyaschev [5]

combine RCC and propositional time logic [6]. Brandon

et al. [7] also use propositional time logic but combine it

with modal logic to produce PSTL (Propositional Spatio-

Temporal Logic), a two-dimensional logic capable of de-

scribing topological relationships that change over time.

Gerevini and Nebel [8] use Allen’s interval calculus [9] to

temporalize RCC.

All these approaches are mostly focused on the represen-

tation of and reasoning about spatio-temporal facts. Several

authors have investigated the problem of extracting such facts

from quantitative data to recognize relevant temporal config-

urations of those facts in an online fashion. Ghallab [10],

for example, introduced the concept of a chronicle as a

set of events and a set of temporal constraints, between

those events, where the events are symbolic representations

obtained from sensors. In an online fashion, the recognition

system processes these events and if they match the event

model of a chronicle, then an instance of this chronicle

occurs. Nagel [11] describes a complete system capable of

transforming sequences of video images into a natural text

description of spatio-temporal developments. Nagel intro-

duces the notion of a generically describable situation as a

combination of a state-scheme and an action-scheme, where

a state-scheme is a characterization of the state and an action-

scheme specifies an action that could be performed if the

conditions stipulated by the state-scheme are satisfied.

Similar to the approaches of Ghallab and Nagel, our

framework describes each relevant spatio-temporal configu-

ration using an individual model that is evaluated as the state

of the system changes. However, the approaches of Ghallab

and Nagel do not explicitly deal with the inherent uncertainty

in the observations and actions of a system. The hidden

Markov model (see Rabiner [12]) is one of the most popular

probabilistic models for representing sequences of states that

have structure in time. Brand et al. [13], for example, repre-

sent and classify sequences corresponding to T’ai Chi Ch’uan

gestures using coupled hidden Markov models. Ghahramani

et al. [14] use factorial hidden Markov models to model a

collection of musical pieces of J.S. Bach. Landwehr [15]

extracts different activities executed in parallel during the

preparation of breakfast at home using interleaved hidden

Markov models.

Like in the approaches mentioned above, we also use hid-

den Markov models to describe distributions over meaningful

state sequences. However, we additionally present a complete

framework for the real-time recognition of sequences that

are consistent with the models. This approach is similar in

spirit to the one presented by Bennewitz et al. [16] where

a complete framework for recognizing gestures for human-

robot interaction is presented. In contrast to the left-to-right

Fig. 2. A passing maneuver, in which the reference vehicle (square car
in the middle) is being passed on its left hand side by another one. In this
case, we divided the maneuver into three stages and, thus, used a 3-state
HMM over abstract world states as a model (bottom).

models used by Bennewitz et al. we do not put restrictions

on the state transitions of the model and we also discuss

how recognized situations can be used to predict future

developments in the scene.

III. MODELING SPATIO-TEMPORAL SITUATIONS

Our approach to modeling the dynamics of realistic sys-

tems, such as vehicular traffic, is to assume two layers of

abstraction: first, on a higher abstraction level, the so-called

situation models describe how the system evolves over longer

periods of time at a lower spatial resolution (e.g., “car A

passes car B on the left”) . Secondly, on a more detailed

level, a state-space model describes the concrete interaction

of the agents with the environment involving the relationship

between the state xt of the system and the observations zt.

Fully interweaving both abstraction layers would lead to

an intractable model in all but the simplest cases. Therefore,

the two layers are loosely coupled as visualized in Fig. 1,

that is, the posterior state estimates in the state-space models

are treated as fixed “observations” by the situation models.

Concretely, as state-space model we assume a dynamic

Bayesian network [17], in which the state xt and obser-

vation zt at time t are characterized by a set of random

variables (see Fig. 1). The state xt of the system at time

t is estimated from the sequence of previously obtained

observations z1:t = {z1, . . . , zt} using the recursive state

estimation scheme [18].

On the more abstract level, a situation instance is de-

fined as a sequence of states that has some meaningful

interpretation. A situation type corresponds to the set of

all situation instances that are grouped under the same

interpretation. To characterize a situation type s, we use

a continuous hidden Markov model λs, that describes the

stereotypical state sequence corresponding to the situation

type over the wide range of variations inherent to the

different situation instances. A situation HMM consists of

a tuple λ = (Q, A,B, π), where

• Q = {q0, . . . , qN} represents a finite set of N states.

• A = {aij} is the state transition matrix in which each

entry aij represents the probability of a transition from

state qi to state qj .

• B = {bi(x)} is the observation model, where bi(x)
represents the probability of observing x while being in

state qi.



• π = {πi} is the initial state distribution, where πi

represents the probability of state qi being the initial

state.

Although the states Q in a HMM are hidden, a concrete

meaning can often be associated with them [12]. In our

case, we choose Q as a set of N salient states x from the

state-space model. The transition probabilities aij specify the

admissible state sequences that correspond to an instance of

that situation. Consider, for example, the passing maneuver

illustrated in Fig. 2, in which a vehicle is passed on the left

side by another car. We can describe this type of situation

using an HMM with three states q1, q2, and q3 where

the first state q1 corresponds to the passing vehicle being

behind of the reference vehicle, q2 corresponds to the passing

vehicle being on the left, and q3 corresponds to the passing

vehicle being in front of the reference one. In a preliminary

version of the framework presented in [19], we used a hard

discretization of the state space to define the observation

models B. In our current framework, the observation model

of a situation HMM is given by a finite mixture of the form

bi(x) =

K
∑

k=1

cikN (x;µik,Σik), (1)

where x is a state in the state space model, cik is the

mixture coefficient for the k-th mixture in state qi, and

N (x;µik,Σik) is a multivariate Gaussian distribution with

mean µik and covariance matrix Σik for the k-th mixture in

state qi.

In order to estimate the parameters of a situation HMM λ,

we use the Baum-Welch algorithm [20]. This is an approx-

imative iterative optimization technique for maximizing the

likelihood of the data. The algorithm takes an initial estimate

of the parameters and greedily improves it by following

the likelihood gradient. In this work, we assume that the

number of states N and mixtures K in the observation model

are fixed and given. Therefore, the initial state distribution

π, the transition matrix A, and the observation model B

are the free parameters to be learned. The training data

for each situation type s consists of a set of observation

sequences Xs = {x1, . . . , xc}, where each xi is a sequence

{xi
1, . . . , x

i
ti
} of states of the state space model.

IV. SITUATION RECOGNITION

Given a set of M trained situation models λs1
, . . . , λsM

,

and a sequence x1, . . . , xt of states of the state space model,

our approach to situation recognition is based on evaluating

the likelihood P (x1:t | λs) of the sequence for each model

λs. This likelihood is computed incrementally using the

forward procedure (see [12]) given as

P (x1:t | λ) =
N

∑

i=1

αt(i), (2)

where

αt+1(j) =

[ N
∑

i=1

αt(i)aij

]

bj(xt+1), (3)
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Fig. 3. Average likelihood of 10 observation sequences corresponding to
a passing (top) and an aborted passing (bottom) maneuver according to the
three different situation models: passing, aborted passing, and following.

and

α1(j) = πjbj(x1). (4)

At each point in time t, the framework incrementally

updates the likelihoods computed at time t−1 independently

for the different models. In certain scenarios, however, it

is reasonable to consider two or more situation types as

being mutually exclusive or competing. In this kind of

problems, we would like to be able to select, among the

competing models, the most likely one. Assuming that the

stereotypical sequences of the competing situation types can

be differentiated and that the learned models accurately

characterize them, we can use the likelihood P (x1:t | λs)
of the observation sequence given the different models λs

to select the one that provides the better explanation for the

sequence [12].

For deciding between two competing models, we compute

the posterior odds, which provides a way of evaluating

evidence in favor of a probabilistic model relative to an

alternative one. The posterior odds Pλ1,λ2
for two competing

models λ1 and λ2 given an observation sequence x1:t is

computed as

Pλ1,λ2
=

P (x1:t | λ1)P (λ1)

P (x1:t | λ2)P (λ2)
, (5)

that is, the ratio of the likelihoods of the models being

compared given the data and the model priors. The likelihood

P (x1:t | λ) of an observation sequence x1:t given a model

λ can be computed efficiently using the forward procedure



Fig. 4. The situation models were learned from a large set of simulated traffic scenarios involving multiple users using the open source driving simulator
TORCS. Left: it is not yet clear whether the cyan car will actually pass the yellow one (see the forth bar chart on top). Middle: at this point, the passing
maneuver was clearly identified. Right: Inspecting the evolution of situation likelihoods involving many agents.

as described above. The prior probabilities P (λ) allow us to

include information about how likely a given model is, prior

to any evidence. We learn these from the training data using

simple counting.

V. EXPERIMENTAL EVALUATION

Our framework has been implemented and tested in a

vehicular traffic scenario using real data as well as a sim-

ulated driving environment. We considered three different

situations that typically occur on a highway, namely passing,

aborted passing, and following. The goal of the experiments

was to show that our framework can be used to model

and successfully recognize different situations instances in

dynamic multi-vehicle environments.

For the experiments, the state xt of the state space model

at time t consisted of the relative distance ri
t, relative bearing

ψi
t, and relative speed vi

t of each surrounding vehicle i. It

turned out that these features were sufficient to characterize

the modeled situations, being also robust against variations in

the different situation instances. In our experiments, each sit-

uation HMM consisted of 5 states with one three-dimensional

Gaussian as observation model. Some HMMs could not be

trained when using more states due to insufficient data, and

using less states made the models too general and reduced

their discriminative capacity. The initial estimates of the

parameters π, A, and B of the models where manually

set by segmenting the situation stereotypical sequence into

meaningful states. The Baum-Welch algorithm was then used

to optimize the parameters so as to maximize the likelihood

of the data.

A. Situation Tracking

The goal of this experiment was to demonstrate that our

approach can be used to successfully characterize and track

different situation types. We first trained the different situa-

tion models using sequences generated in the simulation en-

vironment. The training data was generated using randomly

selected speeds for the vehicles in different circuits. As test

sequences, 10 passing and 10 aborted passing maneuvers

were generated. Figure 3 plots the average log likelihood

and standard deviation of the test sequences according to

the different situation models. Note that in order to compare

different instances of the same maneuver, the length of the

sequences was first normalized, since different executions

produce state sequences of different length.

After the approaching vehicle was detected, that is, when

the approaching vehicle was within a 50 meter radius of

the reference vehicle, we start computing the likelihood

of the state sequence for the different situation models as

described in Section IV. In the figures, it can be observed

how the likelihood given a model measures how well the

model explains the current state sequence. For the passing

maneuvers (top plot) the passing situation model provides

the best explanation compared with the other models. For

the aborted passing maneuvers (bottom plot), however, the

model does not perform as well.

For example, observe how at approximately 20% of the

maneuver, as the passing vehicle starts changing to the left

lane, the likelihood according to the following model starts to

decrease. This occurs since the model expects the vehicle to

remain behind and therefore ceases to provide an explanation

for the observations. Similarly, at approximately 50% of the

maneuver, as the passing vehicle is abeam, the likelihood

according to the aborted passing model starts to decrease

too.

The error bars in the figure capture the variance in the

different executions of the maneuvers. However, this variance

is greatly inflated by the normalization over the length of the

sequences. This is why the bars appear so large. Specially

after the likelihood of a sequence given a model falls below

a certain threshold. In this experiment, we set the minimum

allowed log likelihood value to -1500 for better visualization

of the results.

B. Tracking Multiple Situation Instances

A similar experiment was carried out with additional

vehicles driving simultaneously to evaluate the performance

and robustness of the framework. The scenario consisted

of nine different vehicles passing the reference car. Every

time one of the reference vehicles came within a 50 meter

radius of the reference car, the three situation models where

instantiated for that vehicle, and evaluated as described in

Sec. IV. Once a vehicle was outside the tracking range, the

associated models where discarded. The results (see Fig-

ure 4) showed that our approach can also be used in scenarios

where multiple vehicles are being simultaneously tracked,
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Fig. 6. Average likelihood of 5 observation sequences corresponding to
a passing maneuver gathered from real data according to the passing and
following situation models.

instantiating and eliminating multiple different instances of

the situation models as vehicles appear and disappear from

the state space, over extended periods of time. Since each

situation instance is evaluated independently from the others,

the complexity of the situation tracking algorithm increases

only linearly in the number of situation types and vehicles

in the state space.

C. Real Data

The framework was also evaluated using real data. Two

SICK laser range scanners were mounted on a convertible

as illustrated in Fig. 5. Each laser has a field of view of

180 degrees and can detect objects as far as 80 meters with

an angular resolution of 1 degree at 75Hz. The arrangement

of the two lasers provided a 340 degree field of view as

illustrated in the figure. Due to the blind spot in the field of

view of the laser arrangement, states in which the vehicle

was in front of the reference car could not be considered.

Data was gathered by driving over more than 50 kilometers

on highways and state roads at velocities of up to 110

km/h. Note that in this work, we concentrate only on the

recognition of situation instances and do not deal with the

tracking of the vehicles nor the state estimation problem. In

order to extract the trajectories of the vehicles out of the

real data, track initialization was done manually. After that,

a Kalman filter was used for tracking the vehicles.

From the gathered data, only 14 and 8 complete tracks

corresponding respectively to passing and following situa-

tions could be successfully extracted. Due to the technical
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Fig. 7. Posterior odds in favor of the passing situation model compared
against the follow situation model according to the observation sequence for
the passing maneuver.

limitations of the sensors together with their arrangement,

many situation instances could not be captured, or were

captured only partially in the data. Figure 6 plots the average

log likelihood of 5 observation sequences corresponding to

a passing maneuver according to the passing and following

situation models trained with the real data.

D. Model Selection

In this experiment we illustrate how the posterior odds

can be used for selecting between different situation models.

Figure 7 plots the posterior odds Pλp,λf
in favor of the

passing situation model λp compared against the following

situation model λf for the real data used in the previous

experiment. The model priors P (λp) and P (λf ) needed to

compute the posteriors were obtained form the training data

by counting the number of instances of the passing and

following model.

A positive Pλp,λf
can be interpreted as evidence provided

by the data in favor of the passing situation model. The

motivation behind using the posterior odds as criterion for

model selection can be observed in the results of the previous

experiment, in which the likelihood of the sequence accord-

ing to the model corresponding to the executed maneuver is

generally higher than the likelihood according to the other

models. Figure 7 also illustrates how the posterior odds

can be used to make decisions between competing situation

models as discussed in Section IV.
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E. Prediction

In this experiment we demonstrate how our learned models

can be used for predicting the state of the system. State pre-

diction within the HMM framework consists of computing

the belief state of the HMM as in (3) but without correcting

for new evidence. The predicted state x̄t+∆ in the state space

model can then be computed as

x̄t+∆ =

∑N

i=1
αt+∆(i)µi

∑N

i=1
αt+∆(i)

, (6)

where µi is the mean of the multivariate Gaussian distribu-

tion of the observation model for state qi (see Section III).

Figure 8 plots the predicted state of a vehicle for one

of the sequences gathered from real data. The sequence

corresponds to a passing maneuver and the learned passing

model was used to obtain a 1-second prediction. Our HMM-

based situation models allow us to describe and also predict

situations with complex dynamics. However, it must be noted

that the accuracy of the prediction depends strongly on

the parameters of the model. For example, using a coarse

discretization of the state space may lead to a model which

can produce inaccurate predictions (see bottom plot). We

also compare the prediction results of our models against

a simple constant-velocity model. Such a model can be

quite accurate for predictions when the situation is relatively

linear but propagates errors in the state estimation into the

predictions. Our HMM-based models, on the other hand, are

robust against these errors since the predictions are based on

the learned model and not only on the current state of the

system.

VI. CONCLUSIONS

In this work, we presented a general framework for

modeling and recognizing situations. We take a model-based

approach in which each situation type is described by an

individual HMM that specifies the admissible state sequences

corresponding to an instance of the given situation. We also

demonstrated the usefulness of the posterior odds as criterion

for selecting between two competing situation models.

The approach has been evaluated experimentally using

real and simulated data in the context of a driver assistant

application in traffic scenarios and with situations that typ-

ically occur in highway-like driving scenarios. The results

demonstrate that our system is able to recognize and track

multiple situation instances in parallel and to make sensible

decisions between competing hypotheses. Additionally, we

show that our models can be used for predicting the position

of the tracked vehicles.
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