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Abstract—Robust and reliable localization is a fundamental
prerequisite for many applications of mobile robots. Although
there exist many solutions to the localization problem, struc-
turally symmetrical or featureless environments can prevent
different locations from being distinguishable given the data ob-
tained with the robot’s sensors. Such ambiguities typically make
localization approaches more likely to fail. In this paper, we
investigate how artificial landmarks can be utilized to reduce the
ambiguity in the environment. We present a practical approach
to compute a configuration of indistinguishable landmarks
that decreases the overall ambiguity and thus increases the
robustness of the localization process. We evaluate our approach
in different environments based on real data and in simulation.
Our results demonstrate that our approach improves the
localization performance of the robot and outperforms other
landmark selection approaches.

I. INTRODUCTION

For reliable navigation a mobile robot needs to be able

to determine its pose in the environment and accurately

track it over time. This is known as the mobile robot

localization problem and consists in estimating the pose

of the robot relative to a given map of the environment

based on sensor data. Although there exist many approaches

that have been successfully applied to the localization task,

structurally symmetrical or featureless environments make

these approaches more likely to fail and in the worst case

prevent the pose of the robot from being uniquely deter-

minable at all. In the context of localization, environments

are considered ambiguous if they prevent different robot

poses from being distinguished based on the sensor data.

Figure 1 illustrates such a problem. It shows a typical sensor

measurement obtained using a laser range scanner together

with the corresponding observation likelihood. Dark colored

areas correspond to high likelihood poses. As can be seen in

the figure, several poses, in addition to the pose from which

the scan was taken, have a high observation likelihood.

In this paper, we focus on the problem of utilizing artificial

landmarks to reduce the ambiguity in the environment. Con-

cretely, we address the problem of finding a configuration

of indistinguishable landmarks that, when placed in the

environment, increase the robustness in the localization of

the robot. The basic idea of our approach is that by reducing

the overall ambiguity in the environment, the localization

performance of the robot can be improved. We first introduce
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Fig. 1. Ambiguous environments make localization approaches more likely
to fail. The image shows a laser range scan (top) and the x-y-projection
(maximizing over the orientation) of the corresponding observation likeli-
hood over the pose space (bottom). The darker the color, the larger the
observation likelihood at the corresponding pose. As can be seen there are
many poses with an associated high observation likelihood.

a measure for how distinguishable or unique a pose is. We

then present a landmark selection approach that incremen-

tally selects landmark locations, greedily maximizing the

average uniqueness in the environment.

The contribution of this paper is two-fold: First, we present

a practical approach to landmark placement that aims at

improving the localization performance of the robot. Our

approach provides us with both the number and location

of landmarks to be placed in the environment. We con-

sider indistinguishable landmarks which makes our approach

attractive from a practical point of view since no land-

mark coding and complex identification system is required.

As a second contribution we introduce a measure for the

uniqueness of a robot pose based on sensor data. In this

work, we seek to improve the localization performance

by maximizing the average uniqueness in the environment.

Furthermore, we describe a concrete instantiation of the

landmark placement problem and show experimentally that

our approach improves the localization performance of the

robot and outperforms other landmark selection approaches.

II. RELATED WORK

In the past, a huge variety of localization techniques has

been proposed. Several approaches rely on natural features in

the environment [1], [2]. These approaches are particularly

attractive as they do not require the environment to be mod-

ified. However, inherently ambiguous environments make

these localization approaches more likely to fail. Utilizing

artificial landmarks offers the possibility of improving the

reliability of the localization. Some approaches [3], [4]

consider artificial landmarks that can be uniquely identified.

Although such approaches greatly simplify the localization



problem, they require a landmark coding and non-trivial

identification system. In our work, we therefore consider only

indistinguishable landmarks.

The landmark placement problem as addressed in our

work can be formulated as the problem of selecting a subset

of landmarks out of a finite set of candidate landmarks.

Sutherland and Thompson [5] where one of the first to

address this problem. They demonstrate that the localization

error depends on the configuration of the selected landmarks.

Salas and Gordillo [6] propose a simulated annealing tech-

nique to find the landmark configuration that maximizes the

size of the region from where a landmark can be seen.

Sinriech and Shoval [7] specify a set of constraints about the

number of landmarks and their distance to critical locations

in the environment, and formulate landmark placement as

a nonlinear optimization problem. Sala et al. [8] decompose

the environment into regions from which a minimum number

of landmarks can be observed. They use a graph-theoretical

formulation to find the decomposition with the minimum

number of regions. All of the above mentioned approaches

rely on pure geometrical reasoning based on triangulation

for estimating the pose of the robot. In contrast to that,

our approach to landmark selection is tightly coupled with a

robust, probabilistic localization framework.

Other researchers have also focused on the localiza-

tion performance at the moment of selecting landmarks.

Thrun [9], for example, uses a neural network to extract

features from the sensor data and selects the subset of those

features that minimizes the average posterior localization

error. Lerner et al. [10] formulate the problem as a semi-

definite programming (SDP) problem and specify a cost

function to weight different localization parameters accord-

ing to the specific task at hand. Strasdat et al. [11] use

reinforcement learning to obtain an online landmark selection

policy. The approach of Zhang et al. [12] selects, at every

time step, the set of landmarks that minimizes the entropy

of the resulting posterior distribution. All of these methods

operate online and are concerned with the landmarks that

are observed at every time step during localization. Our

approach, in contrast, works in an offline fashion. Further-

more, in our work landmarks are physical objects, and not

observed features. The main difference between previous

approaches and ours is that, by introducing a measure for the

uniqueness of a pose and maximizing the overall uniqueness

in the environment, we explicitly consider the symmetries

and ambiguities that can originate when placing landmarks.

III. MONTE CARLO LOCALIZATION

Throughout this work we use the Monte Carlo localization

(MCL) [13] algorithm for estimating the pose of the robot.

MCL is a concrete instantiation of the Bayes recursive filter

that estimates the belief bel(xt) = p(xt | z1:t, u0:t,m) about
the pose xt of the robot at time t conditioned on the

observations z1:t, odometry measurements u0:t, and map of

the environment m. The belief is recursively computed as

bel(xt) =

∫

p(xt | xt−1, ut) bel(xt−1) dxt−1 (1)

bel(xt) = η p(zt | xt,m) bel(xt) , (2)

where p(zt | xt,m) and p(xt | xt−1, ut) correspond to the

observation and motion model respectively, and η is a nor-

malizing constant independent of xt. Equation (1) is known

as the prediction step of the algorithm and computes the

posterior bel(xt) before incorporating the observation zt.
Equation (2) is called the correction step and computes the

final belief bel(xt). The key idea of MCL is to represent the

belief by a set of weighted samples or particles, where each

particle corresponds to a potential pose of the robot.

The MCL algorithm computes the particle set at time t
recursively from the particle set at time t−1. The algorithm

is initialized with a distribution of equally weighted particles

around the initial pose estimate (position tracking), or with

a uniform distribution over all possible poses (global local-

ization). Then, a temporary particle set is generated from

the previous set by sampling according to the motion model

p(xt | xt−1, ut). This model describes a posterior density

over possible poses xt given the previous pose xt−1 and

most recent odometry measurement ut. In a following step,

the new particles are weighted according to the observation

model p(zt | xt,m) that represents the likelihood of the

most recent observation zt given the pose xt and the map

m of the environment. In the final step of the algorithm, the

resulting particle set is created by drawing particles from the

temporary set in proportion to their weights. This resampling

step effectively replaces particles with low weights by high

weight particles.

IV. POSE UNIQUENESS

Intuitively, the uniqueness of a pose indicates how distin-

guishable the pose is from all other poses in the state space.

Since the robot perceives its environment through its sensors,

the uniqueness of a pose is based on the observations of the

robot. Let us assume that the robot is equipped with a perfect

sensor that makes, for a pose x and map m, a deterministic

observation z(x,m). Then we can define the uniqueness of

a pose x given a map m as

Uperfect(x,m) =
1

∫

x̃∈X
δx̃,m(x) dx̃

, (3)

where X represents the state space, and δx̃,m(x) is 1 if

z(x̃,m) = z(x,m) and 0 otherwise. The denominator in (3)

simply counts the number of poses in the state space where

the robot makes the same observation as in pose x. Clearly,
the larger the count, the less unique the pose is. For a

maximally unique pose x it holds that δx̃,m(x) = 0 for all

x̃ ∈ X \{x}. A minimally unique pose x, on the other hand,

is one for which δx̃,m(x) = 1 for all x̃ ∈ X .

Since our sensor is noisy, we have to replace the determin-

istic function δx̃,m(x) in (3) by the likelihood of observing,

at pose x̃, the observation zx made at x, i.e., p(zx | x̃,m).
Furthermore, as we don’t know which measurement zx we

will obtain at pose x, we have to integrate over all potential

measurements, i.e., calculate the expectation:

Uexp(x,m) =

∫

z

1
∫

x̃∈X
p(z | x̃,m) dx̃

p(z | x,m) dz . (4)
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Fig. 2. Normalized average uniqueness as a function of the number of
selected landmarks. The right black dot marks the point where the average
uniqueness reaches its maximum. The left black square indicates the average
uniqueness for the number of landmarks selected by our approach.

As integrating over all measurements is not feasible in

practice, we approximate the outer integral in Uexp(x,m) by
the maximum likelihood value of p(z | x,m) an obtain

U(x,m) =
1

∫

x̃∈X
p(zx∗ | x̃,m) dx̃

, (5)

where zx∗ = argmaxz p(z | x,m) corresponds to the most

likely observation at pose x given the map m. The ac-

curacy of this approximation depends on the distribution

p(z | x,m). If p(z | x,m) is the Dirac density, the approx-

imation is exact. In general, the accuracy depends on how

much zx∗ dominates the outer integral. A highly unique pose

x is typically associated to a peaked distribution p(z | x̃,m)
that is at its maximum when x̃ = x. On the other hand,

a flat distribution typically corresponds to an ambiguous

environment where, for all the poses x̃ in the state space,

p(z | x̃,m) has almost the same value.

V. LANDMARK PLACEMENT

Given a set V of N candidate landmarks, the general

landmark placement problem consists of finding a config-

uration m ⊆ V of landmarks that maximizes a given target

function. There exist many possible aspects to consider when

specifying the target function, like the number of selected

landmarks and area covered, for example. The target function

considered in this work is the average uniqueness value in

the environment. Concretely, we look for the configuration

m∗ so that

m∗ = argmax
m⊆V

( 1

||X ||

∫

x∈X

U(x,m)dx
)

. (6)

By maximizing the average uniqueness in the environment

we seek to improve the localization performance of the robot.

The combinatorial nature of the problem makes the enu-

meration of all possible solutions for finding the optimal

one intractable. However, an approximate solution to (6)

can be efficiently computed in an incremental fashion by

successively selecting the landmark that maximizes the av-

erage uniqueness until no further improvement is possible.

The main disadvantage of this approach is that it selects

an unnecessarily large number of landmarks. In practical

experiments we found that approximately 50% of the candi-

date landmarks are selected before no further improvement

is possible. Figure 2 shows the typical behavior of the

average uniqueness as a function of the number of selected

landmarks. As can be seen, the average uniqueness reaches

Algorithm 1 Incremental Landmark Placement

Require: Set V of N candidate landmarks

1: m∗ = ∅
2: while V 6= ∅ do

3: l′ = argmaxl U(x, {l} ∪m∗)
4: ū′ = U(x, {l′} ∪m∗)
5: if ∇ū′ > ǫ then

6: m∗ = {l′} ∪m∗

7: V = V \ {l′}
8: else

9: return m∗

its maximum when approximately half of the candidate

landmarks are selected. Adding further landmarks provides

no additional improvement and, as a matter of fact, the

average uniqueness starts to decrease as further landmarks

are selected. In order to determine the number of landmarks

to select, we use a heuristic approach based on the gradient

of the average uniqueness. Our landmark placement algo-

rithm terminates whenever the gradient drops bellow some

specified threshold. The larger the value for the threshold,

the smaller the number of selected landmarks. The average

uniqueness is normalized using an instance specific upper

bound in order to use the same threshold for different

instances of the problem. Assuming a finite and discrete state

space, the upper bound for the average uniqueness is given

by 1/minx p(z
x∗ | x,m = ∅) and can be determined before

selecting the first landmark.

The approach proposed in this work is specified in Al-

gorithm 1. Line 3 computes the landmark l′ that maximizes

the average uniqueness U(x, {l′}∪m∗). Line 5 computes the

gradient of the average uniqueness if l′ would be selected.

If the value of the gradient is smaller than the threshold

ǫ, the algorithm terminates and the final configuration m∗ is

returned. Otherwise, landmark l′ is added to the configuration
m∗, removed from the set of candidate landmarks, and the

algorithm continues and tries to select another landmark.

Assuming a finite and discrete state space, the complexity of

the algorithm is O(KM2) where K < N is the number of

selected landmarks and M is the size of the state space. The

factorM2 is a consequence of the computation of the average

uniqueness that requires the computation of the uniqueness

(O(M)) for each state in the state space.

VI. EXPERIMENTAL EVALUATION

To evaluate the improvement in the localization perfor-

mance obtained when landmarks were placed according to

our proposed algorithm, we carried out a set of experiments

in simulation and on a real robot. A 2-dimensional occupancy

grid with a resolution of 0.5m was used to represent the

environment. The set of candidate landmarks consisted of

all occupied cells in the grid. The sensor used for our

experiments was a laser range scanner that in addition to

the range and bearing, also returned the reflectivity of the

measured objects. As landmarks we considered stripes of

retro-reflective tape. Based on the reflectivity we classified
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Fig. 3. Improving the uniqueness in the environment by placing landmarks. The figure shows the uniqueness before and after placing the landmarks for
three different environments. The uniqueness at each pose is projected onto the grid map by minimizing over the orientation. The lighter the color, the
higher the uniqueness. Also shown are the landmark configurations obtained using our approach. The highlighted locations correspond to the landmarks.

individual measurements into pure range measurements and

measurements that correspond to landmarks.

As observation model p(z | x,m) we used a variant of the

so-called likelihood field model [14]. In this model, the indi-

vidual range measurements are assumed to be independent of

each other. The likelihood of each pure range measurement is

computed according to the distribution pr(z
i) ∼ N (dr, σ

2
r)

based on the distance dr between the endpoint of the

measurement zi and its closest obstacle in the map m. Here,

N (µ, σ2) denotes the normal distribution with mean µ and

standard deviation σ. In the case of landmark measurements

the distribution pl(z
i) ∼ N (dl, σ

2
l ) is used, where dl

denotes the distance to the closest landmark in the map.

The likelihood of an observation z = (z1, . . . , zK) is then

computed as

p(z | x,m) =

K
∏

i=1

pl(z
i)δ(z

i) · pr(zi)(1−δ(zi)) , (7)

where

δ(zi) =

{

1 if zi corresponds to a landmark

0 otherwise.
(8)

This simple general model does not take visibility constraints

into account and assumes a perfect landmark detection.

However, it can be efficiently evaluated and is sufficient for

the purpose of our experiments.

To compute the uniqueness as specified in (5), the state

space (x-y coordinates and orientation θ) was divided into

cells of 0.5m and a resolution of 90◦ was used for the

orientation. Ray-tracing was used to simulate the most likely

observations needed to compute the uniqueness value at

every pose. Figure 3 shows the landmark configurations

obtained with our approach for three artificial maps. Also

shown in the maps is the uniqueness in x-y space, minimized

over the orientation θ, before and after placing the landmarks.

As threshold ǫ in our landmark placement algorithm we set

the minimum value of the gradient to 1. For our specific

sensor model (7), a theoretical upper bound for the average

uniqueness is given by 1/
K
√
2πσ2, where σ = max(σr, σl).

Note that the approach presented in this paper is not re-

stricted to grid-based representations, it only requires a way
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Fig. 4. Evaluation of the landmark configuration obtained using our
approach vs. alternative approaches in the task of global localization. The
plots show the fraction of particles within a 1.5 m radius around the true
pose as a function of time. The values correspond to the mean and standard
deviation for different repetitions of the localization.

to compute the uniqueness for the specific representation.

Additionally, the computation of the upper bound for the

average uniqueness is not strictly necessary. Alternatively,

the empirical maximal value can be used instead. The disad-

vantage of that strategy is that the algorithm can’t stop until

the maximal average uniqueness value has been reached.

A. Global Localization

To evaluate the landmark configurations obtained using

our approach in the task of global localization, we generated

50 different random trajectories for each of the environments

shown in Figure 3. In addition to noise in the range simu-

lations, we also simulated false positives and false negatives

in the landmark detections. The localization algorithm was

executed 5 times for each trajectory using 10 000 particles

initially uniformly distributed in the state space. We com-

pared, for the same number of landmarks, the configurations

obtained with our approach (avg u) with the configurations

obtained with four alternative approaches:

1) Uniform contour sampling (contour): Distributes the

landmarks roughly uniformly throughout the contours

of the environment. The first landmark is randomly

selected from the set of candidate landmarks. Addi-

tional landmarks are selected by choosing the candi-

date landmark closest to the previously selected one

until no more landmarks can be selected. Every time a



landmark is selected, all landmarks within a specified

radius are removed from the set of candidates. This

radius is chosen so that the sampling approximately

covers the whole map.

2) Uniform space sampling (space): Distributes the land-

marks roughly uniformly throughout the environment.

This approach divides the environment into squared re-

gions of equal size and selects the candidate landmark

closest to the center of each non-empty region.

3) Random sampling (random): Distributes the landmarks

randomly throughout the contours of the environment.

Landmarks are randomly selected from the set of can-

didate landmarks. Every time a landmark is selected,

all landmarks within a specified radius are removed

from the set of candidates.

4) Maximize the minimal uniqueness (min u): The ap-

proach described in Algorithm 1 was modified so that

it would maximize the minimum uniqueness in the en-

vironment m∗ = argmaxm⊆V

(

minU(x,m)
)

, instead

of maximizing the average uniqueness,

The results of the experiment for one of the environments

(leftmost in Figure 3) are shown in Figure 4. As performance

metric for the global localization task we considered the

fraction of particles within a 1.5m radius around the true

pose after 2, 3, 4, 5 and 10 integrations of measurements

(time steps). The values correspond to the mean and stan-

dard deviation for the different trajectories and runs of the

localization. As can be seen in the figure, the configuration

obtained by our method improves the global localization

performance best since particles are more quickly converging

towards the true pose of the robot. A t-test showed that

the improvement was significant on the α = 0.05 level for

all the evaluated environments, time steps and alternative

approaches. Clearly, the amount of improvement obtainable

depends on the inherent uniqueness of the environment.

A larger improvement can be obtained for inherently am-

biguous environments (leftmost one in Figure 3) than for

inherently unique environments (rightmost one in Figure 3).

The first 3 alternative approaches, contour, space, and ran-

dom are simple and fast, but do not take into account the

ambiguities that can originate when selecting landmarks, and

the resulting landmark configurations are therefore not as

good for improving the localization performance as the ones

obtained with our approach. The fourth approach, min u, has

the property that a lower bound for the uniqueness in the

environment is guaranteed. However, this does not provide

a significant improvement in the localization performance.

B. Number of Landmarks

The goal of this experiment was to evaluate the per-

formance of our gradient-based heuristic when determin-

ing automatically the number of landmarks to be placed.

Figure 5 shows the fraction of particles within a 1.5m
radius around the true pose of the robot after 2, 3, and 10

integrations of measurements as a function of the number

of selected landmarks. Also indicated in the figure are the
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Fig. 5. Global localization performance as a function of the number of
selected landmarks. The plots show the fraction of particles within a 1.5m

radius around the true pose of the robot after 2, 3, and 10 time steps.
The values correspond to the mean and standard deviation for different
repetitions of the experiment. The number of landmarks selected by our
approach (∼ 10%) is indicated by the vertical line.

values corresponding to the number of landmarks selected

by our gradient-based heuristic (∼ 10%) when using a

threshold of 1. This corresponds to a 45◦ positive gradient.

The motivation for choosing this value is that increasing

the percentage of selected landmarks by 1% provides less

than a 1% increment in the normalized average uniqueness.

Using a different value for the threshold, or weighting

differently the parameters (average uniqueness vs. fraction of

selected landmarks) the number of selected landmarks can be

controlled. As can be seen in Figure 5 selecting more land-

marks does not provide an improvement in the localization

performance. Furthermore, the number of landmarks selected

is well beyond the point where fewer landmarks would cause

the localization performance to decrease drastically.

An additional result of this experiment is that, as can be

seen in the figure, the behavior of the localization perfor-

mance as a function of the number of selected landmarks

is similar to the behavior of the average uniqueness (see

Figure 2). This experimental result suggests a direct connec-

tion between the average uniqueness in the environment and

localization performance.

C. Real Data

We also evaluated our approach using data gathered with

a MobileRobots Pioneer P3-DX robot equipped with a SICK

LMS 291 laser range finder. We steered the robot through one

of the buildings at our campus and created an occupancy map

of the environment using a standard SLAM technique [15].

The environment consisted of a long, featureless corridor of

approximately 80 × 3m size. Figure 6 shows the landmark

configuration obtained using our approach. In order to make

the environment more ambiguous, range measurements larger

than 10m where disregarded. For building the map, however,

the full 80m depth range of the laser scanner was used. The

map resolution and state space discretization are described in

Section VI. As landmarks, stripes of retro-reflective material

were taped to the walls in the locations indicated by our

approach. We used a threshold on the reflectivity value to

classify the laser measurements caused by the landmarks.

After placing the landmarks, we steered the robot again

through the environment and used the above mentioned
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Fig. 6. Landmark configuration and uniqueness before and after placing
the landmarks for the building 103 data set gathered with a real robot using
a laser range scanner.
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Fig. 7. Global localization performance for the building 103 data set. The
plots show the fraction of particles within a 1.5 m radius of the true pose
of the robot as a function of time. Also shown are the results obtained in
simulation (sim).

SLAM technique to obtain an approximated ground truth

for comparison. For the statistical analysis we divided the

data into 5 parts and evaluated the landmark configuration in

the task of global localization as described in Section VI-A.

Figure 7 shows the results of the experiment. As expected,

a substantial improvement in the localization performance

was obtained when using the landmarks. The performance

is, however, lower than the one obtained in simulation. This

is mostly due to the simplistic sensor model considered for

the experiments. The model is sufficient for the purpose of

our evaluation, but we expect that using a better model, for

example one that considers the distance and angle of inci-

dence of the beams at the moment of detecting a landmark,

would produce better results for real data.

We also evaluated the configuration obtained using our

approach in the task of position tracking. Figure 8 shows the

Euclidean distance between the average pose of the particle

set and the true pose of the robot as a function of time. As

can be seen in the figure, using landmarks can also improve

the accuracy of the localization in the ambiguous areas of

the environment. With and without landmarks the error grows

as the robot moves along the corridor and decreases when

the ends of the corridor are visible (t ∼ 150, 300, 450, 600).
With landmarks, however, the error is substantially smaller

when moving along the corridor.

VII. CONCLUSIONS

In this paper we presented a landmark placement approach

that seeks to reduce the overall ambiguity in the environment

to improve the localization performance of a mobile robot.

To this extend we proposed a measure for the uniqueness of

a robot pose based on the appearance of the environment as

observed by the robot. Due to the combinatorial nature of the

landmark placement problem, we introduced an approxima-

tive approach that incrementally selects landmark locations
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Fig. 8. Average localization error during position tracking with and without
utilizing landmarks for the building 103 data set.

from a set of candidate locations and thereby maximizes

the average uniqueness in the environment. Furthermore, we

described a concrete application in the context of localization

with laser range scanners given a grid-based representation

of the environment. We evaluated our approach for different

environments in simulation and using real data. The results

demonstrate that our approach yields substantial improve-

ments in the localization performance.
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