
Improving Unimodal Object Recognition with
Multimodal Contrastive Learning

Johannes Meyer1, Andreas Eitel1, Thomas Brox1, and Wolfram Burgard1,2

Abstract— Robots perceive their environment using various
sensor modalities, e.g., vision, depth, sound or touch. Each
modality provides complementary information for perception.
However, while it can be assumed that all modalities are
available for training, when deploying the robot in real-
world scenarios the sensor setup often varies. In order to
gain flexibility with respect to the deployed sensor setup
we propose a new multimodal approach within the frame-
work of contrastive learning. In particular, we consider the
case of learning from RGB-D images while testing with
one modality available, i.e., exclusively RGB or depth. We
leverage contrastive learning to capture high-level information
between different modalities in a compact feature embedding.
We extensively evaluate our multimodal contrastive learning
method on the Falling Things dataset and learn representations
that outperform prior methods for RGB-D object recognition
on the NYU-D dataset. Our code and details on the used
datasets are available at: https://github.com/meyerjo/
MultiModalContrastiveLearning.

I. INTRODUCTION

Object recognition is at the core of many robot applica-
tions. For example, a robot needs to know the category of an
object in order to grasp a specific object or to adjust its nav-
igation in the vicinity of certain objects. Multimodal object
perception has received great attention in recent years [1],
[2], [3], [4]. Especially in robotics, we see many applications
where multiple sensors and different modalities are used [5],
[6], [7]. Multimodal object perception increases robustness
because different sensors can provide complementary infor-
mation.

Nevertheless, multimodal learning comes with a few as-
sumptions that are not addressed thoroughly in prior work.
Especially, multimodal learning often assumes that the sensor
setup used for training a model will also be available in the
exact same configuration during deployment of the robot.
However, this assumption does not always hold true. Let’s
take as an example robots that operate in various warehouses.
Ideally, you would equip all robots with exactly the same
sensor setup. In practice, the sensor setup might have to vary
when moving from one warehouse (or customer) to another.
In particular, some sensors are more expensive than others
(e.g., LiDAR) and therefore not all robots can have the same
sensor setup. In addition, privacy concerns may restrict the
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Fig. 1. Our multimodal contrastive learning method maps two images
from different modalities into one embedding space using a weight-sharing
network. During multimodal training a contrastive loss aims to encode high-
level features between both modalities. We propose a multi-task objective
that learns to map multimodal images to the embedding space and uses
the embedding to classify objects. Following our approach, we can improve
recognition performance when using a single modality at test time.

usage of sensors in certain environments (e.g., cameras). We
conclude that one of the main challenges for multimodal
learning is flexibility with respect to a sensor setup that
can differ between training and real-world deployment. In
this work, we study the case of multimodal learning for
unimodal object recognition (i.e., we assume to have access
to a multimodal sensor setup during training but only a single
sensor during testing). The main question that we ask is: do
we benefit from training with multiple modalities (e.g., vision
and depth) given that we only have access to one modality
at test-time?

A familiar research question has been addressed in the
machine learning community under the paradigm of learning
with privileged information. In this learning paradigm “some
additional information x? about training example x [is
provided]; this privileged information will not be available
at the test stage” [8]. Hence, the key idea is to leverage as
much information as possible from the stream of privileged
information.

We follow this underlying idea and make several contri-
butions: 1) We present a novel method for learning with
privileged information based on a recent technique for self-
supervised contrastive learning [9]. We learn multimodal
representations using contrastive learning objectives that map
same concepts from different modalities to nearby points



in the embedding space, see Figure 1. 2) We propose a
novel multi-task objective that combines the multimodal
contrastive loss with a unimodal cross-entropy loss in an
end-to-end manner. 3) We study the effects of recent data
augmentation techniques for both RGB and depth domain
on the contrastive learning task. 4) We evaluate our method
on publicly available RGB-D datasets and show that our
approach outperforms state-of-the-art approaches that are
pre-trained on ImageNet. Notably, we show that training our
approach with multiple modalities in simulation also leads to
improved object recognition on a real-world dataset (NYU-
D).

II. RELATED WORK

Our work is at the intersection between learning with
privileged information for RGB-D vision and self-supervised
representation learning. In the following section, we will
review recent approaches from these two research fields.

A. Learning with Privileged Information

Our method follows the paradigm of learning with privi-
leged information, which was first introduced in the seminal
paper by Vapnik et al. [8]. They propose to use privileged
(i.e., additional and valuable) information during training, by
an algorithmic extension to Support-vector machines. Later,
several methods for deep learning took up the idea in the
context of RGB-D vision.

A recurring idea is to hallucinate features of the missing
modality (typically the depth data is dropped at test time)
and to combine them with the RGB features. This improves
the performance of RGB object recognition and detection.
Hoffman et al. [10] learn a hallucination network using an
euclidean loss between the depth features and the halluci-
nated features. At test-time, the learned stream hallucinates
the missing depth modality from RGB input. Garcia et
al. [11] extend the hallucination approach with a multi-step
teacher-student training. In the first stage, two individual
networks (RGB and depth) are trained for the classification
task. In the second stage, the weights of the depth network
are frozen and the hallucination network is trained to mimic
the outputs of the depth stream. In follow-up work, Garcia et
al. [12] extend their prior method with adversarial modality
distillation. All above-mentioned approaches use models pre-
trained on ImageNet [13] to initialize their networks. In
contrast to these works, we do not require a pre-trained
ImageNet network and no additional hallucination network
(which doubles the amount of parameters).

Other methods for learning with privileged information use
the idea of training with the available modalities and drop-
ping a modality during training, which forces the network to
be robust against a missing modality at test-time. Neverova et
al. [14] learn a late-fusion scheme where individual network
streams are combined. The main idea is to use dropout in
the fusion layer (i.e. a modality dropout). Similarly, de Blois
et al. [15] propose input dropout. Compared to Neverova et
al. they fuse the modalities at the input level. Specifically, the
modalities are concatenated into one input tensor, where the

channels of a modality are randomly dropped out (by setting
the pixel values to zero) during training. Lambert et al. [16]
propose to use privileged information to control the variance
of dropout in a deep neural network and report improved
performance for object classification on ImageNet.

The mentioned methods do not explicitly enforce a consis-
tency between different modalities on a feature-level. For that
reason, our method is more related to the hallucination-based
approaches. For an overview on learning with privileged
information and its connection to multimodal or multi-task
learning we refer the reader to Jonschkowski et al. [17].

B. Self-supervised Representation Learning

Our method builds upon recent methods for self-
supervised representation learning and multi-view learning.
Specifically, we leverage recent developments in contrastive
learning. Here, representations are learned by contrasting be-
tween representations of a shared context. For example, two
views of the same object are used as positive and two views
showing different objects are used as negative learning signal
for training in a self-supervised manner. Two popular meth-
ods are Contrastive Predictive Coding (CPC) [18] and Deep
InfoMax [19]. Deep InfoMax leverages the local structure in
an image to learn representations. The learning signal behind
the method is to classify whether a pair of global features
and local features stem from the same image or not. CPC
extracts spatially aligned subcrops from an image and learns
an embedding for each of these crops using autoregressive
models [18]. Tian et al. [20] extend CPC and Deep InfoMax
to multiple views (e.g., depth, luminance and chrominance
images) and learn a representation that is invariant to the
various views (which they denote as contrastive multiview
coding or CMC). Similarly, Bachman et al. [9] extend Deep
InfoMax to the multi-view case. Compared to prior work they
use strong data augmentation techniques to create new views
of the same image that the representation should be invariant
to. In this work, we build upon their work in order to learn
with multiple modalities. We compute a set of different
views from multiple sensor modalities (more specifically
RGB and depth). We use the multimodal contrastive learning
objective as privileged information in a multi-task learning
framework. Recently, several extensions to CPC and Deep
InfoMax haven been proposed that study the influence of
data augmentation, simplify the contrastive loss objective and
increase the model capacity [21], [22]. These methods are
among the first to match the recognition performance of a
supervised ResNet-50 on ImageNet.

III. METHOD

Our goal is to learn multimodal representations that
improve the recognition performance of the model when
only one modality is available at test-time. The underlying
idea is that different modalities can provide complementary
information during training. We assume that we have access
to multimodal data for training D = {xRGB

k ,xD
k , yk}Nk=1

but during testing we only have samples from one modality
(e.g., only RGB images). We use the additional modality
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Fig. 2. The multimodal contrastive task: We learn representations that are invariant across modalities. Arrows represent contrastive objectives between
features in a weight-sharing encoder. The self-supervised contrastive task is to classify whether pairs of features extracted from different modalities
(xRGB , xD) depict the same concept (i.e., same object) or not.

that is available during training as privileged information.
We propose to do so by optimizing a multi-task objec-
tive. The objective consists of a self-supervised contrastive
learning loss and a cross-entropy classification loss. The
contrastive loss captures the information between multiple
sensor modalities (without using supervision) and enables to
learn a representation in which similar concepts in different
modalities point close to each other in the feature space. At
test-time the model processes only the available modality.

A. Contrastive Loss

Contrastive objectives are used in recent self-supervised
representation learning methods. The representations are
learned by contrasting positive and negative examples in
a self-supervised manner. Specifically, contrastive methods
learn to distinguish whether a pair of global and local
features stem from the same image or not. The intuition
behind it is to learn which are the important signals in
images and which ones are noise (e.g., background, view-
point variations). We begin with explaining AMDIM, the
self-supervised contrastive learning method we build upon,
proposed by Bachman et al. [9].

AMDIM contrasts global features f1(x), extracted from
the last layer, with local features f7(x)ij extracted from a
mid-level layer of a deep convolutional encoder network. The
subscript d ∈ {1, 7} denotes the spatial dimension d× d of
the feature map (the output of a layer) and (i, j) are the
indices that reference to one feature vector inside the feature
map. Intuitively, AMDIM enables the global feature vector
to capture only the relevant information from all the different
local features.

The features are computed using sampling. First, we
sample an input image x ∼ D. Second, we sample spa-
tial indices (i, j) uniformly. Third, we compute the fea-
tures f1(x), f7(x)ij for one image. A positive sample pair
(f1(x), f7(x)ij) consists of global and local features from
the same image, i.e., it is drawn from the joint distribution
p(f1(x), f7(x)ij). A negative sample pair consists of the
global feature f1(x) and a local feature from a different
image (drawn from the marginal distribution p(f7(x)ij)). In

each training batch we sample a set of n7 negative samples,
N7. The contrastive learning task is to pick the true positive
pair out of a large set of negative “distractor” pairs, which
results in a multi-class (n7 + 1) softmax classification loss:

lΦ(f1, f7, N7) = −log
exp(Φ(f1, f7))∑

f̃7∈N7∪{f7}
exp(Φ(f1, f̃7))

, (1)

where we omit the indices (i, j) and the dependence between
f and x to shorten the notation. The denominator term
consists of one positive sample pair and n7 negative sample
pairs. The function Φ(f1, f7) is a scoring function that maps
feature pairs to a scalar value (high for positive samples and
vice versa). Specifically, the function that we approximate
takes as input two features (f1(x), f7(x)) and computes a
scalar matching score Φ. Specifically, we compute the dot
product between the output of two single-layer networks φ1

and φ7 as follows:

Φ(f1(x), f7(x)ij) , φ1(f1(x))>φ7(f7(x)ij). (2)

B. Multimodal Contrastive Loss

Our method extends the AMDIM approach to multiple
modalities. In addition we incorporate data augmentation
that generalizes to both modalities RGB and depth. Specif-
ically, we sample the multimodal features as follows: First,
we sample an image pair from our multimodal dataset
(xRGB ,xD) ∼ D. Next, we augment each image from
a modality M ∈ {RGB,D} with a modality-dependent
augmentation function

x̃M ∼ AM (xM ). (3)

We use RandAugment [23] to construct modality-specific
augmentation functions, which apply a set of randomly
sampled augmentations to an image. Then, we sample spatial
indices (i, j) and compute the features for all augmented
modalities f1(x̃RGB) , f1(x̃D), f7(x̃RGB)i,j and f7(x̃D)i,j .
The joint distributions are pA(f1(x̃RGB), f7(x̃D)ij) and
pA(f1(x̃D), f7(x̃RGB)ij). The marginal distributions that



we use for sampling negatives are pA(f7(x̃RGB)ij) and
pA(f7(x̃D)ij). The two resulting multimodal contrastive
objectives look as follows:

LRGB→D
Φ = E

(f1(x̃RGB),f7(x̃D)ij)

[
E
N7

[lΦ(f1, f7, N7)]

]
, (4)

LD→RGB
Φ = E

(f1(x̃D),f7(x̃RGB)ij)

[
E
N7

[lΦ(f1, f7, N7)]

]
. (5)

The expectations are approximated using the samples in each
training batch. We also adopt the multiscale formulation of
the cost proposed in AMDIM but omit the formula to ease
reading. Specifically, in our mathematical formulation we
only use two features (f1 and f7) but in practice we use
three feature levels (f1, f5, f7) to compute the contrastive
loss from f1-to-f5, f1-to-f7, and f5-to-f5. In Figure 2 we
show the multiscale connections between the various feature
levels.

C. Multitask learning loss
To optimize our final objective we combine the described

contrastive loss (CL) with a cross-entropy loss LM
class. The

cross-entropy loss (CE) in our case is unimodal (i.e., we
forward the feature activations from one modality to the
classifier). The classifier is a fully-connected neural network
that we add to the last layer of the encoder. The gradient
of the classification layer is back-propagated through the
encoder and therefore our method is a single-step end-to-
end approach. The final objective looks as follows:

LM
total = LRGB→D

Φ + LD→RGB
Φ + LM

class. (6)

D. Hyperparameters
In order to train the encoder network on one NVIDIA

Titan-X GPU we modify the original convolutional encoder
proposed by Bachman et al.. We set the encoder feature
dimension of the last layer to ndf = 128. We also reduce
the output dimension of the embedding function φd(fd) to
nrkhs = 1024. In addition, we set the depth of the residual
blocks to ndepth = 8. Overall, this reduces the number
of learnable parameters from 696 million to 93.7 million
parameters. Therefore our model is comparable to a ResNet
50 (2x) as used in Chen et al. [22] that has 94 million
parameters. In all experiments we use 128 × 128 as size
for the input images.

Algorithm 1 Encoder architecture adapted from Bachman et
al. [9]

ReLU(Conv2d(3, ndf, 5, 2, 2))
ReLU(Conv2d(ndf, ndf, 5, 2, 2))
ResBlock(1*ndf, 2*ndf, 4, 2, ndepth)
ResBlock(2*ndf, 4*ndf, 4, 2, ndepth)
ResBlock(4*ndf, 8*ndf, 2, 2, ndepth) {extract f7}
ResBlock(8*ndf, 8*ndf, 3, 1, ndepth) {extract f5}
ResBlock(8*ndf, 8*ndf, 3, 1, ndepth)
ResBlock(8*ndf, nrkhs, 3, 1, 1) {extract f1}

IV. EXPERIMENTS

In the following section, we will test our method through
extensive experiments. Our aim is to show that we can
improve the performance in the unimodal case if we train
with multimodal data. First, we test our method on the
Falling Things dataset and compare against CMC [20], a
very recent contrastive learning method. Then we evaluate
our method on the NYU RGB-D dataset and show how we
can further improve the results by transfer learning from
Falling Things. To conclude our evaluation, we investigate
the performance of our method in a semi-supervised setting.

A. Falling Things RGB-D

The Falling Things (FAT) dataset from NVIDIA [24] pro-
vides rendered images with artificially placed 3D household
object models in virtual environments. For these scenes 3D
poses, per-pixel class segmentations, and 2D/3D bounding-
box coordinates are provided for each placed object. The
dataset contains three modalities, mono RGB, stereo RGB
and depth images. We use the provided bounding box in-
formation to crop the individual objects from the scene for
constructing a classification dataset. This results in 18, 640
training images and 6, 267 validation images. Each image
contains an object out of 21 household objects from the
YCB dataset [25]. In order to process the corresponding
inputs from different modalities with a single encoder, the
input dimensions have to match. To match RGB and depth
dimensions, we stack the one-dimensional depth image three
times. We train all models from scratch and do not use any
pre-trained models on this dataset.
We first analyze the results when training with RGB-D
compared to training with a single modality. All results can
be found in Table I. Choosing the RGB domain as target
(=test) modality, we first train the custom ResNet (ndf=128,
nrkhs=1024, ndepth=8) with the cross-entropy classification
loss in a fully-supervised manner. The fully supervised
network achieves 92.5% accuracy. Next, we evaluate the
performance for combining the cross-entropy loss with the
contrastive loss, again in the unimodal case. Here, we achieve
a similar performance of 92.3% after 130 epochs of training.
Next, we add the second modality during training. First,
we evaluate using the original two-step training procedure
of AMDIM; self-supervised pre-training of the encoder fol-
lowed by a supervised training of a classifier on top of the
fixed encoder. This yields a classification accuracy of 91.1%.
Finally, we train our method that uses multiple modalities
and the multi-task loss. We achieve a classification accuracy
of 94.4%. This is an improvement of 2.1% in comparison to
the best unimodal model.

Next, we study the effect of stronger data augmentation,
specifically when using RandAugment (RA) [23]. The clas-
sification accuracy in the unimodal setting (RGB) slightly
improves to 95.1%. In the multimodal setting we see an
improvement of 0.7% to 95.1% accuracy.

We perform the same set of experiments but now we
switch the test modality to depth. The fully supervised
baseline achieves a classification accuracy of 79.2%. Adding



TABLE I
CLASSIFICATION ACCURACY ON THE FALLING-THINGS DATASET. WE

REPORT THE TRAINING AND TESTING MODALITY, THE ACTIVATION OF

THE LOSS TERMS, THE NUMBER OF EPOCHS, AND THE TOP-1
CLASSIFICATION ACCURACY FOR ONE TRAINING RUN.

Ours
Train modality Test modality CL CE Epochs Top-1 Acc.

RGB RGB - X 100 92.5%
RGB RGB X X 130 92.3%
RGB Depth RGB X1st X2nd 100+30 91.1%
RGB Depth RGB X X 130 94.4%

RGB+RA RGB X X 130 92.6%
RGB+RA Depth+RA RGB X X 130 95.1%

Depth Depth - X 100 79.2%
Depth Depth X X 130 85.1%
RGB Depth Depth X1st X2nd 100+30 84.1%
RGB Depth Depth X X 130 86.1%

Depth+RA Depth X X 130 85.4%
RGB+RA Depth+RA Depth X X 130 91.6%

CMC
Unsupervised RGB-D, Supervised RGB 100+30 81.2%
Unsupervised RGB-D, Supervised D 100+30 56.8%
Unsupervised RGB-D, Supervised RGB 400+100 86.28%
Unsupervised RGB-D, Supervised D 400+100 73.82%

the contrastive loss term improves the performance to 85.1%.
Adding the second modality and training using the original
two-step procedure does not improve the results (84.1%
classification accuracy). Training with our multi-task loss in
an end-to-end manner improves the accuracy to 86.1%. We
achieve the best results when adding RA to our approach.
The classification accuracy reaches 91.6%, which is an
improvement of 6.5% with respect to the best unimodal
baseline (trained with RandAugment as well).

Finally, we compare our method against contrastive mul-
tiview coding (CMC). We use the publicly-available code
and do not make changes to CMC. We train the encoder for
100 epochs in an unsupervised fashion and then the classifier
using the learned representation for another 30 epochs. We
keep the hyperparameters in this setting fixed and use the
suggested parameters of CMC for training on ImageNet with
the ResNet101 as encoder. To compare CMC to our method
we train it with two modalities (RGB and depth). When
testing on RGB images CMC achieves a performance of
81.2%. For the depth modality the performance is 56.8%.
We can see that our approach outperforms CMC in all
cases. When training according to the full schedule of 400
unsupervied epochs and 100 supervised epochs, we achieve
an depth accuracy of 86.28% and a

Discussion: We show that our multimodal multi-task loss,
optimized in a single stage, improves the performance (when
testing with RGB) whereas the original two-step training
approach of AMDIM does not. The data augmentation only
slightly improves the results, likely because on the RGB
modality the performance on this instance recognition task
is already high. Contrary, when training with RGB-D and
testing on depth, adding data augmentation improves the
results by 5.5%.

B. NYU-D

As second dataset we use NYU-D which was originally
proposed by Silberman et al. [26]. We use a variant of

TABLE II
CLASSIFICATION ACCURACY ON THE NYU RGB-D DATASET. WE

REPORT THE TRAINING AND TESTING MODALITY AND THE TOP-1
CLASSIFICATION ACCURACY FOR ONE TRAINING RUN. WE TRAIN USING

OUR MULTI-TASK LOSS FOR 130 EPOCHS WITH A BATCH-SIZE OF 40. ? =
TRAINED FOR 260 EPOCHS

Train Modality Test Modality Top-1 Acc.
RGB RGB 37.8%
RGB Depth RGB 42.6%

RGB+RA RGB 46.4%
RGB+RA Depth+RA RGB 49.4%
RGB+RA Depth+RA RGB 50.1%?

Depth Depth 55.2%
RGB Depth Depth 55.1%

Depth+RA Depth 55.5%
RGB+RA Depth+RA Depth 57.9%

this RGB-D dataset, which was proposed in [27] for ob-
ject classification. This variant crops tight bounding boxes
around instances of 19 object classes that are present in
the dataset. The resulting dataset consists of 2, 186 paired
and labeled training images and 2, 401 test images. In this
dataset the depth images are color-encoded using the HHA
encoding [28].

All models are trained with the same hyper parameters
as on Falling Things. However, the batch-size is reduced to
40 in order to have a more comparable number of gradient
steps given that the dataset contains less images. We report
the results after 130 epochs of training. We train all models
from scratch.

We report results for the same two scenarios; testing
on depth and testing on RGB, see Table II. Unimodal
training yields a performance of 37.8% on the RGB test-
set. Multimodal training improves the result to 42.6%. When
we add RandAugment in the unimodal case the results
improve to 46.4%. Combining RGB and Depth together with
RandAugment improves the result to 49.4%.

Next, we investigate testing on depth as the target modal-
ity. First, we report small gains between unimodal and
multimodal training (55.1% compared to 55.2%). However,
adding RandAugment to our methods benefits the classifica-
tion of depth data at test-time. Notably, in this setting the
results improve by 2.4% to 57.9%.

We can conclude that training with two modalities con-
sistently improves the results in combination with data
augmentation.

C. Transfer Learning: Falling Things to NYU-D

In our prior experiments, we did not perform pre-training
of the encoder on ImageNet or on other datasets. In this
section, we will investigate whether transfer learning our
best Falling Things model improves performance on NYU-
D. Our goal is to show that we can outperform methods
pre-trained on ImageNet by pre-training on Falling Things,
which notably is a synthetic dataset.

For all experiments, we initialize the encoder with the
weights of a Falling Things model that we trained in previous
experiments. Then, we fine-tune the model for another 130



epochs with a batch-size of 40. We run the fine-tuning of
the final model multiple times (following the literature) to
estimate the variance of our approach.

First, we take the best performing network on the Falling
Things dataset on the (RGB, Depth → RGB) and the (RGB,
Depth → RGB) task. In both cases, we see that pre-training
on FAT helps and improves the classification performance
by 2% with an average performance of 51.92% or 52.0%,
see Table III. Both pre-trained feature extractors were trained
on FAT with our multi-task loss, i.e., class information from
FAT propagates into the encoder.

For that reason, we fine-tune a model that was pre-trained
in an unsupervised manner on FAT, i.e., this model was
trained only with LΦ. However, for fine-tuning on NYU-
D we use our multi-task loss again. Interestingly, fine-tuning
from the unsupervised encoder achieves the best accuracy
with 53.84%. This is an improvement of about 4% compared
to using no pre-training on FAT. For this run, we report the
results across 12 different runs, with two different encoders
trained in the same unsupervised fashion on FAT.

We compare our best model to four state-of-the-art meth-
ods from the privileged information literature that learn with
multimodal data and test on unimodal data.
ModDrop [14]: the method trains several networks for each
modality. The networks are combined in a late-fusion layer,
which is trained using dropout. Due to training with modality
dropout, the method can also be tested with a single modality.
ADMD [12]: the method uses a hallucination network that
generates features of the missing modality at test-time.
The hallucination is learned using a generative adversarial
network.
Input Dropout [15]: the method concatenates all modalities
during training in one input tensor. During training one
modality is randomly dropped out of the input tensor (pixels
are set to zero). The network learns to ignore the missing
modality at test time.
Pix2Pix GAN [29]: the method uses a generative adversarial
network to hallucinate depth images from RGB input. In
contrast to ADMD it hallucinates depth images instead of
high-level depth features.
Table III depicts how our method quantitatively compares to
these methods. Our method outperforms all other methods
when averaging the results over five training runs. We outper-
form the best-performing method of Garcia et al. (ADMD)
by 2.5%. We discuss the details on this in subsection IV-D.
Finally, we emphasize that our method is the only one not
pre-trained on ImageNet but only on synthetic data.

Discussion: This effect can not be attributed to the longer
training, because when training 260 epochs from scratch we
only can see a mild performance increase to 50.1% (see
Table II). We can conclude that pre-training is beneficial for
our method, even when using only synthetic data. This is
especially interesting for cases in which real-world training
data is scarse. We show that it is possible to pre-train a
network on synthetic data in an unsupervised fashion and
then use this network for fine-tuning on a smaller real-world
dataset such as NYU-D.

TABLE III
TRANSFER LEARNING RESULTS: SYNTHETIC DATA (FALLING THINGS,
SCENENET) TO NYU RGB-D. ALL MODELS ARE FINE-TUNED WITH A

BATCH-SIZE OF 40 AND FOR 130 EPOCHS ON NYU RGB-D. N
INDICATES HOW MANY INDIVIDUAL RUNS HAVE BEEN TRAINED.

Train Modality Test
Modality Top-1 Std. N Source

RGB+RA Depth+RA RGB 51.92% 0.63% 5 Our1

RGB+RA Depth+RA RGB 52.00% 0.88% 5 Our2

RGB+RA Depth+RA RGB 53.84% 0.77% 12 Our3

RGB + RA Depth + RA RGB 59.92% 0.59% 5 Our4

Baselines
ModDrop RGB 44.3% n/a? 5 [15]
Pix2Pix RGB 48.2% n/a? 5 [15]
Input Dropout RGB 49.5% 0.80? 5 [15]
Input Dropout + RGB RGB 52.7% 0.60? 5 [15]
Mod. distillation (ADMD) RGB 57.4% 0.3? 5 code by [12]

? provided by author, some models not available anymore
1 best performing model on the RGB-Depth → RGB on Falling Things
2 best performing model on the RGB-Depth → Depth on Falling Things
3 feature extractor trained unsupervised on Falling Things RGB-D
4 feature extractor trained unsupervised on SceneNet RGB-D

D. Transfer Learning: SceneNet to NYU-D

We perform an additional transfer learning experiment
using SceneNet RGB-D, a photorealistic dataset of 5M
synthetic indoor images, for pre-training. We construct our
classification subset for training by cropping objects from
the synthetic scenes using the provided bounding-box anno-
tations. We use a smaller subset of the original data and build
a dataset that contains 202,747 training and 33,574 validation
images containing 16 classes. Note that the classes partly
overlap with the NYU-D dataset but as before we do not
use the class information in our unsupervised pre-training.
Results in Table III show that pre-training on SceneNet
leads to an improvement in classification performance of 6%
compared to pre-training on the Falling Things dataset. We
attribute this improvement to the larger training set size and
the smaller domain mismatch.

E. Ablation: Augmentation for Depth Modality

The introduction of RandAugment [23] as primary source
for data augmentation has yield great benefits on both
datasets. Since RandAugment was initially designed for RGB
images, it is was unclear how to augment the depth modality.
Therefore, we examined which set of augmentations of
RandAugment can be re-used for depth data.

As done in [23], we evaluate each of the individual
augmentations proposed in RandAugment and how they
affect the classification accuracy when training and testing
on the depth modality. The results of this experiments can
be found in Table IV. All experiments have been conducted
on the NYU RGB-D dataset with 100 epochs of training and
a batch-size of 140.

From this experiment we can see that all the augmentations
which directly change values of pixels within the depth map
lead to a vast reduction in classification accuracy. For that
reason, we remove all these augmentations from the set
of possible augmentations. We then evaluate two sets of
augmentations. The first contains all augmentations which
do not harm the classification accuracy by more than one
percentage point. The second one contains the two strongest



TABLE IV
COMPARISON OF RESULTS FOR THE NYU RGB-D DATASET. EACH

MODEL IS TRAINED FOR 100 EPOCHS WITH BATCH-SIZE 140.

Modality Augmentation Test modality Acc. (TOP-1) Change
Depth - Depth 55.3% -
Depth Cutout Depth 55.8% +0.5%
Depth Rotate Depth 56.2% +0.9%
Depth Translate-X Depth 55.8% +0.5%
Depth Translate-Y Depth 54.1% −1.2%
Depth Shear-X Depth 55.2% −0.1%
Depth Shear-Y Depth 55.7% +0.4%
Depth Sharpness Depth 55.2% −0.1%
Depth Brightness Depth 16.3% −39.0%
Depth Contrast Depth 18.4% −36.9%
Depth Invert Depth 14.0% −41.3%
Depth Equalize Depth 29.8% −25.5%
Depth Auto-Contrast Depth 20.9% −34.4%
Depth Speckle Depth 11.1% −44.2%
Depth RandAugment1 Depth 55.5% +0.2%
Depth RandAugment2 Depth 55.7% +0.4%

1 this set of augmentations contains: Cutout, Rotate, Translate-X,
Shear-X, Shear-Y, and Sharpness

2 this set of augmentations contains: Cutout, Rotate

augmentations on the depth modality. Both set of augmen-
tations perform somewhat similar with 55.5% and 55.7%
classification accuracy. Nevertheless, we used the latter set of
augmentations in our previously reported main experiments.

Discussion: Data augmentation for depth modality re-
mains an open question. In this experiment, we can see that
all augmentations that directly change depth values do not
perform well. The reason for that is that they change the
perceived objects quite drastically. More elaborate augmen-
tations which change the viewpoint of the camera, keep the
scene geometry and create a new depth image from different
viewpoints might improve results.

F. Ablation: Semi-Supervised

In the following, we evaluate our method in a semi-
supervised setting on Falling Things. We manually vary
the amount of labeled data and use the remaining data for
the unsupervised contrastive loss. We train our method on
RGB-D and test on depth. We compare against unimodal
training and testing. In this experiment we see that training
with multiple modalities is beneficial, especially in the part
of the curve where less labels are provided, see Figure 3.
Our multimodal method achieves with 10% labeled data a
classification accuracy of 73.7%, compared to the 55.5% of
the unimodal baseline. With more labeled data we see the
advantage of multimodal training reducing.

Discussion: This experiment shows the advantage of using
the second modality when small amounts of labeled data is
available. This advantage is amplified by the fact that we did
not use data augmentation to further regularize the learning
of the encoder. These results also fall in line with research
by Henaff et al. [21] who also find that a contrastive loss
function performs well in the semi-supervised setting.

V. CONCLUSION

We introduced a novel approach for learning with privi-
leged information. Following this approach, we developed a
novel method that leverages multimodal contrastive learning
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Fig. 3. Top-1 classification accuracy with different percentages of labeled
data provided. The target modality in this setting is depth. The red line
shows our method trained with RGB-D and the multi-task loss. The black
curve shows our method in the unimodal case (trained only on depth) and
the green curve shows the same encoder trained only with a cross-entropy
loss.

to improve unimodal object recognition. We showed in
extensive experiments that we can learn rich representations
from multiple modalities that improve the discriminative per-
formance in scenarios where only one modality is available.
Future work could extend our method to improve unimodal
object detectors or semantic segmentation networks with
multimodal training. In addition, training our method with
a large amount of sensor modalities in simulation seems
a promising research direction for Sim2Real tasks. We be-
lieve that learning with privileged information in multimodal
settings is an important direction towards improving robot
vision.
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