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Abstract— This paper presents an approach to create topolog-
ical maps from geometric maps obtained with a mobile robot in
an indoor-environment using range data. Our approach utilizes
AdaBoost, a supervised learning algorithm, to classify each point
of the geometric map into semantic classes. We then apply a
segmentation procedure based on probabilistic relaxation labeling
on the resulting classifications to eliminate errors. The topological
graph is then extracted from the individual different regions and
their connections. In this way, we obtain a topological map in
the form of a graph, in which each node indicates a region in the
environment with its corresponding semantic class (e.g., corridor,
or room) and the edges indicate the connections between them.
Experimental results obtained with data from different real-world
environments demonstrate the effectiveness of our approach.

I. Introduction

Topological maps have been quite popular in the robotics

community because they are believed to be cognitively more

adequate, since they can be stored more compactly than

geometric maps and can be also communicated more easily

to users of a mobile robot. In the past, many researchers have

considered the problem of building topological maps of the

environment from the data gathered with a mobile robot. The

question of how to augment such maps by semantic informa-

tion, however, is virtually unexplored. Whenever robots are

designed to interact with their users, semantic information

about places can be important. A robot that possesses this

knowledge can be instructed, for example, to go to the kitchen.

In this paper, we consider the problem of learning topologi-

cal maps with semantic information from geometric maps that

were obtained with a mobile robot in an indoor-environment

using range data. Our approach is based on the assumption that

indoor environments, like the one depicted in the left image of

Figure 1, can be typically decomposed into areas with different

functionalities such as rooms, corridors and doorways, and

that these areas build the vertices of a topological graph. The

connections of the vertices are then given by the neighborhood

of the regions in the occupancy map. For example, a doorway

is typically connected to two rooms, two corridors, or to a

room and a corridor.

Throughout this paper we assume that the robot is given a

map of the environment in the form of an occupancy grid [12].

Our approach then determines for each unoccupied cell of such

a grid its semantic class. This is achieved by simulating a range

scan of the robot given it is located in that particular cell, and

then classifying this scan into one of the semantic classes.
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Fig. 1. The left image shows a geometric map of a typical indoor environment
with rooms, doorways, and a corridor depicted in colors/grey levels. The
middle images show two simulated range scans in the geometric map. The
right image depicts the corresponding semantic-topological map.

Examples for typical simulated range scans obtained in an

office environment are shown in the middle images of Figure 1.

The classification is then done using a sequence of classifiers

learned with the AdaBoost algorithm [15]. These classifiers are

built in a supervised fashion from simple geometric features

that are extracted from range scans simulated in a previously

labeled map of a similar environment. To remove noise and

clutter from the resulting classifications, we apply an approach

denoted as probabilistic relaxation labeling [13]. From the re-

sulting labeling we construct a graph whose nodes correspond

to the regions of identically labeled poses and whose edges

represent the connections between them. Additionally, each

node contains geometrical information about the region it rep-

resents, like the area, the centroid and the orientation. A typical

topological map obtained with our approach is shown in the

right image of Figure 1. Experimental results shown in this

paper illustrate that our method can determine the semantic-

topological map of an environment with a recognition rate

of more than 98%. We also present results that illustrate

that our approach can even construct a topological map of

an environment from which no training data was available.

Furthermore, we compare the extended set of simple features

used in our AdaBoost algorithm with the one previously

applied by Martı́nez Mozos et al. [10]. Experimental results

illustrate that our features provide better classification results.

This paper is organized as follows. After discussing related

work in the following section, Section III describes the se-

mantic AdaBoost classifier. Then, Section IV introduces the

new set of simple features used in the system described here.

Furthermore, Section V describes the probabilistic relaxation

approach. In Section VI we then explain the method used to
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extract semantic regions and to create the final topological

map. Finally, in Section VII we present experimental results

obtained using our approach.

II. RelatedWork

In the past, different algorithms for creating topological

maps have been proposed. Kuipers and Byun [9] extract

distinctive points in the map, which are defined as the local

maximum of some measure of distinctiveness. Kortenkamp

and Weymouth [7] fuse the information obtained with vision

and ultrasound sensors to determine topologically relevant

places. Shatkey and Kaelbling [16] apply a HMM learning

approach to learn topological maps in which the nodes repre-

sent points in the plane. Thrun [18] uses the Voronoi diagram

to find critical points, which minimize the clearance locally.

Additionally, Kuipers and Beeson [8] apply different learning

algorithms to calculate topological maps of environments.

These former approaches only identify points in the map that

have special properties but they do not include any means for

extracting the types of places or even regions. Our approach, in

contrast, is able to identify complete regions in the map like

corridors, rooms or doorways, which have a direct relation

with a human understanding of the environment.

Additionally, several authors considered the problem of

identifying certain types of places. For example, Buschka and

Saffiotti [2] describe a virtual sensor that is able to identify

rooms from range data. Also Koenig and Simmons [6] use

a pre-programmed routine to detect doorways from range

data. Althaus and Christensen [1] use sonar data to detect

corridors and doorways. With respect to place classification,

our approach is most similar to the algorithm proposed by

Martı́nez Mozos et al. [10] in that we also apply the AdaBoost

algorithm. However, we use a probabilistic variant of the

classifier and additionally we apply a probabilistic relaxation

labeling to incorporate similarity constraints between neigh-

boring points and to eliminate false classifications.

III. Semantic Classification of Poses using AdaBoost

Boosting is a general method for creating an accurate

strong classifier by combining a set of weak classifiers. The

requirement to each weak classifier is that its accuracy is

better than a random guessing. In this work we will use the

boosting algorithm AdaBoost in its generalized form presented

by Schapire and Singer [15]. The input to the algorithm is a

set of labeled training examples (xn, yn), n = 1, . . . ,N, where

each xn is an example and each yn ∈ {+1,−1} is a value

indicating whether xn is positive or negative respectively. In

our case, the training examples are composed by simulated

laser observations as described in Section IV. In several

iterations t = 1, . . . ,T , the algorithm repeatedly selects a

weak classifier ht(x) using a distribution D over the training

examples. The selected weak classifier is expected to have

a small classification error in the training data. The idea of

the algorithm is to modify the distribution D increasing the

weights of the most difficult training examples in each round.

The final strong classifier is a weighted majority vote of the

T best weak classifiers. Throughout this work we will use

the approach by Viola and Jones [19] in which each weak

classifier h j depends on a single-valued feature f j ∈ �

h j(x) =

{
+1 if p j f j(x) < p jθ j

−1 otherwise,
(1)

where θ j is a threshold and p j is either −1 or +1 and thus

represents the direction of the inequality. The parameters θ j

and p j are determined during the training process of the

algorithm.

The generalized Adaboost is only able to predict the label

y ∈ {+1,−1} of an example as positive or negative. To

additionally estimate the probability of a particular label, we

use the method suggested by Friedman et al. [3]. It uses the

output of AdaBoost to determine a confidence value C ∈ [0, 1]

for a positive classification of an example C = P(y = +1 | x).

The so far described method is able to distinguish between

two classes of examples, namely positives and negatives. In

practical applications, however, we want to distinguish be-

tween more than two classes. To create a multi-class classifier

we used the approach applied by Martı́nez Mozos et al. [10],

which creates a sequential multi-class classifier using K − 1

binary classifiers, where K is the number of classes we want

to recognize. Additionally, we use the method by Stachniss et
al. [17], in which the classification output of the decision

list is represented by a histogram z. Each bin of z stores the

probability that the classified example belongs to the k-th class

according to the sequence

z[k] = Ck

k−1∏
j=1

(1 −C j), (2)

where Ck = Pk(y = +1 | x) and CK = 1.

IV. Laser Data Features

As explained in the introduction, in order to classify each

free cell in the occupancy grid map we simulate a range scan

in its position ray-casting in the map. The simulated scans

we use correspond to a robot equipped with a 360 degree

field of view laser sensor. Each simulated laser observation

then consists of 360 beams. Each training example for the

AdaBoost algorithm consists of one laser observation and

its classification. Throughout this paper we assume that the

classification of the training examples is given in advance.

The single-valued features used in the Adaboost algorithm are

geometrical features used for shape analysis. The features must

be rotationally invariant to make the classification of a pose

dependent only on the (x,y)-position of the robot and not of

its orientation. We define a feature f as a function that takes

as argument one observation o ∈ O and returns a real value:

f (o) ∈ �. Compared to the features employed by Martı́nez

Mozos et al. [10], we use an extended feature-set additionally

containing the features shown in Table I. In our practical

experiments we found out that these additional features greatly

improve the robustness of the resulting classifier.
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TABLE I

New Laser Features

1) Average and standard deviation of the fraction between the
length of two consecutive beams.

2) Average and standard deviation of the fraction between the
length of two consecutive beams divided by the maximum
beam length.

3) Circularity. Let P be the perimeter of the area covered by the
beams and A be the area covered by the beams. The circularity
is defined as P2/A.

4) Average and standard deviation of the distance from the cen-
troid of A to the shape boundary of A, divided by the maximum
distance to the shape boundary.

5) Number of gaps. Two consecutive beams form a gap if the
fraction between the first and the second is smaller than a
threshold.

6) Kurtosis. The kurtosis is defined as

∑N
i=1 (length(beami) − l)4

N · σ4 − 3

where l is the average beam length and σ the corresponding
standard deviation.

V. Probabilistic Relaxation Labeling

One of the key problems that need to be solved in order

to learn accurate topological maps, in which the nodes cor-

respond to the individual rooms an the environment, is to

eliminate classification errors. In this section, we apply the

probabilistic relaxation labeling, which has been introduced by

Rosenfeld et al. [13], to smooth the AdaBoost classifications

based on neighborhood relations.

Probabilistic relaxation labeling is defined as follows. Let

G = (V,E) be a graph consisting of nodes V = {v1, . . . , vN}

and edges E ⊆ V × V. Let furthermore L = {l1, . . . , lL} be a

set of labels. We assume that every node vi stores a probability

distribution about its label which is represented by a histogram

Pi. Each bin pi(l) of that histogram stores the probability that

the node vi has the label l. Thus,
∑L

l=1 pi(l) = 1.

For each node vi, N(vi) ⊂ V denotes its neighborhood

which consists of the nodes v j � vi that are connected to

vi. Each neighborhood relation is represented by two values.

Whereas the first one describes the compatibility between the

labels of two nodes, the second one represents the influence

between the two nodes. The term R = {ri j(l, l′) | v j ∈ N(vi)}

defines the compatibility coefficients between the label l of

node vi and the label l′ of v j. And C = {ci j | v j ∈ N(vi)} is the

set of weights indicating the influence of node v j on node vi.

Given an initial estimation for the probability distribution

over labels p(0)
i (l) for the node vi, the probabilistic relaxation

method iteratively computes estimates p(r)
i (l), r = 1, 2, . . . ,

based on the initial probabilities p(0)
i (l), the compatibility

coefficients R, and the weights C in the form

p(r+1)
i (l) =

p(r)
i (l)
[
1 + q(r)

i (l)
]

∑L
l′=1 p(r)

i (l′)
[
1 + q(r)

i (l′)
] , (3)

where

q(r)
i (l) =

M∑
j=1

ci j

⎡⎢⎢⎢⎢⎢⎣
L∑

l′=1

ri j(l, l
′)p(r)

j (l′)

⎤⎥⎥⎥⎥⎥⎦ . (4)

Note that the compatibility coefficients ri j(l, l′) ∈ [−1, 1] do

not need to be symmetric. A value ri j(l, l′) close to −1 indicates

that label l′ is unlikely at node v j when label l occurs at node

vi, whereas values close to 1 indicate the opposite. A value

of exactly −1 indicates that the relation is not possible and a

value of exactly 1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smoothing

but does not specify how the compatibility coefficients are

computed. In this work, we apply the coefficients as defined

by Yamamoto [20]

ri j(l, l
′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−pi(l)

(
1 −

pi(l)
pi j(l|l′)

)
if pi(l) < pi j(l | l′)

pi j(l|l′)
pi(l)
− 1 otherwise,

(5)

where pi j(l | l′) is the conditional probability that node vi

has label l given that node v j ∈ N(vi) has label l′. Each of

the values pi(l) and pi j(l | l′) are pre-calculated only once and

remain the same during the iterations of the relaxation process.

Thus, the coefficients R remain the same as well.

So far we described the general method for relaxation

labeling. It remains to describe how we apply this method

for spatial smoothing of the classifications obtained by our

AdaBoost classifier. To learn a topological map, we assume a

given two-dimensional occupancy grid map in which each cell

m(x,y) stores the probability that it is occupied. We furthermore

consider the eight-connected graph induced by such a grid.

Let vi = v(x,y) be a node corresponding to a cell m(x,y) from

the map. Then we define a neighborhood N8(v(x,y)) using the

8-connected cells to v(x,y) as described in [4].

For the initial probabilities p(0)
(x,y)(l), we use the output z of

the classifier as described in Section III. Our set of labels

is L = {corridor, room, doorway,wall}. For each node v(x,y)
in the free space of the occupancy grid map, we calculate

the expected laser scan by ray-casting in the map. We then

classify the observation and obtain a probability distribution

z over all the possible places according to Equation (2).

The classification output z for each pose (x, y) is used to

initialize the probability distribution P(0)
(x,y) of node v(x,y). For

the nodes lying in the free space, the probability p(0)
(x,y)(wall)

of being a wall is initialized with 0. Accordingly, the nodes

corresponding to occupied cells in the map are initialized with

p(0)
(x,y)(wall) = 1.

Each of the weights ci j ∈ C is initialized with the value 1
8 ,

indicating that all the eight neighbors v j of node vi are equally

important. The compatibility coefficients are calculated using

Equation (5). The values pi(l) and pi j(l | l′) are obtained from

statistics in the given (occupancy grid) map corresponding to

the training data as will be described in Section VII.

VI. Region Extraction and TopologicalMapping

We define a region λl on a adjacency graph A as a set

of 8-connected nodes with the same label l. For each label
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l ∈ {corridor, room, doorway}, regions are extracted from

the adjacency graph using the algorithm by Rosenfeld and

Pfaltz [14]. Each region λl is assigned a different identifier.

The connections between regions are extracted using a similar

algorithm [4]. Finally, a topological graph T = (VT ,ET ) is

constructed in which each node vi ∈ VT represents a region

and each edge es ∈ ET represents a connection. Additionally

we add to each node vi information about the properties of

the region λl which represents: area, centroid, and major and

minor axis of the ellipse approximation of λl. The major and

minor axis are vectors which represent the elongation of the

region and its orientation. The topological graph, together with

the region properties form the final topological map. We finally

apply a heuristic region correction to the topological map to

increase the classification rate:

1) We mark each region corresponding to a room or a

corridor whose size does not exceed a given threshold of

1m2 compared to the training set as classification error

and assign the label of one of its connected regions.

2) We mark each region labeled as doorway whose size

does not exceed a given threshold of 0.1m2 square

meters or that is connected to only one region as false

classification and assign the label of one of its connected

regions.

VII. Experiments

The approach described above has been implemented and

tested using occupancy maps obtained from real environments.

The laser range data used for the training and classification

were simulated using the Carnegie Mellon Robot Navigation

Toolkit (CARMEN) [11]. The goal of the experiments is to

demonstrate that we can construct a semantic-topological map

of typical indoor environments using only laser range data.

Additionally, we analyze whether our method can be used

to create a topological map of an environment for which

no training data were available. Furthermore, we analyze the

improvement of the sequential AdaBoost classifier using our

new set of features.

A. Indoor Environments

The first experiment was performed using data obtained in

the office environment of building 79 at the University of

Freiburg. This environment contains rooms, doorways and a

corridor, which has a length of approximately 22m. For the

sake of clarity we give the result of the obtained classification

by separating the environment into two parts. The left half of

the environment contains the poses used as training examples

(see Figure 2(a)), and the right half of the environment

was used for test classification and for the topological map

creation. We used the sequential classifier corridor-room which

correctly classifies 97.27% of the test examples. The clas-

sification is depicted as colors/grey levels in Figure 2(b).

After the sequential classification, the probabilistic relaxation

method explained in Section V is applied for 50 iterations.

This method generates more compact regions and eliminates

noise. The result is illustrated in the Figure 2(c). Finally,

(a) Training map (left half) and test map (right half)

(b) Sequential classification (c) Incorrect regions

Door 1

Corridor

Room 4

Door 2 Door 3

Room 2Room 1

Door 4 Door 5 Door 6

Room 3 Room 5

(d) Resulting topological map

corridor room doorway

Fig. 2. This figure shows (a) the training and test map of the building 79 at
the University of Freiburg, (b) the result of applying the sequential AdaBoost
with a classification rate of 97.27%, (c) the result of applying relaxation and
the detection of incorrect labeled regions (marked with circles), and (d) the
final topological map with the corresponding regions.

the topological map is created using the connections between

regions. As can be seen in Figure 2(c), some regions detected

as doorways (marked with circles) do not correspond to real

doorways. After applying the steps described in Section VI on

the corresponding topological map, these false doorways are

eliminated. Furthermore, the two left rooms situated above the

corridor are detected as only one region. That is due to the

fact that the doorway in between was not completely detected.

Thus, the two rooms remain connected and are classified

as only one region. The final topological map, depicted in

Figure 2(d), has a final classification rate of 98.95% of the

data points.

In a second experiment we created a topological map of

the right part of the office environment of building 52 at

the University of Freiburg (see Figure 3(a)). The length of

the corridor in this environment is approximately 20m. After

applying the sequential AdaBoost classifier room-corridor, the

classification of the test set was 97%. Like in the previous

experiment, we applied the relaxation process for 50 iterations

as well as the operations for region correction. The final result
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(a) Training map (left half) and test map (right half)

(b) Sequential classification (c) Incorrect regions

Door 4Door 3

Room 4 Room 5

Corridor

Door 2Door 1

Room 2Room 1

Door 6
Room 3

Door 5

(d) Final topological map

corridor room doorway

Fig. 3. This figure shows (a) the training and test map of the building 52 at
the University of Freiburg; (b) the result of applying the sequential AdaBoost
with a classification rate of 97%, (c) the result of applying relaxation and the
detection of incorrect labeled regions (marked with circles), and (d) the final
topological map with the corresponding regions.

gives a classification rate of 98.66% of the data points. The

different steps of the process are illustrated as colors/grey

levels in Figure 3. As opposed to the previous experiment, the

doorway between the two right-most rooms under the corridor

is correctly detected (Figure 3(c)). Therefore, the rooms are

labeled as two different regions in the final topological map.

B. Application to a New and Unknown Indoor Environment

This experiment is designed to analyze whether our ap-

proach can be used to create a topological map of a new

environment from which no training data were available. To

carry out the experiment we trained a sequential AdaBoost

classifier using the training examples of the maps shown in

Figure 2 and Figure 3 with different scales. In this way,

we obtained a classifier with a better generalization. The

resulting classifier was then evaluated on scans simulated in

the map denoted as “SDR site B” in Radish [5]. This map

represents an empty building in Virginia, USA. The corridor

is approx. 26 meters long. The whole process for obtaining the

TABLE II

Classification results of our feature set compared to the original feature

set proposed byMartı́nezMozos et al. [10].

Classifier Sequence Our feature set [%] Original feature set [%]
room-door 96.94 93.94

room-corridor 97.26 93.31
corridor-room 97.27 93.16
corridor-door 87.73 80.10
door-corridor 87.21 80.10

door-room 86.60 80.49

topological map is depicted in Figure 4. We use the sequence

corridor-doorway which gives a first classification of 92.36%.

As can be seen in Figure 4(d), rooms number 11 and 30

are originally part of the corridor, and thus falsely classified.

Moreover, the corridor is detected as only one region, although

humans potentially would prefer to separate it into six different

corridors: four horizontal and two vertical ones. Doorways are

very difficult to detect by the sequential classifier. The majority

of poses detected as doorways dissappear after the relaxation

process because they are very sparse. The main reason for the

problem of doorway detection is that the maps have different

sizes and resolutions, and the features are not scale invariant.

In the final topological map, 96.94% of the data points are

correctly classified.

We also analyzed the results obtained without applying

the relaxation process. This had several effects. First, omit-

ting the relaxation procedure reduces the classification rate.

Furthermore, the finally obtained regions typically are more

sparse and do not represent the original ones as well as with

relaxation. Finally, omitting the relaxation procedure increases

the number of errors in the resulting topological map. For

example, the map for the building in Virginia contained four

incorrect nodes without relaxation, whereas there were only

two incorrect nodes when we used the probabilistic relaxation.

C. Comparison with previous approaches

In this final experiment, we compare our feature set de-

scribed in Section IV with the one proposed by Martı́nez

Mozos et al. [10]. For this purpose, we trained a sequential

AdaBoost classifier for each of the feature sets using the

training set shown in Figure 2(a). The different sequential clas-

sifiers were then applied to the test set depicted in Figure 2(b).

The obtained classification results are shown in Table II. As

can be seen, our extended feature-set provides better results

in all of the experiments.

VIII. Conclusions

In this paper, we presented a novel approach to create

topological maps from indoor environments. Our approach

applies AdaBoost to learn a strong classifier for categorizing

places into semantic classes such as rooms, doorways, and cor-

ridors. We then apply a probabilistic relaxation process on the

resulting classifications to reduce classification errors. Finally,

we extract regions and their connections. The advantage of this

approach is that the nodes of the resulting graph correspond

to the individual semantic regions.
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(a) Original map

(b) Sequential Adaboost classification

(c) Relaxation and region correction

R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16

R 29

R 36

R 38

CORRIDOR

R 6R 1 R 2 R 5R 4R 3

R 39 R 40 R 42 R 43 R 44 R 45R 41

CORRIDOR

CORRIDOR

CORRIDOR

R 21 R 22 R 23 R 24 R 25R 17 R 18 R 19 R 20

R 31 R 32 R 33 R 34 R 35R 26 R 27 R 28
R 30

R 37

R 46

(d) Final topological map

corridor room doorway

Fig. 4. This figure shows (a) the original map of the building, (b) the
results of applying the sequential AdaBoost classifier with a classification
rate of 92.36%, (c) the resulting classification after the relaxation an region
correction, and (d) the final topological map with semantic information. The
regions are omitted in each node. The rooms are numbered left to right and top
to bottom with respect the map in (a). For the sake of clarity, the corridor-node
is drawn maintaining part of its region structure.

Our approach has been implemented and evaluated on vari-

ous maps from real-world environments. Experiments demon-

strate that our approach is well-suited to create topological

maps from indoor environments even without training the clas-

sifier for each environment. Furthermore, we presented results

demonstrating that the features we applied for place labeling

yield better results than those used in previous approaches.
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