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Zusammenfassung

Innenumgebungen kénnen normalerweise in Orte verscheedemktionalitat un-
terteilt werden, wie etwa Korridore, RAume oder Turdurclygd Die Fahigkeit
solch semantische Kategorien aus Sensordaten zu lermedglecht einem Robo-
ter die Umgebungsreprésentation zu erweitern und seinig/kegten zu verbessern.
So konnen beispielsweise natlrlichsprachliche AusdriwleeetwaKorridor oder
Raum dazu verwendet werden um die Position des Roboters in gihetiveren
Weise mitzuteilen. Andere Aufgaben, wie Exploration odekéalisierung, kon-
nen durch den Roboter ebenfalls besser bewaltigt werdem dabei semantische
Informationen bertcksichtigt werden.

In dieser Doktorarbeit wird ein Verfahren vorgestellt, @@sem mobilen Ro-
boter ermdglicht, verschiedenen Orten in Innenumgebursggnantische Kate-
gorien zuzuordnen und die Umgebungsreprasentation digsk thformation zu
erweitern. Die Kernidee dabei ist, die Position des Rolsotlerrch die aktuellen
Beobachtungen des Roboters zu klassifizieren. Die Beadlvagéin, die wir in
der vorliegenden Arbeit nutzen werden, sind die Abstandsm&yen eines Laser-
scanners. Aus jedem Scan wird eine Menge von Merkmalenhegitawelche
Informationen tber die geometrischen Eigenschaften dess@n dieser Position
tragen. Der Scan wird dann aufgrund dieser Merkmale in dispeechende se-
mantische Kategorie eingeteilt. Das Ergebnis der Klasgibk ist eine Wahr-
scheinlichkeitsverteilung tber der Menge mdoglicher sdrselmer Klassen. Diese
wahrscheinlichkeitstheoretische Darstellung erlaulbtresswveitere probabilistische
Techniken einzusetzen, um die Klassifikation zu verbesaerd somit die An-
zahl an Fehlern zu verringern. Wir werden auch eine Erwgigdes Verfahrens
vorstellen, die es dem Roboter ermoglicht andere Beobaghimodalitaten, wie
etwa Kamerabilder, in den Klassifikationsprozess zu imegn.

Zusatzlich stellen wir in dieser Arbeit verschiedene Andiamgen des obi-
gen Verfahrens im Bereich der Robotik vor. Zunachst werdirz@igen, wie wir
semantische Informationen dazu verwenden kdnnen, tojsology Karten von In-
nenumgebungen zu erstellen. In einer zweiten Anwendutigrsteir eine Meth-
ode vor, welche die Ubergange zwischen verschiedenen @rtBatracht zieht,
um die Trajektorie eines mobilen Roboters zu klassifizierBndem kann durch
Bericksichtigung semantischer Information die von eineshd®er benétigte Zeit
fur Explorations- und Lokalisierungsaufgaben verringeetden. Die vorliegende
Arbeit wird solche Verbesserungen aufzeigen. Schlief@teien wir die seman-



tische Klassifikation als Teil eines Robotersystems vas,dizu ausgelegt ist, mit
Menschen in natlrlicher Sprache zu kommunizieren.



Summary

Indoor environments can typically be divided into placeghvdifferent function-
alities like corridors, rooms or doorways. The ability tade such semantic cat-
egories from sensor data enables a mobile robot to extencefitesentation of
the environment, and to improve its capabilites. As an exemmatural language
terms likecorridor or roomcan be used to communicate the position of the robot
in a more intuitive way. Other tasks, like exploration ordbzation, can also be
carried out by the robot in a better way when semantic infdionas taken into
account.

In this thesis, we present a method that enables a mobilé tolatassify the
different places of indoor environments into semantic classesthen use this in-
formation to extend its representations of the environsiefihe main idea is to
classify the position of the robot based on the current olasiens taken by the
robot. In this work, we use as main observations the scarsnaut from a laser
range sensor. Each scan is represented by a set of featatentiode the geomet-
rical properties of the current position. These featuredfaen used to classify the
scan into the corresponding semantic class. The outpuedfléssification is rep-
resented by a probability distribution over the set of gudessemantic classes. This
probabilistic representation permits us to apply furthebpbilistic techniques to
improve the final classification, reducing the number of irroNVe also present
an extension which enables the robot to include other typebgervations in the
classification, like camera images.

This work additionally introduces several applicationshaf previous approach
in different robotic tasks. First, we will show how the semantioiimfation can be
used to extract topological maps from indoor environmenitsa second appli-
cation, we present a method that incorporates transitietsden diferent places
when classifying a trajectory taken by a mobile robot. I ai$o be shown that the
semantic information can reduce the time needed by the inkmtploration and
localization tasks. Finally, we present the semantic dlaaton of places as part
of an integrated robotic system designed for interactinttp Wiimans using natural
language.
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Chapter 1

Introduction

1.1 Semantic Labeling of Places in Indoor Environments

Building accurate maps of indoor environments is one of yipécal problems in
mobile robotics. In this task, a mobile robot moves alon@gettory while gather-
ing information with sensors. This information is then usedonstruct the map.
Typical maps represent the parts in the environment whigloecupied by objects,
as for example occupancy grid mdfes, 1989; Moravec, 1938 The maps are
then used for localization and navigation tasks.

The problem of how to augment such maps by adding semanticwation has
been of increasing interest during the last years. For aflapplications, robots
can improve their service if they are able to recognize @acel distinguish them.
A robot that possesses semantic information about the tiypces can enrich its
human-robot communication capabilities and easily beusstd, for example, to
“open the door to the corridor.” The semantic information edditionally augment
the abilities of a robot in other tasks such as localizatioexploration.

In this dissertation, we consider the problem of semamyicahssifying the
different locations of indoor environments using a mobile robh example is
given in Figure 1.1. The top image shows the occupancy magsmonding to
the ground floor of the building 52 at the University of Fretpu In this map,
only information about occupied and free space is given. &l@y some natural
divisions can be extracted from this environment, as fongda rooms, doorways
and a corridor. These divisions are depicted in the bottoagamof Figure 1.1.
Using this information, the robot can communicate its posiin a more natural
way saying, for instance, that it is placed “in the corritlar, “in the doorway
leading to the corridor.” It seems clear that communicaienomes more human-
friendly.

The process of applying a term to some division of the mapde &hown
as asemantic labelingof the map. In this labeling process, the terms refer to
semantic expressions that relate each division of the msqnb@ place or objective
situation. For example, a corridor implies a place which camicates dierent
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I Corridor N Room Doorway

Figure 1.1: The top image shows the occupancy grid map gonesng to the
ground floor of the building 52 at the University of Freibuf§ome natural divi-
sions can be extracted from this environment, as for examgams, doorways,
and a corridor. This is shown in the bottom image.
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rooms. Furthermore, doorways indicate a transition betvte® different rooms,
or between a room and a corridor. Therefore, semantic laiml®nly represent
places but also possibléfardances.

One of the main questions that arrises when doing semaiiiding is how
a mobile robot can recognize thdterent places of an indoor environment. This
question, at the same time, leads us to the problem of fintbim@dequate charac-
teristics or features of each place that can be used to rexiyn

The work presented in this thesis present$edent solutions to the previous
problems. We introduce novel methods for the semantic iladpeif places in in-
door environments using autonomous mobile robots. Sombesfet techniques
allow us, at the same time, to select the features that casdzkto best character-
ize each place.

The first contribution of this work is a supervised methodeolasn AbaBoost
to assign semantic labels to thefdrent places in indoor environments using a
mobile robot. The main idea is to classify each pose of a raaioibot into one
of the semantic classes according to the laser range oliseriiae robot gathered
at that pose. The classification is carried out using gedcaéfieatures extracted
from the laser beams. Additionally, the boosting approdtdwaus to determine
which are the most informative features used to recognizk pkace.

The above method is additionally extended for the extractibtopological
maps from indoor environments. The key idea is to apply theaseic classifica-
tion to all possible poses of the robot in a map, obtainingrapete classification
of the free spaces. Neighboring poses with similar clasditin are then grouped
into regions, which form the fierent nodes in the final a topological map. Pre-
vious to the grouping, a filtered method is applied that takes account spatial
dependencies betweerftérent labels.

The previous two methods cover the semantic classificatfaimeo different
poses of a mobile robot, but they do not take into account theement of the
robot along a trajectory. When operating in indoor envirenis, the robots usually
have a moderate velocity and a relatively continuous mowmeniehat means, that
observations obtained by a mobile robot at nearby poseyically very similar.
Based on this assumptions, we present a method that takeadodunt previous
classifications when classifying a new pose of a mobile rethamtg a trajectory
using hidden Markov models. The approach also includegrimdtion from other
sensors rather than lasers. In particular, we use infoomadf objects extracted
from images to extend the classification of places. In thig,wee are able to
increase the number of labels to places such as kitchenial@iog dfices, and
seminar room.

The semantic labeling can be applied not only to improve tin@dn-robot
communication, but also to better carry out some other péasks for autonomous
mobile robots. A further contribution of this work presetfie exploration of en-
vironments with a team of robots using place information. Wileshow how the
semantic labeling of places can improve the distributiothefrobots during the
exploration. The main idea here is that places as corriderdetter exploration
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targets as they lead to other rooms. On a second applicati®nyill see how to
accelerate the localization process of a single robot usiaglassification of the
different rooms.

The above mentioned techniques are used to augment the migesanviron-
ments with semantic information. However, theaBoost-based classifiers can
also be applied to include semantic information in sensta.dm this work, we
will show an approach to label each of the beams of a laser 3¢@main idea is
to assign each beam the class of the object it hits. In thig wee restrict the clas-
sification to the labelgpersonandnon-personalthough the method can be easily
extended to use additional labels.

Finally, in this thesis we present the sematic labeling afgsoas part of a high
level conceptual representation of indoor environmentsclvwe callmulti-layer
conceptual mapThis representation extends the semantic classificafiptaoes
adding upper layers which include more complex concepéuais as, for example,
living rooms. The terms not only represent places but algectdy as TV sets or
couches, and are used to create a human-friendly dialogie witeracting with
people.

The rest of this thesis is organized as follows. Chapter 8gan introduction
to supervised learning, and presents some of the methodslines® in the pos-
terior chapters. Chapter 3 presents the approach for semabeling of places
using range data. The extraction of topological maps fraodn environments is
described in Chapter 4. In Chapter 5, we present the classificof trajectories
using hidden Markov models. The speeding-up of multi-raxptioration, and sin-
gle robot localization using semantic place informatiodescribed in Chapter 6.
In Chapter 7, we explain how add semantic information to jpnity sensor data.
Chapter 8 gives an overview of the multi-layer conceptuatiehdor indoor envi-
ronments. Finally, in Chapter 9 we present conclusions ath@ucomplete work
presented in this dissertation.

1.2 Publications

The following is a list of publications derived from the wopkesented in this
thesis:

Journals

e Andrzej Pronobis, Oscar Martinez Mozos, and Barbara CapBemantic
Place Classification Integrating Multiple Sensory Modledit Robotics and
Autonomous Systerm008. Under review.

e Hendrik Zender, Oscar Martinez Mozos, Patric Jensfeltyi&ks M. Krui-
jff and Wolfram Burgard. Conceptual Spatial Representationgnidoor
Mobile Robots. Robotics and Autonomous Systen2908. Accepted for
publication.
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e Cyrill Stachniss, Oscar Martinez Mozos, and Wolfram BudgaEfficient
Exploration of Unknown Indoor Environments using a Team akbile Robots.
Annals of Mathematics and Artificial Intelligenc2008. Accepted for pub-
lication.

¢ Oscar Martinez Mozos, Rudolph Triebel, Patric JensfeltelAXottmann,
and Wolfram Burgard. Supervised semantic labeling of dacsing infor-
mation extracted from sensor daRobotics and Autonomous Systeivisl-
ume 55, issue 5, pp. 391-402. May, 2007.

e Cyrill Stachniss, Giorgio Grisetti, Oscar Martinez Mozasg Wolfram Bur-
gard. Hficiently Learning Metric and Topological Maps with Autonouso
Service Robotsit - Information TechnologyVolume 49, issue 4, pp. 232-
237. 2007.

Book Chapters

¢ Rudolph Triebel, Oscar Martinez Mozos, and Wolfram Burgdtdlational
Learning in Mobile Robotics: An Application to Semantic leding of Ob-
jects in 2D and 3D Environment MapStudies in Classification, Data Anal-
ysis, and Knowledge Organizatiorspringer, 2007. Accepted for publica-
tion.

e Oscar Martinez Mozos, Cyrill Stachniss, Axel Rottmann aralfé&m Bur-
gard. Using AdaBoost for Place Labeling and Topological NBajding.
Robotics Research: Results of the 12th International SgiapoISRRS.
Thrun, R. Brooks, H. Durrant-Whyte (Eds.), Springer Traot®\dvanced
Robotics, Vol 28, pp 453-472, 2007.

Conferences

e Andrzej Pronobis, Oscar Martinez Mozos, and Barbara Caj@\d/-based
Discriminative Accumulation Scheme for Place Recogniti®itoceedings
of the IEEE International Conference on Robotics and AutamngICRA)
Pasadena, California, USA. May, 2008. Accepted.

e Hendrik Zender, Patric Jensfeld, Oscar Martinez MozosrtGkea M. Krui-
jff, and Wolfram Burgard. An Integrated Robotic Systen for Bpatnder-
standing and Situated Interaction in Indoor Environmelm$®roceedings of
the Conference on Attificial Intelligence (AAApp 1584-1589. Vancouver,
British Columbia. July, 2007.

e Kai O. Arras, Oscar Martinez Mozos, and Wolfram Burgard.ng€oosted
Features for the Detection of People in 2D Range DateProceedings of
the IEEE International Conference on Robotics and AutoomatiCRA) pp.
3402-3407. Rome, Italy. April, 2007.
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e Rudolph Triebel, Richard Schmidt, Oscar Martinez Mozos] Wolfram
Burgard. Instace-based AMN Classification for Improvedd€abRecogni-
tion in 2D and 3D Laser Range Dat# Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAPp. 2225-2230. Hyder-
abad, India. January, 2007.

o Oscar Martinez Mozos and Wolfram Burgard. Supervised liegrof Topo-
logical Maps using Semantic Information Extracted from gamata. In
Proceedings of the IEERSJ International Conference on Intelligent Robots
and Systems (IRO)p. 2772-2777. Beijing, China. October, 2006.

e Cyrill Stachniss, Oscar Martinez Mozos, and Wolfram Builga8peeding-
Up Multi-Robot Exploration by Considering Semantic Plac®imation.In
Proceedings of the IEEE International Conference on Rabaind Automa-
tion (ICRA) pp. 1692-1697. Orlando, FL, USA, May, 2006.

¢ Axel Rottmann, Oscar Martinez Mozos, Cyrill Stachniss, Wradfram Bur-
gard. Semantic Place Classification of Indoor Environmevita Mobile
Robots using Boostingn Proceedings of the National Conference on Arti-
ficial Intelligence (AAAL)pp. 1306-1311. Pittsburgh, PA, USA. July, 2005.

e Oscar Martinez Mozos, Cyrill Stachniss, and Wolfram Bulg&upervised
Learning of Places from Range Data using AdaBodst.Proceedings of
the IEEE International Conference on Robotics and AutoomaiCRA) pp.
1742-1747. Barcelona, Spain. April, 2005nalist best student papet

Workshops and Symposia

o Oscar Martinez Mozos, Patric Jensfeld, Hendrik ZenderrtGlea M. Krui-
jff, and Wolfram Burgard. An Integrated System for Conceptpati@l Rep-
resentations of Indoor Environments for Mobile Robd&soceedings of the
IEEERRSJ IROS 2007 Workshop: From Sensors to Human Spatial Cisncep
(IROS) pp 25-32. San Diego, CA, USA. November, 2007.

e Oscar Martinez Mozos, Axel Rottmann, Rudolph Triebel, iPatensfelt,
and Wolfram Burgard. Semantic Labeling of Places usingrin&iion Ex-
tracted from Laser and Vision Sensor DdtaProceedings of the IEERESJ
IROS 2006 Workshop: From Sensors to Human Spatial Cond&S) pp.
1742-1747. Beijing, China. October, 2006.
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Chapter 2

Supervised Learning

In this chapter we give a short introduction to supervisednmg and to the prob-
ably approximately correct (PAC) framework. We then prédeio methods for
classification. The first method, called#BoosrT, is based on boosting. The sec-
ond one is an implementation of a decision list. Both apgreaavill be often used
in this thesis.

2.1 Introduction

In supervised learning we are interested in finding a functimt best classifies
a set of given examples into a set of classes. This functidnbeiused later to
classify new examples, which in general aréfatient from the given ones. This
process is also calledlearning task[Mitchell, 1997 and is described as follows.

There is some space of possible instangesver which diferent target con-
cepts or classeS can be defined. Each target concet C corresponds to some
subset ofX. Alternatively, a function can be used which maps each m&ta to
some concept. An example of such function is the boolean-valued functen
fined asc: X — {0, 1}. Here, if one instanc& € X is a positive example df, then
we will write ¢(X) = 1; andc(x) = 0 if X is a negative example. Additionally, each
instancex € X is described by a set of attributes or features. We will ¢edlget of
features thdeature vector fe F, whereF is the set of all possible feature vectors.

We additionally assume thatfterent instances iX may be encountered with
different frequencies. A convenient way to model this is to asstimat there is
some unknown probability distributiof® that defines the probability of encoun-
tering each instance K. Notice thatD says nothing about whethgiis a positive
or negative example of some concept. It only determinesriblegbility thatx will
be encountered.

The setX of all possible instances may be large or even infinite, atdining
a training set with all possible instances may be imposdineghe majority set
of problems. For this reason, a subSet X is usually used during the learning
process. The s& must be sfficiently representative of the whole set of instances



10 Chapter 2. Supervised Learning

X. Some guidelines for obtaining an adequate training segiges in[Witten and
Frank, 2000.

Given a sefS of training examples corresponding to the target concepie
need to apply a learning algorithin which will select the hypotheskswhich best
approximates the target conceptLet H be set of all possible hypotheses that the
learnerL may consider regarding the identity of the target conce@imilarly to
the case of target concepts, we can represent each hypdthedil as a boolean-
valued function defined ovet: h : X — {0, 1}. The goal of the learner is then to
find a hypothesi$ such thath(x) = c(x) for all x € X. On one hand, the learner
L must learn from a training s&, which is a subset oX. But on the other hand,
the target concept is defined over the whole st That means, that the output
h(x) generated by the learner must always be considered as aoxapation of
the target concem(X). It may be possible thdi(x) = c(x) Yx € X, but we can only
be sure of that whe8 = X. Finally, the hypotheses output by the learner will be
somehow used to create a classifier to classify new instancés

In summary, the goal of the learnktis to find a hypothesik that best approx-
imates the target conceptusing a set of training exampl& The question here
is, wether the hypothestswill be also a good approximation when using a set of
unseen examples. An answer to this question is given bynthective learning
assumption. Informally, any hypothesis found to approxerthe target function
well over a sifficiently large set of training examples will also approxien#tte
target function well over other unobserved examples.

Alternatively, we can face this question using the errohm ¢lassification for
the output hypothesis. For that, we can try to estimate the error in the classifica-
tion of the selected hypothediswith respect to new examples providing the error
of hin the training set. These two errors are formally defined#s\iis [Mitchell,
1997

True error The true error errgs(h) of hypothesish € H with respect to target
conceptc € C and distributionD is the probability thah will misclassify an
instancex € X drawn at random according 10

errorp(h) = szr)[C(X) # h(X)] . (2.1)

Training error The training error errgy(h), also called sample error, of hypothe-
sish with respect to target concepk C and training se§ is the fraction of
misclassified instancese S

errors(X) = |—é| Z 5(c(x), h(X), (2.2)

XeS

where
1 ifc(X) #h(X)

0 otherwise (2.3)

6(c(x), h(x)) = {
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Different statistical approximations can be used to calculaértie error pro-
vided the training error as shown[iMitchell, 1997 and[Witten and Frank, 2040

Another problem when selecting a hypothdsis its overfitting A hypothesis
h € H overfits the training exampleS if some other hypothesik’ that fits the
training examples less well actually performs better oherdntire sek, including
instances beyond the training set. In his book, Mitck&197 defines overfitting
as following

Overfitting Given a hypotheses spakk a hypothesié is said to overfit the train-
ing setS c X if there exists some alternative hypothesiss H, such that
h has smaller error thalf on S, buth’ has a smaller error thamover the
entire seiX of instances.

Different methods can be used to avoid overfitting as, for exampéea sep-
arate validation set of examples to modify the learned Hyg®s. For a further
discussion on this topic we refer the readefMitchell, 1997 and [Witten and
Frank, 2000.

2.2 PAC Learning

Some other important questions related to some specificifgatask are:

e Whatis the number of training examples needed to assuréhinaypothesis
output by the learner has a low true error?

e Can this number be bounded in some way?

e Can we bound the time the learner needs to output a hypothesis

These questions can be answered for certain sets of probkEntsthe proba-
bly approximately correct (PAC) framewofkaliant, 1984. The idea of the PAC
learnability is to characterize classes of target condéjtiscan be reliably learned
from a polynomial number of randomly drawn training examspind a polynomial
amount of computation. PAC learnability is defined formalf/follows

PAC learnability Consider a concept clagsover a set of instances of length
n, and a learnet using hypothesis spadé. C is PAC learnableby L using
H, if for all ¢ € C, distributionD overX, e such that O< € < 1/2, ands such
that 0< 6 < 1/2, the learneL will, with probability at least (+ 6), output a
hypothesi € H such as thagrrorp(h) < ¢, in time polynomial in Xe, 1/6,
n, andsiz€c).

Heren is the size of the feature vectdrrepresenting each instanges X. The
second space parametsiz€c), is the encoding length of the target
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The previous definition of PAC learning may appear at firsteocbncerned
only with the computational time, whereas we are usuallgrggted in the number
of training examples. However they are closely relatedain,fa typical approach
to show that some clagsof target concepts is PAC learnable, is to first demostrate
that each target concept C can be learned from a polynomial number of training
examples and then show that the processing time per examplsa polynomial
bounded.

A learnerL following the previous definition is also known asstiong PAC
learning algorithm On the other hand, @weak PAC learning algorithriis defined
analogously except that it is only required to satisfy thadition e > 1/2 — v,
wherey > 0 is either a constant, or decreases As Wherep is a polynomial in
the relevant parameters. A hypothesis learned from a we@ké&¥xning algorithm
is called aveak hypothesisThis term is also used for a hypothesis which performs
just slightly better than a random guessing, as we will sbeétext section.

Other various extensions and generalizations of the ba&® ¢dncept are
given by by Anthony and Bartlef1999, Haussle{1994, and Kearns and Vazi-
rani[1994.

2.3 Boosting

Boosting is a general method which attempts to improve tlcaracy of a given
learning algorithn{Freund and Schapire, 1999; Meir and Rétsch, 2003; Schapire,
2001. This approach has its roots in the PAC framework (see pusviBec-
tion 2.2).

Kearns and Valiant1988; 1994 were the first to pose the question of whether a
weak learning algorithm, which performs just slightly leetthan a random guess-
ing in the PAC model, can be combined into an arbitrarily aataistrong learning
algorithm. Later, Schapire199d demonstrated that any weak learning algorithm
can be diciently transformed or boosted into a strong learning atlgor.

The underlying idea of boosting is to combine a set of wealothgseshy, hy, . .., ht}
to form a strong hypothesiss such that the performance of the strong hypothesis
is better than the peformance of each of the single weak hgpih;. Formally

:
hs(X) = > wihe(). (2.4)
t=1

herew; denotes the weight of hypothegis Bothw; and the hypothesik; are to
be learned within the boosting procedure. The resultingngthypothesi$s has
the form of a weighted majority vote classifier.

Formally, boosting proceeds as follows: the boosting algor is provided
with a set of labeled training examples, (y1), ..., (Xn, Yn), Wherey; is the label
associated with instancg. On each round = 1,..., T, the boosting algorithm
devises a distributio®; over the set of examples, and requests (from an unspec-
ified oracle) a weak hypothests with low error & with respect toD;, where
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e = Prlh(x) # yi]. Thus, the distributiorD; specifies the relative importance
of each example for the current round. Afterounds, the booster must combine
the weak hypotheses into a strong one. The intuitive ideaasier the distribution
over the training examples in a way that increases the pilitlgadf the harder el-
ements, thus forcing the weak learner to generate new hgpeshthat make less
mistakes on these elements.

An important aspect related to boosting is dligng. Large part of the early
literature explain that boosting would not overfit even whising a large number
of rounds. However, simulations by Grove and Schuurnfa88d and Ratsclet
al. [2001] show that data sets with higher noise content could cleadywsoverfit-
ting effects.

2.3.1 ApaBoost

The AbaBoost algorithm, introduced by Freund and Schapi@99, is one of the
most popular boosting algorithms. Following the generadidf boosting, the Ba-
Boost algorithm takes as an input a training set of exampiesyt), ..., (Xn, YN)»
where eachy belongs to some domain spa¥eand each labg}; pertains to the
label setY. In the case of a binary classification we hawé|= 2. On each round
t=1,...,T, AbaBoosr calls a weak learning algorithm (weak learner) repeatedly
to select a weak hypothesis. This weak learner takes as thputaining set of
examples and outputs a weak hypothesis for their classificat

Unlike previous boosting algorithniEreund, 1993; 199&nd[Schapire, 1990
the AbaBoost algorithm needs no prior knowledge of the accuracies of teakw
hypotheses. Rather, it adapts to these accuracies andagenarweighted ma-
jority hypothesis in which the weight of each weak hypothésia function of its
accuracy.

The complete algorithm, presented by Freund and SchEi98H is described
in Figure 2.1. In this algorithm, the distributidd indicates the importance of the
examples at the begining of the training process and laierdontrolled by the
learner. This distribution can be set initially as the umifodistribution so that
D1(i) = 1/N, meaning that all examples have the same importance at tfireirog
On each round, the algorithm maintains a set of weigldg(i), . . ., D¢(N) over the
training examples and computes a distributignby normalizing these weights.
The distributionpy is fed to the weak learner which generates a hypothesisat,
hopefully, has a small error with respect to the distribug. The accuray of the
weak hypothesib; is measured by its error as

e=Pip [hO)#yl= > m(). (2.5)
izhe (%) 2Yi
Notice that the error is measured with respect to the digidh p; on which the

weak learner was trained. In practice, the weak learningrihgn may be able
to use the weightg; on the training examples. Alternatively, when this is not
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possible, a subset of the training examples can be sampteddiatg top;, and
these resampled examples can be used to train the weakrlearne

Using the new hypothests, the boosting algorithm generates the next weight
vector Di,1, and the process is repeated. Affeiterations, the final strong hy-
pothesishs is generated. The hypothesis combines the outputs of the weak
hypotheses using a weighted majority vote.

Freund and Schapifd 994 proved that, for binary classification problems, the
training error of the final hypothests generated by the #sBoost algorithm is
bounded by

T T
e<2' ]_[ Va(l-«) < exp[—zz yZJ, (2.6)
t=1 t=1

whereg = 1/2 — vy is the error of theth weak hypothesis. Since a hypothesis
that makes an entirely random guess has eri@ryl measures the accuracy of the
weak hypothesisx relative to random guessing. This bound shows that the final
training error drops exponentially if each of the weak hjieses is better than a
random guess.

2.3.2 Generalized AaBoost

An alernative version to the originalbABoost algorithm was introduced by Schapire
and Singef{1999. This version, called generalizedbABoost, presents several
improvements with respect the previous one. First, the viwalothesis can have
a range over alR rather than only two values. Second, in this version of the
algorithm the diferentay, which correspond to the weights of the final weak hy-
potheses, are left unspecified. The complete algorithmawstin Figure 2.2.
Schapire and Sing¢i999 also give a possible choice for the diferent weights
az as follows

1 1+
at = Eln(l—rt) ’ (27)

wherer; is chosen at each iteration so that its absolute vajus maximum ac-
cording to

N
re = Deyim(x). (2.8)
i=1

In their work, Schapire and SingEr999 present dierent versions of the gen-
eralized AaBoost algorithm together with some experimental comparison.



Section 2.3. Boosting 15

e |nput:
set ofN labeled examples(, y1), ..., (XN, YN),
wherey; = 1 if the examplex; is positive,
andy; = 0 if the examplex; is negative;
distributionD over theN examples;
weak learner,
integerT specifying number of iterations.

¢ Initialize the weight vectow; (i) = D,(i) fori = 1,...,N.

e Fort=1,...,T
1. Set i
wi(i)
N wi(j)
2. Train weak learner, providing it with the distributigmm and get back
hypothesidy : X — [0, 1].
3. Calculate the error df;

p(i) =

N
&= ) pe(i) Ie(x) — il
i=1

4, Set
€

T (l-a)

B
5. Set the new weights:
W1 (i) = wi)gr OO
e The final strong hypothesis is given by:

_[ 1 i3l (logZ)h(x) > 3 2L, log £
hs(x) = s t
0 otherwise

D

Figure 2.1: The AaBoost algorithm.
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e Input:
set ofN labeled examplesx(, y1), ..., (XN, YN)»
wherey; = 1 if the examplex; is positive,
andy; = -1 if the examplex; is negative;
weak learner;
integerT specifying number of iterations.

e Initialize the weightdD,(i) = 1/Nfori =1,...,N.
e Fort=1,...,T

1. Train the weak learner using distributi@q and get back a hypothesi
h : X —>R.

2. Choosex; € R.
3. Update:

S

Deai) = 20 exp(zztyi h(x))

whereZ; is a normalization factor so thék.; is a distribution

e The final strong hypothesis is given by:

;
hs(X) = sign[z atht(x)).
i=1

Figure 2.2: A generalized version of the#Boost algorithm.
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N N
Testy 0 Test, °. Valuey s
Yes Yes
Valuey Value,

Figure 2.3: Structure of a decision list.

2.4 Decision Lists

A decision list is an alternative way of constructing a diées It is based on

logical expressions of a restricted form, and consists a@rges of tests, each of
which is a conjunction of literalfRussell and Norvig, 2033 If a test succeeds
when applied to an example description, then the decissrsfiecifies the value
to be returned. If the test fails, processing continues Wighnext test in the list.
Figure 2.4 shows the structure of a decision list.

In this learning task we want to find a consistent decisianiith the training
data. This can be done using the algorithm of Figure 2.4. filnisedure repeatedly
finds a test that will agree exactly with some subset of theitrg setS. Once such
a test is found, it adds it to the decision list outputting ¥h&uie corresponding to
the class assigned to the subset. At the same time, the eesthat correspond to
the test are removed from the training set. This procespisated until there are
no more examples. The process shown in Figure 2.4 does nofysfiee method
to select the next test to add to the list. This selection défpend on the specific
task and on the implementation of thefdrent tests. Some examples of such
selection for some concrete tasks are shown by Russell andgN@003d, Viola
and Jone$2001, and Rottmanret al.[2005.
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e Input:
setS of training labeled examples,

e Do until S is empty

1. Select a test estthat matches a nonempty subSgts:of S such that
the examples of the subset are positive with respetietst

2. If the there is no suclhestthen returnfailure.

3. Output the valué&/alue corresponding to the label of the examples in
STest-

4. AddTestandValueto the decision list.

e Return the output valu€aluggs;.

Figure 2.4: Algorithm to learn the filerent tests and their positions inside the list.



Chapter 3

Semantic Learning of Places from
Range Data

3.1 Introduction

As we explained in the introductory section, building aedermaps of indoor en-
vironments is one of the typical problems in mobile robaoticsthis task, a mobile
robot moves along a trajectory while gathering informatidgth sensors. This in-
formation is then used to construct the map, and for nawigagind localization
tasks. However, little work have been done in the area of sdém@aapping.

In this chapter, we address the problem of assigning semktigls to loca-
tions of the environment using a mobile robot. Indoor envinents, like the one
depicted in the top image of Figure 1.1, can typically be dgoosed into areas
with different functionalities, such ashee rooms, corridors, hallways, or door-
ways. Generally, each of these places hadfermint structure. For example, the
bounding box of a corridor is usually longer than that of recand hallways. Fur-
thermore, rooms are typically smaller than hallways, alsd are more cluttered
than corridors or hallways. As an example, Figure 1.1 (loftshowed a typical
hand-labeled division of the environment into three pdesitegories of places.

The key idea presented in this chapter is to classify thetipasof the robot
based on the current scan obtained from the range sensarreRglL shows an
example of a range scan taken by a mobile robot in a corridibret@Gxamples for
typical range scans obtained in affice environment are shown in Figure 3.2.

The approach presented in this chapter uses thddost algorithm to boost
simple geometrical features from the scans into a strorggiflar. Each of this
features alone is indlicient for a reliable categorization of places. The features
are represented by a numerical value computed from the betm$aser range
scan as well as from a polygon representation of the covenrerl eSince Aa-
Boost provides only binary decisions, we determine the deciggiwiith the best
sequence of binary classifiers. Experimental results shiownis chapter illustrate
that the resulting classification system can determine ytpe of the place with
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Figure 3.1: Range scan obtained by a mobile robot in a carritioe image also
shows the complete map of the environment where the scanakes.t The scan
covers the complete 38@ield of view of the robot.

Figure 3.2: Example scans recorded in a room, a doorway, aodidor.

high classification rates. Moreover, results are presahtetrating that the result-
ing classifier can even be used in environments from whichraioihg data was
available.

Throughout this chapter we assume that the robot is equiwpiba laser range
scanner that covers 36€leld of view around the robot. However, common config-
urations on real mobile robots have only a laser covering ir8font of the robot.
We also present a solution for these cases.

The rest of the chapter is organized as follows. In the nestisewe describe
the particular implementation of thenABoost algorithm for place labeling. Sec-
tion 3.3 presents its extension to multiple classes. Se&id introduces the fea-
tures extracted from laser range scans. A solution to thelgmoof restricted field
of view is given in Section 3.5. In Section 3.6, experimenéslults are presented.
We discuss related work in Section 3.7. Finally, we conclindgection 3.8.
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3.2 Binary Classification Using AaBoost

The ApaBoosrt algorithm, introduced by Freund and Schapit894, is one of the
most popular boosting algorithms. Following the generadidf boosting, the Ba-
Boost algorithm takes as an input a training set of exampiesyt), ..., (Xn, YN)»
where eachy belongs to some domain spa¥eand each labe}; pertains to the
label setY. In the case of binary classification we havé |= 2. On each round
t=1,...,T, ApaBoosr calls a weak learning algorithm, calleceak learney re-
peatedly to select a weak hypothesis. This weak learnes k@ put the training
set of examples and outputs a weak hypothesis for theirifitag®on.

The key idea of the algorithm is to maintain a weight disttiitou D over the
training examples. The distributioD indicates the importance of the examples
at the beginning of the training process and later it is ailel by the learner.
This distribution can be set initially as the uniform distriion so thatD4(i) =
1/N, meaning that all examples have the same importance at ¢fenoey. Some
other initializations have provided good results, as the presented by Viola and
Joned2001].

Throughout this work we apply the generalized version o£Boost [Schapire
and Singer, 1999 which have several advantages and gives us de possilility o
calculating a confidence value for the final classificatiae (selow). More details
about this algorithm are given in Section 2.3.

The representation of the weak classifiers is done followhegdeas presented
by Viola and Jone$2001. This implementation restricts the weak classifiers to
depend only on single-valued featurgs Thus, each weak classifier has the form

o AL i pfi(X) < pjo;

hi() = { -1 otherwise (3.1)
whereé; is a threshold ang; is either—1 or 1 and represents the direction of the
inequality. The algorithm determines for each weak claassifj(x) the optimal
values foré; and pj, such that the number of misclassified training examples is
minimized

N
(pj65) = argmin>" |hi(%:) = Yal - (3.2)
(Pi.6) =1
The final generalized #sBoost algorithm modified for the concrete task of place
labeling given in Figure 3.3.

Using the generalized version of the#Boost algorithm shown in Figure 3.3,
and following the method suggested by Friedreaal.[200d, we can additionally
compute a confidence val@ € [0, 1] for a positive binary classification of a new
example as

eF (X

+ _ — — _
C'=Py=+1|x = T D

(3.3)
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e Input:
set ofN labeled examplesx(, y1), ..., (XN, YN)»
wherey; = 1 if the examplex; is positive,
andy; = -1 if the examplex is negative;
integerT specifying number of iterations.

e Initialize weightsD1(n) = % for positive examples, anB.(n) = %q for
negative examples, whetds the number of positive examples antdthe
number of negative ones.

e Fort=1,...,T

1. Normalize the weightB(n)

Dt(n)

D = —"
t(n) il\il Dt(l)

2. For each featuré; train a weak classifien; using the distributiorD.
3. For each classifidr; calculate

rj= ), Dyihi(x).

whereh;j(x,) € {1, +1}.
4. Choose the classifiéy that maximizesgr | and setl, r) = (hj,rj).
5. Update the weights

Dt+1(n) = Di(n) expEaiynhi(xa)),
wherea; = 3 log(ff).
e The final strong classifier is given by
hs(x) = sign(F(X)) ,
where

;
F(X) = Z aihi(X).
t=1

Figure 3.3: The generalized version of theaBoost algorithm for place labeling
using laser-based features.



Section 3.3. Multi-class Classification Using#Boost 23

Binary 1-Cf Binary 1-CF
Classifiery ————* - - .| Classifiery_;
Cf eha
Y Y

Zk Zlcfl

Figure 3.4: A decision list classifier férclasses using binary classifiers. The out-
put of each binary classifig contains the probability that the classified example
belongs to thé&-th class

whereF(X) is the output of the algorithm according to Figure 3.3. & ttxample
is classified as negative, a positive confidence value caalbelated as

Ct=Py=-1|X)=10-C" (3.4)

with

e—F(X)

C :P(y:—l|X):m.

(3.5)

3.3 Multi-class Classification Using AaBoost

The previous AaBoost algorithm was designed for binary classification problems.
To label places in the environment, however, we need th#atalhandle multiple
classes. A way to construct a multi-class classifier is taraye several binary clas-
sifiers into a decision list (Section 2.4). Each element chsalist represents one
binary classifier which determines if an example belongsn® specific class. In
addition, ech binary classifier outputs a confidence vaiuéor a positive classifi-
cation of its clas&. Figure 3.4 illustrates the structure of the probabiligiécision
list.

In the decision list, each test example is fed into the firshty classifier, which
outputs a confidence valug" for a positive classification. Then the example is
passed to the next binary classifier. This process is repeatd the last element
in the list. The complete output of the decision list is rey@reed by an histogram
z In this histogram, thé&-th bin stores the probability that the classified location
belongs to thé-th class according to the sequence of classifiers in thesidadist
(Figure 3.4). LeCy refer to the confidence value of theh binary classifier in our
decision list. Then, the probability that the location todiessified belongs to the
k-th class is given by thk-th bin of the histogranz computed as
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0.8
Z{k] 0.6 ¢
0.4
0.2}
0
123456
class (k)

Figure 3.5: An example of a classification output for the sieai list of Figure 3.4
using six classes.

k-1
2 = ¢ ]a-cp. (3.6)
j=1

whereas for the confidence val@x of the last bin (theK-th bin) holdsCk =
1 according to the structure of the decision list in Figuré. 3An example of a
histogram for six classes is illustrated in Figure 3.5

One important question in the context of a sequential dlass$s the order in
which the individual binary classifiers are arranged. Thikocan have a major in-
fluence on the overall classification performance, becawesmdividual classifiers
typically are not error-free and classify withfidirent accuracies.

In general, the problem of finding the optimal order of binalgssifiers that
minimizes the classification error is NP-hard. In this ckaphowever, we typi-
cally are confronted with a small number of classes and weeeaily enumerate
all potential permutations to determine the optimal segeerSince the first ele-
ment of such a sequential classifier processes more dataubaaquent elements,
it is typically a good strategy to order the classifiers irr@asing order according
to their training error rate. Compared to the optimal ordlee, classifier gener-
ated by this heuristic for an application with several aasserformed on average
only 1.3% worse as demonstrated by Rottm4B@05. In several situations, the
sequence generated by this heuristic turned out to be thealpine.

3.4 Simple Features from Sensor Range Data

In the previous section we described the key principles eftinBoost algorithm
for boosting simple features to strong classifiers. It rers#o describe the features
of the range scans used in the system. We assume that thesmaddut is equipped
with a 360 field of view range sensor. Each observation {by, ..., by_1} contains

a set of beamb;. Each beanty; consists of a tupleaf, d;) whereq; is the angle of
the beam relative to the robot adgdis the length of the beam.
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Each training example for thepABoost algorithm consists of one observation
zand its classificatioy. Thus, the set of training examples is given by

E = {(z,v)|yi € Y={RoomCorridor,...}}, 3.7)

whereY is the set of classes corresponding to the places we wantogmee.
Throughout this chapter we assume that the classificatitimeafaining examples
is given in advance. In practice this can be achieved by migriabeling places in
the map or by instructing the robot while it is exploring its/z#onment. The goal
is to learn a classifier that is able to generalize from thesiaihg examples and
that can classify so far unseen places in this environmeevem new ones.

As already mentioned, the method for place classificatidzaged on simple
geometrical features extracted from the range scans. Weheat simplebecause
they are single-valued features. All features are rotatiamvariant to make the
classification of a pose dependent only on the/)-position of the robot and not
of its orientation. Most of the features are standard gencadtfeatures often
used in shape analysi§onzalez and Wintz, 1987; Haralick and Shapiro, 1992;
Loncaric, 1998; O’'Rourke, 1998; Russ, 1992

We define a featuré as a function that takes as argument one observation and
returns a real valuef : Z — R, whereZ is the set of all possible observations.

Two sets of simple features are calculated for each obsenvakhe first ses
is calculated using the raw beamszinThe following is a list of the single-valued
features pertaining to this set:

1. The average flierence between the length of consecutive beams.

2. The standard deviation of thefldirence between the length of consecutive
beams.

3. Same as feature #1, but considerinfjedlent max-range values.
4. Same as feature #2, but considerinfjedent max-range values.
5. The average beam length.

6. The standard deviation of the beam length.

7. Number of gaps in the scan. Two consecutive beams buildpafdheir
difference is greater than a given thresholdfféent features are used for
different threshold values.

8. Number of beams lying on lines that are extracted fromahge scafSack
and Burgard, 2004

9. Euclidean distance between the two points corresporiditvgo consecutive
global minima.
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Figure 3.6: Example of polygon approximations of scansnasd in a room, a
doorway, and a corridor.

10.

11.

12.

13.
14.
15.

16.

The angular distance between the two points correspgrditwo consecu-
tive global minima.

Average of the relation between the length of two consexzbeams.

Standard deviation of the relation between the lengthwof consecutive
beams.

Average of normalized beam length.
Standard deviation of normalized beam length.
Number of relative gaps.

Kurtosis.

The second sét of features is calculated from a polygonal approximatgr)
of the area covered li The vertices of the closed polyg#iiz) correspond to the
coordinates of the end-points of each bdarof z relative to the robot:

P(Z) = {(di cosa;j, d; Sinozi) [i=0,....,M-1} (3.8)

As an example, the polygonal representations of the lasgeracans depicted
in Figure 3.2 are shown in Figure 3.6. The list of featuresazponding to the set
P is as following:

1.

2.

Area ofP(2).

Perimeter oP(2).

. Area ofP(2) divided by Perimeter oP(2).
. Mean distance between the centroid and the shape boundary

. Standard deviation of the distances between the cemtnoithe shape bound-

ary.
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Figure 3.7: Examples of features generated from laser daragly the average
distance between two consecutive beams, the perimeteeafréda covered by a
scan, and the mayor axis of the ellipse that approximatepdlygon described by
the scan. The laser beams cover a°3&€ld of view.

6.

10.

11.
12.
13.
14.
15.
16.
17.

Similarity invariant descriptors based in the Fouriangformation. We use
the first 200 descriptors.

Major axis Ma of the ellipse that approximateB(z) using the first two
Fourier codicients.

Minor axisMi of the ellipse that approximaf&(2) using the first two Fourier
codficients.

Ma/Mi.

Seven invariants calculated from the central momen®2fGonzalez and
Wintz, 1981%.

Normalized feature of compactnessgz).

Normalized feature of eccentricity B{2).

Form factor oP(2).

Circularity ofP(2).

Normalized circularity oP(2).

Average normalized distance between the centroid andghtipe boundary.

Standard deviation of the normalized distance betweeicéntroid and the
shape boundary.

Figure 3.7 shows graphically some of the features corrafipgrto the® and
P sets. In particular, the features are the average distateabn two consecutive
beams (feature #1 in s&), the area covered by a scan (feature #3 infjetand
the mayor axis of the ellipse that approximates the polygestdbed by the scan
(feature #7 in seP).

The complete list of features, together with their mathérahtefinition can
be found in Appendix A.



28 Chapter 3. Semantic Learning of Places from Range Data

Figure 3.8: The top image shows a laser observation cov&6gfield of view.
In the middle image the range observation covers only ir8Gront of the robot. In
the bottom image, the rear beams are simulated using theaacy information
contained inside the shaded area (local map).

3.5 Feature Extraction with Restricted Field of View*

As mentioned in the previous section, the simple feature®ased on laser obser-
vations covering 360field of view (top image in Figure 3.8). However, common
configurations on real mobile robots have only a laser cogetB® in front of the
robot (middle image in Figure 3.8). In these last cases wpqa® to maintain a
local map around the robot when classifying a pose of thetrdining a trajectory.
This local map can be updated during the movements of thd,rabd then used
to simulate the rear laser beams (bottom image in Figure 3.8)

In our case, we maintain a sparse local map around the roln. nfap con-
tains the endpoints of the previous laser beams that hit subjezt around the
robot. We simulate the rear beams using this sparse map. debr @mulated
beam that does not hit any object in the sparse map, we ceddtdavalue using an
interpolation between the values of their (known) neigitiipbeams at both sides.

1The work presented in this section originated from a collation with Patric Jensfelt.
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Figure 3.9: On the left, an ActivMedia Pioneer 2-DX8 equippéth two SICK
laser range finders. On the right, a PowerBot robot equipptdaxfront laser.

3.6 Experimental Results

The complete approach described in this chapter has bedenmapted and tested
on a real robot as well as in simulation using the CarnegiddviédRobot Navi-
gation Toolkit (CARMEN)[Montemerloet al, 2003. The robots used to carry
out the experiments were an ActivMedia Pioneer 2-DX8 ecgtppith two SICK
laser range finders, and a PowerBot robot equipped only witbre laser. Both
robots are shown in Figure 3.9. The goal of the experimeritsdemonstrate that
the simple features can be boosted to a robust classifiemoggl Additionally,
we analyze whether the resulting classifier can be used ssifyigplaces in envi-
ronments for which no training data were available. We fietalibe the results
obtained with the sequential version ob#BoosT. In the next experiment we ana-
lyze how well a mobile robot can utilize the resulting cléissi Furthermore, we
present an experiment illustrating that a classifier canppdied to robustly clas-
sify places in a completely new environment. Finally, wespré results comparing
the method presented in this chapter with previous appesach

One important parameter of theoABoost algorithm is the number of weak
classifiersT used to form the final strong classifier. All in all we form@dtmore
than 300 simple features, each of them with one free paraymneléch is deter-
mined in the learning phase according to Equation (3.2baB&ost even uses
features multiple times with fferent parameters. Thus, much more than the initial
sets of simple features are available to form the strongsiflas We performed
several experiments with fiierent numbers of weak classifiers and analyzed the
classification error. Throughout the experiments, we fotired 100 weak clas-
sifiers provide the best traddéfdetween the error rate of the classifier and the
computational cost of the algorithm. Therefore we usedvalge in all the exper-
iments presented in this chapter.
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3.6.1 Results Using a Decision List

The first experiment was performed using data from tH&e environment in
building 79 at the University of Freiburg. This environmeantains three dif-
ferent types of places, hamely rooms, doorways, and a corrigor the sake of
clarity we give a result obtained by separating the envireminmto two parts. The
left half of the environment contains the training exampéesl the right half of the
environment was then used as a test set, as shown in the tgp mh&igure 3.10.

In this experiment we used a probabilistic sequential dlassas shown in
Section 3.3. In this particular case, each binary classifientifies one place of
the environment, i.e. room, door or corridor. Because wg bale three classes,
we tried all the possible combinations of binary classifferghe decision list. We
used the sequential classifier corridor-room which giveshést results and cor-
rectly classifies 97.27% of the test examples. The clastditaesults are also
depicted as colorgdrey-shaded areas in the lower image of Figure 3.10. This il-
lustrates that the approach presented in this chapter isswigdd to classify places
according to a single laser range scan.

A similar experiment was carried out in thé&ioe environment of building 52
at the University of Freiburg (see Figure 3.11). In this ¢céise classification result
in the test data was of 97%.

3.6.2 Transferring the Classifiers to New Environments

The next experiment is designed to analyze whether a clskfirned in a par-
ticular environment can be used to successfully classiyplces of a new envi-
ronment. To carry out the experiment we trained a decisairclassifier using the
training examples of the maps corresponding to buildingark®52 at the Univer-
sity of Freiburg (Figure 3.10 and Figure 3.11), withffdient scales. In this way,
we obtained a classifier with a better generalization. Tkeltieag classifier was
then evaluated on scans simulated in the map denot&®Rssite Bn the Radish
repository[Howard and Roy, 2043top image in Figure 4.5). This map represents
an empty building in Virginia, USA. We use the sequence dorrdoorway which
results in a classification rate of 92.36%, as can be seereibdbtom image of
Figure 4.5.

3.6.3 Classification of Trajectories Using Sensors with Réa#cted Field
of View

In this experiment we show the results of applying the previdassification me-
thods when the laser range scan has a restricted field of weevfirst steered
a PowerBot robot equipped with only a front laser along threflétor of the CAS

building at KTH (right to left). The trajectory is shown ingtiop image of Fig. 3.13.
The data recorded in this floor was used to train theBvost classifier. We then
classified a trajectory on the 7th floor in the same building: dtérted the trajec-
tory in an opposite direction (left to right). The rear beanese simulated using
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I Corridor N Room Doorway

Figure 3.10: The top image shows the training of the buildi®gused to train
the classifiers. The lower image shows the classified teatudaing the sequential
ApaBoost algorithm.
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N Corridor NN Room Doorway

Figure 3.11: The top image shows the training of the build2gused to train
the classifiers. The lower image shows the classified teatutang the sequential
AbaBoost algorithm.
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Figure 3.12: The top image shows the map of the building é&hasSDR site B
in the Radish repository. The lower image shows the reguttiassification.
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Figure 3.13: The top image shows the training trajectoryten@th floor of the
CAS building at KTH. The bottom image depicts the labelingtted trajectory
of the 7th floor using only a front laser with a classificati@ter of 84.4%. The
map shown is for informative purposes only and does not semiteexactly the
environment in which the experiments were carried out, estfire is missing.

a local map as explained in Section 3.5. The resulting ¢leason rate of 84.4%
is depicted in the bottom image of Fig. 3.13. As the resultiécite, restricting the
field of view decreases the classification rate. Howevegldssification maintains
at acceptable levels.

3.6.4 Comparison of Feature Sets

We compare now the feature set described in Section 3.4 gtbrie proposed in
my previous master’s thesi#lozos, 2004. For this purpose, we trained aA
Boost-based decision list for each of the feature sets using &neirig set shown

in Figure 3.10. The dierent sequential classifiers were then applied to the test se
depicted in Figure 3.10. The obtained classification resaré shown in Table 3.1.
As can be seen, the new extended feature-set provides besttdts in all of the
experiments.
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Decision List | New feature set [%] Original feature set [%]
room-door 96.94 93.94
room-corridor 97.26 93.31
corridor-room 97.27 93.16
corridor-door 87.73 80.10
door-corridor 87.21 80.10
door-room 86.60 80.49

Table 3.1: Classification results of the new improved feaset compared to the
one in[Mozos, 2004.

binary classifier| seven best features
corridor P.7,8.15P6,8.2, 87, 8.3
room P5P12,B7,P7,81,812
doorway 8.15,£.17,8.11,P.6, 8.3, 8.9

Table 3.2: The best six features for each binary classifier.

3.6.5 Selected Weak Features

Finally, we analyzed the importance of the individual weaktéires in the final
strong classifier. To carry out the experiment, we traine@cisibn list classifier
using the training examples of the maps shown in Figure ZatiFigure 3.11 with
different scales. This classifier was transferred to classdynthp of Figure 4.5
(Section 3.6.2).

Table 3.2 lists the six best features for each binary classifith the leftmost
feature the most important. In this table an ety represents thieth feature for
raw beams irg, whereas an entr.j represents the j-th feature of the polygon
P(2). Both sets of features were described in Section 3.4.

Analyzing the table we can see that feat@& is the most important to rec-
ognize the corridor. This feature represents the major efxan ellipsis approx-
imation of the laser observation. This indicates that méoagated ellipses cor-
responds to corridors. For recognizing room places, we eartlsat the feature
. 5 is the most critical. This feature represents the standevihtion of the dis-
tance from the centroid to the shape boundary of the obsenvathe feature has
a smaller value for rooms because they have a more regulangier. The second
feature for roomsP.12, confirms this fact.

Doorways are more complicated to describe. For these ptheanost impor-
tant feature is the number of relative gaps15, which indicates the number of
jumps from one beam to its neighbor. This is another way datitg big changes
in the beam lengths corresponding to the doorframes (middige in Figure 3.6).
Another feature designed to detect doorframe®.8 which is also selected as one
of the six more importants for door detection.

Comparing the Table 3.2 with previous resultdMozos, 2004, we can see
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that several of the new features are selected as more impoftais fact confirms
the usefulness of the new feature sets presented in thisechap

3.7 Related Work

In the past, several authors considered the problem of gd@imantic information
to places. Buschka and ffatti [2004 describe a virtual sensor that is able to
identify rooms from range data. Also Koenig and Simméb39g use a pre-
programmed routine to detect doorways from range data. tidddily, Althaus
and Christense[2003 use line features to detect corridors and doorways.

Some authors also apply learning techniques to localizeahet or to iden-
tify distinctive states in the environment. For exampleréet al. [1997 train a
neural network to estimate the location of a mobile robotsrenvironment using
the odometry information and ultrasound data. Torratbal. [2003 use Hid-
den Markov Models for learning places from image data. Caethb#o these ap-
proaches, the algorithm presented in this chapter doesgotre any pre-defined
routines for extracting high-level features. Insteads#gsithe AaBoost algorithm
to boost simple features to strong classifiers for placegcaization.

Additionally, Kuipers[200d detect distinctive states in the map that are used
as places in a topological graph. However, these statesrsie®ntain semantic
information. Finally, Wolf and Sukhatmg00d present some automated tech-
niques for classifying, modeling and ultimately underdiag the usage of space
in a typical urban outdoor environments.

Boosting has been used to identify objects usiritedent features. Maybe one
of the most famous applications ofpABoosr is the fast recognition of faces in
images by Viola and Jondg001]. Also Treptowet al.[2003 use the AaBoost
algorithm to track a ball without color information in thertext of RoboCup.

Some of the ideas in this chapter are similar to the work byavdmd Jonef2001].
For example, we use a similamABoost algorithm and also create simple features
for the classification. However, the problem to solve isltptdi fferent, since we
classify locations in indoor environments using 2D ranga.da

The work from this chapter is an extension of my master'sishBdozos,
2004. However, in[Mozos, 2004 only a discrete classification was possible.
In contrast, the work presented in this chapter extendsltssification methods
adding confidence values to the output of the classifiers.otlitigut of the decision
list is now represented by a histogram which allows us to bedabeling in fur-
ther probabilistic methods. Moreover, the set of geomatifieatures is extended,
improving the classification of theftierent places.

Some ideas presented in this chapter have been used inlggs&raior works
about semantic place recognition. For instance, Friedebah [2007 present an
approach for the classification of places using Voronoi camdields. This work
also uses simple features that are selected using boosticlgpeacteristics for the
nodes in a Markov random field. The paper by Pron@hial. [2006 shows an
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approach to classify the fiiérent places of an indoor environment using vision.
An extension to this work has been recently introduced byébset al. [200d,

in which the classification of places is done using an aduilidaser sensor to-
gether with the set of features presented in Section 3.4ed@r, Topp and Chris-
tenser{2004 use a similar idea of describing regions with simple geoivatfea-
tures extracted from laser readings. The work by Brunskilll.[2007 presents
an online method for generating topological maps from ramsse information
based on spectral clustering. Here, the laser observatiansepresented by the
set of features presented in this chapter, and submap riéocogumses the boosting
method similar to the one of Section 3.2. Finally, Soasal. [2007 apply the
same set of features for classifying places in indoor envirents. Instead of #-
Boosrt, they use a support vector machines as a classifier. In thoek, wnly laser
readings with a 180field of view in front of the laser are classified.

Other works use the semantic labeling of places presentibisithesis as base
for other high level tasks. For example, the approach by tkey®t al. [2007
shows that the semantic classification of places present#itis chapter can be
used to learn navigation policies using relational Markegision processes.

The idea of classifying laser range readings into categarseng boosted sim-
ple features has also been applied in tasks other than pmaognition. Arraset
al. [2007 apply similar methods as the ones presented in this chaptarsing a
different set of features for the laser scans. The idea here liagsifg each beam
as hitting a person or not. This work is presented in detathapter 7.

Finally, boosting simple features is also used in the worlPleyssoret al.[2007
to create a virtual sensor for the semantic classificatidmages in outdoor.

3.8 Conclusions

In this chapter we presented an approach to classiferént places in the envi-
ronment into semantic classes, like rooms, corridors, aodvehays. The described
technique uses simple geometric features extracted frangkedaser range scans
and applies the BaBoost algorithm to form a strong classifier. To distinguish be-
tween more than two classes we use a sequence of binaryfielasairanged in a
decision list. Experiments carried out on a real robot as &gin simulation illus-
trate that our technique is well-suited to classify placedifferent environments
even without training the classifier for each environment.
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Chapter 4

Topological Map Extraction with
Semantic Information

4.1 Introduction

In the previous chapter we have seen how a robot can classifyose in an in-
door environment into a semantic class. Theedent semantic classes represented
typical divisions of the environment, as for example cargd rooms or doorways.
This chapter will show how a robot can extract a topologicalprfrom the envi-
ronment using the previous semantic labeling.

Topological maps have been quite popular in the roboticsnconity because
they are believed to be cognitively more adequate, singedae be stored more
compactly than geometric maps, and can be also communicabed easily to
users of a mobile robot. In the past, many researchers haggdened the problem
of building topological maps of the environment from theadgathered with a mo-
bile robot. However, few techniques exit that permit to adohantic information
to the maps.

In this chapter, we consider the problem of learning topicignaps with se-
mantic information from geometric maps that were obtainét emobile robot in
an indoor environment using range data. The approach isllmasthe assumption
that indoor environments, like the one depicted in the fetige of Figure 4.1, can
be typically decomposed into areas witlteient functionalities such as rooms,
corridors and doorways, and that these areas build theceertif a topological
graph. The connections of the vertices are then given by éighhorhood of the
regions in the occupancy map. For example, a doorway isdilpiconnected to
two rooms, two corridors, or to a room and a corridor. Thetrighage in Fig-
ure 4.1 depicts a possible topological representationhi@mntap in the left image
of the same figure.

Throughout this chapter we assume that the robot is givenpaahthe envi-
ronment in the form of an occupancy grid. The main idea is twdieabout the
semantic label of each free cell in the occupancy grid usieglland neighbor-
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Figure 4.1: The left image shows a geometric map of a typraor environment
with rooms, doorways, and a corridor, depicted in cglmesy levels. The right
image shows the corresponding semantic-topological map.

ing information. By local information we mean the set of gedrical features the
robot obtains from a laser observation at a concrete latadi® explained in Chap-
ter 3. By neighboring information we refer to the semantioimation from the
neighboring cells of the location to be classified.

Two different methods are presented which use both local and neigbbo-
formation for the final classification. The first approachedetines for each unoc-
cupied cell of a grid map its semantic class. This is achidyesimulating a range
scan of the robot given it is located in that particular catid then classifying this
scan into one of the semantic classes. Examples for typivalated range scans
obtained in an fiice environment were shown in Chapter 3 (Figure 3.2). The clas
sification is then done using a sequence of classifiers ldamith the AbaBoost
algorithm arranged in a probabilistic decision list as akpd in Section 3.3. To
remove noise and clutter from the resulting classificatioves apply an approach
denoted as probabilistic relaxation labeling. This mettaaects the classification
at each location taking into account the semantic classighbering positions.

The second method for the classification is based on assecMarkov net-
works (AMNS). In this case, the classification of one positie done using si-
multaneously the local information together with the relatbetween semantic
labels from neighboring positions. We apply an variant of dd/called instance-
based associative Markov networks (IAMNSs). This approasinlmines AMNs
with nearest-neighbor techniques.

One we have a final labeling resulting from any of the previmethods, a
graph is constructed whose nodes correspond to the regiadsntically labeled
poses, and whose edges represent the connections betvesen Additionally,
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each node contains geometrical information about the nagi@presents, like the
area, the centroid and the orientation. A typical topolabinap obtained with this
approach is shown in the right image of Figure 4.1. The ambresfor topological
map building presented in this chapter afélme methods.

The rest of the chapter is organized as follows. In Secti@nthe probabilistic
relaxation approach is described. Instance-based asgediéarkov networks are
introduced in Section 4.3. Section 4.4 describes the maiked to extract seman-
tic regions and to create the final topological map. In Sectic, experimental
results are presented. We discuss related work in Sectori-thally, we conclude
in Section 4.7.

4.2 Probabilistic Relaxation Labeling

The first approach for extracting topological maps deteesiior each unoccupied
cell of the grid its semantic class. This is achieved by sating) a range scan
of the robot given it is located at that particular cell, ahdr labeling this scan
into one of the semantic classes using a probabilistic meclst. This approach
was already introduced in Section 3.3. This results in ampaccy map with a
semantic label in each free cell. However, the final mapsllysoantain some
errors in the classification. To smooth the final classifacatf each cell, we apply
a probabilistic relaxation labeling method introduced hys&nfeldet al. [1974.
This method changes (or maintains) the label of a cell acogt the labels of its
neighborhood.

The probabilistic relaxation labeling problem is definedakws. LetG =
(V, &) be a graph consisting of noddd = {vi,...,vn} and edgess € V x V.
Let furthermoreL = {l1,...,I_ } be a set of labels. We assume that every ngde
stores a probability distribution about its label. Thistdlmition is represented by
a histogramP;. Each binp;(l) of that histogram stores the probability that the node
v; has the label. Thus,Zl';1 pi(l) = 1. For each nod&;, N(v;) C V denotes its
neighborhood which consists of the nodgs# v; that are connected t¢. Each
neighborhood relation is represented by two values. Wisdhesfirst one describes
the compatibility between the labels of two nodes, the seaore represents the
influence between the two nodes. The teRm= {r;;(1,1") | vj € N(v;)} defines
the compatibility cofficients between the labebf nodev; and the label” of v;.
Additionally, we defineC = {cj; | vj € N(vi)} as the set of weights indicating the
influence of noderj on nodey;.

Given an initial estimation for the probability distribati over Iabelspi(o)(l)
for the nodev;, the probabilistic relaxation method iteratively comppuéstimates
p(), r = 1,2,..., based on the initial probabilitiep®(!), the compatibility
codficientsR, and the weightg, in the form

PO [1+ "))
Sho B0 [1+ 0]

p () = (4.1)
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where

M L
d"()= ¢y Zm(l,l')pﬁf’(v)} : (4.2)
I’'=1

=1

Note that the compatibility cdgcientsrij(l,1’) € [-1, 1] do not need to be
symmetric. A value;i;(l,1") close to-1 indicates that labé! is unlikely at nodev;
when labell occurs at node;, whereas values close to 1 indicate the opposite. A
value of exactly-1 indicates that the relation is not possible, and a valueadtty
1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smonthbut does not spec-
ify how the compatibility cofficients are computed. In this work, we apply the
codficients as defined by Yamamdtb979

e { (L= =) RO <m0 43

% -1 otherwise
wherep;j (I | I’) is the conditional probability that nodehas label given that node
vj € N(vi) has label’. Each of the valuegi(l) and pjj(I | I’) are pre-calculated
only once and remain the same during the iterations of tlaaéibn process. The
codficientsR remain the same as well.

So far, we have described the general method for relaxatlmlihg. It remains
to describe how we apply this method for spatial smoothinthefclassifications
obtained by our classifier. To learn a topological map, weiragsa given two-
dimensional occupancy grid map in which each oglly) stores the probability
that it is occupied. We furthermore consider the eight-eated graph induced by
such a grid. Let; = v(xy) be a node corresponding to a cell,) from the map.
Then we define a neighborhodds(v(xy)) using the 8-connected cells %, as
described ifGonzalez and Wintz, 1987

For the initial probabilitieQ)Eg?y)(l), we use the output of the classifier as de-
scribed in Section 3.3. This output is represented by adviato in which each bin
k indicates de probability that the pose belongs to dadaurthermore, our set of
labels £ is composed by the labels corridor, room, doorway, and wedk each
nodevyy in the free space of the occupancy grid map, we calculatexjpeceed
laser scan by ray-casting in the map. We then classify thereaon and obtain a
probability distributionz over all the possible places according to Equation (3.6).
The classification output for each posex,y) is used to initialize the probability
distribution P© | of nodev(yy). For the nodes lying in the free space, the prob-

(xy)
ability pgg)y)(wall) of being a wall is initialized with 0. Accordingly, the nosle
corresponding to occupied cells in the map are initializéth \pig()?y)(wall) =1

Each of the weights;; € C is initialized with the valu%, indicating that all the
eight neighbors/; of nodey; are equally important. The compatibility déieients
are calculated using Equation (4.3). The valpg$) and pjj(l | I’) are obtained
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from statistics in the given occupancy grid map correspamth previously labeled
training data.

4.3 Instance-based Associative Markov NetworKs

The second approach for topological map extraction predeint this chapter is
based on associative Markov networks (AMNS). In particular use the instance-
based associative Markov networks (iIAMNSs) introduced Tjebelet al., 20074.
The idea behind AMNSs is to combine the advantage of insthased nearest-
neighbor (NN) classification with the AMN approach to obtainollective classi-
fier that is not restricted to the linear separability reguient.

4.3.1 Associative Markov Networks

This section gives a short overview on associative Markaworks. A more de-
tailed description about AMNs can be found in Appendix C.

An associative Markov network is an undirected graphicatlehin which no
assumption is made about the direction of the causalitydmtwodes in the graph.
We restrict to the case of discrete variables, that is, eaciableY; € Y corre-
sponds to a set dk possible labelsy; € {1,...,K}. Thus, we define a Markov
random field as an undirected gragh= (V, &) where the set of node¥ repre-
sent discrete variables, and the ed§esfer to the relations between théifaskar,
2004. An AMN can be divided into a subset of cliqu€swhere each clique € C
is associated with a subsét € Y. The nodes in a cliqu¥. form a fully connected
subgraph.

Each clique is accompanied by a potentig(Y.) which associates a non-
negative value with each assignmegtto Y.. To simplify things, we focus on
pairwise associative Markov network&askar, 2004 where all of the cliques in-
volved are either a single node, or a pair of nodes (1-cliqug-dique). In a
pairwise AMN with edgesS = {(ij)|i < j}, the nodes and edges are associated
with potentialsg;(Y;) andgij (Y, Y;) respectively.

In an AMN, each nodeY; can be assigned a feature veckpre R%, which
describes the properties of the object represented by dlagt rSimilarly, a feature
vectorx;j € R% can be assigned to each edigd.(The feature vectox; j indicates
the properties that describe the relation between the wbrepresented by the
nodesY; andY;. The node and edges potentials are functions of the feataters
X; andx;j. The resulting network defines the distribution

K

We Y+ >0 > (we' XY - 10gZu(x).  (4.4)

1 (iDes ki=1

log Pu(ylIX) =

M=

N
i=1

=~
I

1The work presented in this section originated from a collation with Rudolph Triebel.
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Here the partition functio,,(x) depends on the parametevand features, but
no on the labelsy.

The main task in an associative Markov network consists atirfgnthe assign-
menty € Y that maximizes logP(y|x). This is actually amaximum a posteriori
(MAP) assignment that can be formulated as an integer limesyram (se€Taskar,
2004 for more details).

4.3.2 Feature Vector Transformation

The main drawback of the AMN classifier, which is based on dlgelinear model,
is that it separates the classes linearly. This assumeththéatures are separable
by hyper-planes, which is not justified in all applicatiofi$iis restriction does not
hold for instance-based classifiers such as the nearegibwi in which a query
data pointp’is assigned to the label that corresponds to the training plaint p
whose featurex are closest to the featuresof p. In the learning step, the NN
classifier simply stores the entire training data set and doé compute a reduced
set of training parameters.

To combine the advantage of instance-based NN classificatith the AMN
approach, we convert the feature vectasf Tength L pertaining to query poinp ~
using the transform : R~ — RX given by

7(X) = (d(X, X1), ..., d(X, X)), (4.5)

whereK is the number of classes amgd denotes the training example with label
k closest tox” In this way, the transformed features are more easily abpaby
hyperplanes. An example is given in Figure 4.2. Here, thartame depicts the
training and test data for a two class problem, in which tingtle of the feature
vectorx = (X, X2) is two . The classification of the test data (triangles) isvah
as lines connecting each training example with the closesmple (square) in
the ground truth. This nearest neighbor classificationli®s$u very few errors.
However, it seems dicult to separate the test data into the two classes theyiperta
using an hyperplane (in this case a line). The bottom imademfre 4.2 shows
the training examples in the transformed space using tihefsamation given by
7(X) = (d(X, X1), d(X, X2)). In this case, the linear separability is improved.
Additionally, the M nearest neighbors can be used in the transform function.
For this, we compute th®l nearest distances to each of the classesl,..., K.
The final transformatiomy : Rt — RXM given by

(%) = (d(X K1), ..., d(& &), ..., d(% &), ..., d(X X)) (4.6)

The resulting model, introduced th¥riebel et al, 20078, is called instance-
based associative Markov network (IAMN).
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Figure 4.2: Example of the feature transfornfior a two-class problem with two
features. The top image shows the training and test datagnatind truth labeling.
In the bootom image the transformatioms applied to the test data.
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4.3.3 Feature Selection

One of the problems when classifying points representecahyge data consists
on selecting the size of the feature vectors. As we showeleirexperiments of
Chapter 3, the number of possible features that can be usegresent each data
point is usually very large and can easily be in the order ofdneds. This problem

is known ascurse of dimensionalityThere are at least two reasons to try to reduce
the size of the feature vector. The most obvious one is theoatational complex-

ity, which in our case, is also the most critical, sice we haviearn and inference

in networks with thousands of nodes. Another reason is tittadugh some fea-
tures may carry a good classification when treated sepgratal/be there is alittle
gain when combined together if they have a high mutual caticed [ Theodoridis
and Koutroumbas, 2006 The goal thus is to reduce the size of the feature vec-
tors when used with the iIAMN and, at the same time, try to na@intheir class
discriminatory information.

The reduction on the numbers of features used for the cleatsifih of places
is somehow implicit in the BaBoost-based classifiers used in the previous Sec-
tion 4.2. There, the final number of weak classifi€rsan be selected. Each se-
lected weak classifier represents a feature together withestold (Chapter 3).
The problem is that the same feature can appear multiplestimith different
thresholds and elierent priorities, which makes it filicult to decide which are
the best original features.

In this section we follow an alternative approach. We appbcalar feature
selection procedure which uses a class separability iontemnd incorporates cor-
relation information. The selection is independent of tlessification algorithm
that will use the features (IAMN in our case). This kind of im&ds are also de-
noted adilters. A filter relies on general characteristics of the data tduata and
select feature subsets without involving any classificatitgorithm[Guyon and
Elissedf, 2003.

As separability criteriorC, we use the Fisher’s discrimination ratieR) ex-
tended to the multi-class caFEheodoridis and Koutroumbas, 2406-or a scalar
featuref andK classes {vi, ..., wk}, C(f) can be defined as

o (= p)?
C(f) = FDR; = —_— 4.7
(f) f Z ; o (4.7)
where the subscripis j refer to the mean and variance of the classeandw; re-
spectively. Additionally, the cross-correlation déaent between any two features
f andg givenT training examples is defined as

g Xt Xg

Pfg = )
VEe X Tt X

wherex;s denotes the value of the featufén the training examplé. Finally, the
selection of the bedt features involves the following steps

(4.8)
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e Select the first featur§ as

f; = argmaxC(f).
f

e Select the second featufgas

f, = arfgrpax{alC(f) - Clzlpflfl},
#I1

wherea; anda» are weighting factors.

e Selectfi,| =3,...,L, such that

[
fi = argmax a1 C(f) — £Z|pfrf| , r=12...,1-1
f£f I_lr:]_

After the scalar feature selection, the learning and imfegesteps on the instance-
based associative Markov network are carried out. Mordldgtaut the inference
process can be found in Appendix C and Tmiebelet al., 20073.

4.4 Region Extraction and Topological Mapping

After applying any of the previous approaches for classdyihe free cells in an
occupancy grid map, we extract the regions from the finakdliasl graph. We de-
fine aregiom, on a adjacency grap# as a set of 8-connected nodes with the same
labell. For each labdl € {corridor, room doorway}, regions are extracted from the
adjacency graph using the algorithm by Rosenfeld and Afe@&6. Each region
A| is assigned a tlierent identifier. The connections between regions areagtia
using a similar algorithniGonzalez and Wintz, 1987Finally, a topological graph
T = (V+,E5) is constructed in which each nodec V4 represents a region and
each edge € &5 represents a connection. Additionally, we add to each mpde
information about the properties of the regidnwvhich represents: area, centroid,
and major and minor axis of the ellipse approximatiom,0fThe major and minor
axis are vectors which represent the elongation of the megial its orientation.
The topological graph together with the region propert@sifthe final topologi-
cal map. We finally apply a heuristic region correction to tigological map to
increase the classification rate:

1. We mark each region corresponding to a room or a corridase/lsize does
not exceed a given threshold of Zmompared to the training set as a clas-
sification error and assign the label of one of its conneatgibns.

2. We mark each region labeled as doorway whose size doegcesca given
threshold of 0.1 rAor that is connected to only one region as a false classi-
fication and assign the label of one of its connected regions.
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4.5 Experimental Results

The approaches described above have been implementedséed tsing occu-
pancy maps obtained from real environments. The laser rdatgeused for the
training and classification were simulated using the Caenkftgllon Robot Navi-
gation Toolkit (CARMEN)[Montemerloet al., 2003. The goal of the experiments
is to demonstrate that we can construct a semantic-toalbgiap of typical in-
door environments using only laser range data. We first appitymethod using
probabilistic relaxation. Additionally, we analyze whetlthis method can be used
to create a topological map of an environment for which nanitng data were
available. Finally we present one experiment in which iANMAYs use to train and
classify an indoor environment.

4.5.1 Results Using Relaxation Labeling

The first experiment was performed using data obtained ifiiee environment
of building 79 at the University of Freiburg. This environmiecontains rooms,
doorways and a corridor, which has a length of approxima2@lyneters. For the
sake of clarity we give the result of the obtained classificaby separating the
environment into two parts. The left half of the environmenhtains the poses
used as training examples (see Figure 4.3(a)), and thetridhof the environment
was used for test classification and for the topological nteptmn. We used the
sequential classifier corridor-room which correctly ciiss 97.27% of the test ex-
amples. The classification is depicted as cgipey levels in Figure 4.3(b). After
the sequential classification, the probabilistic rela@atinethod explained in Sec-
tion 4.2 is applied for 50 iterations. This method generatese compact regions
and eliminates noise. The result is illustrated in the Fegd3(c). Finally, the
topological map is created using the connections betwagang As can be seen
in Figure 4.3(c), some regions detected as doorways (mavkbctircles) do not
correspond to real doorways. After applying the heuristiescribed in Section 4.4
on the corresponding topological map, these false doonaey®liminated. Fur-
thermore, the two left rooms situated above the corridordatected as only one
region. That is due to the fact that the doorway in between neascompletely
detected. Thus, the two rooms remain connected and aréfieldss only one re-
gion. The final topological map, depicted in Figure 4.3(ds h final classification
rate of 98.95% of the data points.

In a second experiment we created a topological map of the pigrt of the
office environment of building 52 at the University of Freibusgé Figure 4.4(a)).
The length of the corridor in this environment is approxiehat20 meters. After
applying the decision list classifier room-corridor, thasdification of the test set
was 97%. Like in the previous experiment, we applied thexeglan process for
50 iterations as well as the operations for region corractithe final result gives
a classification rate of 98.66% of the data points. THEedknt steps of the pro-
cess are illustrated as col@yeey levels in Figure 4.4. As opposed to the previous
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(b) Sequential classification

- 1“

( Door 1 Door 2) ( Door 3
(Door 4 Door 5 Door 6
[

Room 3 E Room

(d) Resulting topological map

I Corridor N Room Doorway

Figure 4.3: This figure shows (a) the training and test maphefluilding 79
at the University of Freiburg, (b) the result of applying tthecision list with a
classification rate of 97.27%, (c) the result of applyingxakion and the detection
of incorrect labeled regions (marked with circles), andli@)final topological map

with the corresponding regions.
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experiment, the doorway between the two right-most roonteuthe corridor is
correctly detected (Figure 4.4(c)). Therefore, the rooradabeled as two eierent
regions in the final topological map.

4.5.2 Application to a New and Unknown Indoor Environment

This experiment is designed to analyze whether our apprbaskd on boosting
and relaxation labeling can be used to create a topologiegd ofi a new envi-
ronment from which no training data were available. To cauythe experiment
we trained a decision list classifier using the training eplas of the maps shown
in Figure 4.3(a) and Figure 4.4(a) withfidirent scales. In this way, we obtained
a classifier with a better generalization. The resultingsifeer was then evalu-
ated on scans simulated in the map denoteS[2R site Bn the Radish repository
[Howard and Roy, 2043 This map represents an empty building in Virginia, USA.
The corridor is approximately 26 meters long. The whole gssdor obtaining the
topological map is depicted in Figure 4.5. We use the seaquearidor-doorway
which gives a first classification of 92.36%. As can be seengarg 4.5(c), rooms
number 11 and 30 are originally part of the corridor, and tfalsely classified.
Moreover, the corridor is detected as only one region, aljhchumans potentially
would prefer to separate it into sixftkrent corridors: four horizontal and two ver-
tical ones. Doorways are veryfficult to detect by the sequential classifier. The
majority of poses detected as doorways disappear afteetaeation process be-
cause they are very sparse. The main reason for the probldooof/iay detection

is that the maps haveftierent sizes and resolutions, and the features are not scale
invariant. In the final topological map, 96.94% of the datinmare correctly
classified.

We also analyzed the results obtained without applying eéfexation process.
This had severalffects. First, omitting the relaxation procedure reduceslthe
sification rate. Furthermore, the finally obtained regiogqmsdally are more sparse
and do not represent the original ones as well as with rataxaFinally, omitting
the relaxation procedure increases the number of erroheiresulting topological
map. For example, the map for the building in Virginia conéai four incorrect
nodes without relaxation, whereas there were only two meobmodes when we
used the probabilistic relaxation.

4.5.3 Results using Instance-based Associative Markov Nedrks

In this experiment we apply our classification approachgigMNs to the indoor
environment corresponding to the building 79 at the Unitersf Freiburg. For
efficiency reasons we used a grid resolution of 20 cm, which leath @ graph
with 8088 nodes. Smaller resolutions result in much biggdwaorks dificult to
treat. As in the first experiment, the map was divided into pads, the left one
used for learning, and the right one used for classificatiop@ses (Figure 4.6).
For each cell we calculate 203 geometrical features. Thsheu was reduced to
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(b) Sequential classification (c) Incorrect regions

Room 1* ¥ Room 2

_ Corridor|

Room 3 Room 4 Room 5

(d) Resulting topological map

NN Corridor N Room Doorway

Figure 4.4: This figure shows: (a) the training and test maghefbuilding 52
at the University of Freiburg; (b) the result of applying ttecision list with a
classification rate of 97%, (c) the result of applying reteoomand the detection of
incorrect labeled regions (marked with circles), and (@) fihal topological map

with the corresponding regions.
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(a) SDR site B map (b) Map after relaxation and region correction

R1 R2§ R3 QI R4 R5] R6

CORRIDOR
ROR R1Q R1

CORRIDOR

CORRIDOR

CORRIDOR

R3d R40] R41] R4 R4 R4 R4

(c) Final topological map

I Corridor N Room Doorway

Figure 4.5: This figure shows: (a) the original map of thediod, (b) the resulting
classification after the relaxation an region correctiarg &) the final topological
map with semantic information. The regions are omitted the@ode. The rooms
are numbered left to right and top to bottom with respect tlag in (a). For the
sake of clarity, the corridor-node is drawn maintainingt pdiits region structure.
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I Corridor I Room Doorway

Figure 4.6: The left image depicts the training map of baddr9 at the University
of Freiburg. The right image shows the resulting classifiepmsing an iAMN
with 30 selected features.

30 applying the feature selection of Section 4.3.3. Thetrigiage of Figure 4.6
shows the resulting classification with a success rate @@,/which is similar to
the classification obtained using relaxation labeling. \Afe also see in the results
that some doorways are lost in the final classification. Thsae for this can be
the low resolution of the map (20 cm) in comparison with thigioal resolution
(5 cm). However, maintaining the original resolution woldédd us to a huge
Markov network almost impractical to use.

4.6 Related Work

Different algorithms for extracting topological maps in indeavironments have
been proposed. Kuipers and By{it991] extract distinctive points in the map,
which are defined as the local maximum of some measure. Tlo@ses @re used
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as nodes in a toplogical map. In their work, Kortenkamp angéith[1994
fuse vision and ultrasound information to determine togimlally relevant places.
Additionally, Shatkey and Kaelblingl997 apply a based learning approach based
on hidden Markov models to learn topological maps in whiarbdes represent
points in the plane. Critical points are also found by Thfi89g, in this case
using Voronoi diagrams. The critical points minimize theaskince locally, and
are then used as nodes in a topological map. Also Beetsain[2005 detect topo-
logical places with an extension of the Voronoi graph. Femtiore, Chosg2001]
encodes metric and topological information in a generdIM=&ronoi graph to solve
the SLAM problem.

In comparison to these previous approaches, the technigse&ided in this
chapter applies a supervised learning method to identifgptete regions in the
map like corridors, rooms or doorways that have a directiioglawith a human
understanding of the environment.

In addition, mathematical morphology is used in the work bipizi and Saf-
fiotti [200d. This method uses a disc as structuring element for theafiland
erosion operations. This approach extract large open sgem®a the map, but is
quite sensitive to irregularities in the map.

Other works use vision sensors to distinguish places indooinenvironment.
Tapus and Siegwal2009 use fingerprints extracted from images to create topo-
logical maps. In their work, Zivkoviet al.[2009 create a higher level conceptual
map with visual landmarks and geometric constraints. Thppeoaches used fea-
tures extracted from images that are quite specific to the@mment the robot is
located at, which makes itfflicult to generalize to new environments. In contrast
to these works, the methods presented in this chapter hdier beneralization,
since they used the geometrical properties of tifi@dnt places.

In a recent work, Friedmaat al. [2007 use Voronoi Random Fields for ex-
tracting the topologies of occupancy grid maps. This wodoalses simple fea-
tures that are selected using boosting as characteristithd nodes in a Markov
random field. This approach is similar to the one in Sectid 4owever, in
[Friedmanet al, 2007, only the points lying in the Voronoi diagram are used in
the MRF, whereas we used all the free positions in the map.

For related work about semantic place classification we te&reader to Sec-
tion 3.7.

4.7 Conclusions

In this chapter, we presented several approaches to cogaigical maps from
indoor environments. The first one usesaBoost to learn a strong classifier for
categorizing places into semantic classes such as roomsyalgs, and corridors.
A probabilistic relaxation process is applied on the rasgltlassifications to re-
duce classification errors. The second approach is baseMiNg together with

scalar feature selection. Finally, we extract regions &ed tonnections. The ad-
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vantage of both approaches is that the nodes of the resgitagh correspond to
the individual semantic regions.

Both methods has been implemented and evaluated on vareapsfmom real-
world environments. Experiments demonstrate that theyvatkesuited to create
topological maps from indoor environments even withouhtrey the classifier for
each environment.
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Chapter 5

Probabllistic Semantic
Classification of Trajectories

5.1 Introduction

The approaches described in the previous chapters areablassify static ob-
servations of a mobile robot. However, mobile robots areadyic agents that
move along dterent trajectories. When operating in indoor environmetits
robots usually have a moderate velocity and a relativelyticoaus movement.
That means, that observations obtained by a mobile robaaabyg poses are typ-
ically very similar. Furthermore, certain transitionsweén classes in a trajectory
are rather unlikely. For example, if the classification @& turrent pose ikitchen
then it is rather unlikely that the classification of the npgse isoffice given the
robot moved a short distance only. To get from the kitcheméodtice, the robot
first has to move through a doorway.

In this chapter, we present an approach that takes into attteeidependencies
between the classification of the poses along a trajectarypatticular, we use
a hidden Markov model (HMM) to filter the output of the curret@ssification
based on previous ones. In this way, we reduce the numbertlgrsiduring the
classification.

Additionally, in this chapter we add new places to be recogmiin indoor
environments. In particular, we want to recognize corsgdaoorways, kitchens,
seminar rooms, fices, and laboratories. For this purpose, we include a camera
on the robot and extract new features from images that parsnib extend the
classification to the additional places. The new visionuest are based on the
recognition of objects. As an example, Figure 5.1 shows fdneoenvironment
together with some laser and vision data. The increment @mtimber of places
to be recognized shows clearly the improvement of the firedsification when
applying an HMM to the dferent place transitions.

1The work presented in this chapter originated from a collation with Axel Rottmann.
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Figure 5.1: An environment withffices, doorways, a corridor, a kitchen, and a lab-
oratory. Additionally, the figure shows typical observasoobtained by a mobile
robot at diferent places.

The approach presented in this chapter uses a probabdéetision list to clas-
sify each pose of the robot along a trajectory. Then it appdieHidden Markov
Model to filter the current classification result based orvipies ones. As a re-
sult the mobile robot is able to classify thdfdrent places it traverses with high
confidence.

The rest of the chapter is organized as follows. The follgwnsection intro-
duces our modification of thesABoost algorithm to include the new weak classi-
fiers for vision features. Section 5.3 describes the comm@et of simple features
extracted from laser and vision data. The models for the HM#&liatroduced
in Section 5.4. In Section 5.5, experimental results olethiwith this approach
are presented. We discuss related work in Section 5.6. Ifived conclude in
Section 5.7.

5.2 Generalized MaBoost

As explained in Section 2.3, the generalizeokBoost algorithm is a supervised
learning algorithm designed to find a binary classifier thiatriminates between
positive and negative examples.o#Boost boosts the classification performance
of a simple learning algorithm by combining a collection ofak classifiers to a
stronger classifier. The final strong classifier takes then fof a weighted combi-
nation of weak classifiers followed by a threshold. Largeghts are assigned to
good classification functions whereas poor functions havallsveights.

To classify the diterent places using laser and vision features, two kinds of
weak classifiers are created. The first type is used for lagkvigion features and
has the form

) 1 i pfi(X) < pjé;
h,(x)_{ -1 otherwise (5-1)

whered; is a threshold angb; is either—1 or +1 and thus representing the direc-
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tion of the inequality. Note that this form is the same as the mtroduced in
Section 3.2.
The second type of weak classifiers is designed for our seis@frvfeatures
and has the form
o | P if 9}[ < fj(x) < 91-2
hj () _{ -p; otherwise (52)

here 9! and ¢? are thresholds delimiting an interval, amgl is either+1 or -1
indicating if the examples inside the interval are positivaregative. The kind of
weak classifier is motivated by that fact that objects appealiferent places in
different numbers. For example, in affice room we expect more monitors than
in the kitchen, but less than in the laboratory. Equatio)(&as thought to encode
this kind of information.

For the multiple class case, we use the same approach astiorSea, and
create a probabilistic decision list. Each elemlem the list is represented by a
classifier for the claskin the environment.

5.3 Simple Features from Laser and Vision Data

In this section, we describe the complete set of featured tsereate the weak
classifiers for each binarypABoost classifier in the decision list.

The robot used for the experiments in this chapter is eqdippth a 360 field
of view laser sensor and a camera. Each laser observati@istonf 360 beams.
Each vision observation consists of eight images which farpanoramic view.
Figure 5.1 shows typical laser range readings as well asidrecof panoramic
images taken in anffice environment. Accordingly, each training example for the
ApaBoost algorithm consist of one laser observation, one vision olasen, and
its classification.

Our method for place classification is based on single-geleatures extracted
from laser and vision data. In the case of laser observatisasxtract the set of
simple features presented in Section 3.4. These are sthgdametrical features
used for shape recognition. Furthermore, they are ro@tiomariant to make the
classification of a pose dependent only on thg/)-position of the robot and not
on its orientation.

In the case of vision, the selection of the features is mwd/dy the fact that
typical objects appear with filerent probabilities at elierent places. For example,
the probability of detecting a computer monitor is largeraim dfice than in a
kitchen. For each type of object, a vision feature is defireed function that takes
as argument a panoramic vision observation and returnsuher of detected
objects of this type in it. This number represents the singlaed featurd; within
ApaBoost according to Equations (5.1) and Equation (5.2).

In our case, we consider monitors,fi@e machines, soap dispensersice
cupboards, frontal faces, face profiles, full human bodiad,upper human bodies.
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An example of such objects is shown in Figure 5.1. The indiaidbbjects are
detected using classifiers also trained witth\Boost and based on the set of Haar-
like features proposed by Lienhat al.[2003.

5.4 Probabilistic Place Classification

The approach described so far is able to classify singlereéisens, but it does not
take into account past classifications when determinindyihe of place the robot
is currently at. However, whenever a mobile robot movesuihoan environment,
the semantic labels of nearby places are typically idehntiearthermore, certain
transitions between classes are unlikely. For examplagifobot is currently in a
kitchen, then it is rather unlikely that the robot ends upnrofiice given it moved
a short distance only. In many environments, to get from ttad&n to the ffice,
the robot has to move through a doorway first.

To incorporate such spatial dependencies between theidodivclasses, we
apply an HMM and maintain a posteri®(y;) about the type of the placg € Y
the robot is currently at, wherg represents the set of possible semantic labels.
The posterior is calculated as

POR) = aP@ ) ) POl Yer, Ue-1)P(e-a): (5.3)
Yi-1

In this equationga is a normalizing constant ensuring that the left-hand side
sums up to one over ajk. To implement this HMM, three components need to
be known. First, we need to specify the observation m&ggl| y;), which is the
likelihood that the classification outputisgiven the actual class ig. Second, we
need to specify the transition mode{ly; | y;_1, U_1), which defines the probability
that the robot moves from clags 1 to classy; by executing actiony_1. Finally,
we need to specify how the beliBfyp) is initialized.

In our current system, we choose a uniform distribution fttialize P(yp).
Furthermore, the classification outpztis represented by a histogram. In this
histogram, thek-th bin stores the probability that the classified locatietohgs to
thek-th class, as shown in Section 3.3.

To determineP(z | y;), we use the KL-divergence between two histogré@mver
and Thomas, 1991 The first distribution is the current classification outgut
The second one is learned from a statistics: for each glas® compute a his-
togramZ (y) using h observations recorded within a place belonging to class
(hereh = 50). This histogranz;(y) is obtained by averaging over the individual
histogramsz, . . ., z,, which are computed according to Equation (3.6). To deter-
mine P(z | y;), we use the KL-divergenckld(- || -) which provides a measure
about the similarity of two distributions

Pz |yi) = e Kld(@ Il Zun() (5.4)
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Figure 5.2: The distributions depicted in the first row shbe learned histograms
21h(y) for the individual classes (here corridor (1), doorway, @)chen (3), lab
(4), seminar room (5), andfice (6)). The left image in the second row depicts a
possible classification outpat. In the right image, each bar represents the corre-
sponding likelihoodP(z | y;) for the diferent estimates of.

To illustrate the computation of the observation likelidde(z | y;) consider
Figure 5.2. The first row depicts examples for the histogramsy). The left
image in the second row depicts the outgudf the sequential classifier while the
robot was in an fiice. As can be seen, also the classes doorway and seminar room
have a probability significantly larger than zero. This atitp and the histogram
Z1h(Yy) is than used to computé(z | y;) according to Equation (5.4). The result
for all classes is depicted in the right image in the secomd ho this image, each
bin represents the likelihodd(z | y;) for the individual classeg. As can be seen,
the observation likelihood given the robot is in a doorwaglise to zero, whereas
the likelihood given it is in an fiice is around 90%, which is actually the correct
class.

To realize the transition modét(y; | Vi-1,U-1), we only consider the two
actionsu;_; € {Move Stay. The transition probabilities were learned in a manually
labeled environment by running 1000 simulation experimerih each run, we
started the robot at a randomly chosen point and orientaiiés then executed a
random movement so that the robot traveled between 20 cm GuechForward.
These values correspond to typical distances traveled dyahot between two
consecutive updates of the HMM. The finally obtained tramsiprobability matrix
P(y; | Yi-1, U—1) for the actionMoveis depicted in Figure 5.3. As can be seen, the
probability of staying in a place with the same classificati® higher than the
probability of changing the place. Moreover, the probapibf moving from a
room to a doorway is higher than the probability of movingiira room directly
to a corridor. This indicates that the robot typically hastoss a doorway first in
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Figure 5.3: The image depicts probabilities of possibladitions between places
in the environment. To increase the visibility, we used atdgmic scale. Dark
values indicate low probability.

order to reach a ftierent room. Furthermore, the matrix shows a lower prokgbili
of staying in a doorway than staying at the same type of roorhis & due to
the fact that a doorway is usually a small area in which thetrolever rests for a
longer period of time.

5.5 Experimental Results

The approach described above has been implemented andl tisstg simulated
and real robot data obtained in ouffice environment. The goal of the experi-
ments is to demonstrate that our approach provides a rolassifecation of places
in indoor environments into typical categories. We furthere describe results
indicating that the filtering of the classification outpuingsan HMM significantly
increases the performance of the overall approach. Addiliy we analyze the
benefits of using vision features for the classification.

To train the classifier used throughout the experiments,sed 38,500 training
examples. For each training example, we simulated the ¢tdsarvations given an
occupancy grid map of the environment. To generate therfestextracted from
vision data, we used 350 panoramic views recorded with odr Bihot, which is
equipped with a SICK laser range finder and a camera systemtatban a paftilt
unit as shown in Figure 5.4. Each panoramic view consistsiofegjes covering
the 360 field of view around the robot. For each simulated laser searthen ran-
domly drew a panoramic view from those corresponding toythe of the current
place and used the vision features extracted from this Viégure 5.5 shows two
distributions over the number of ffiee machines detected in the database images.

One important parameter of theABoost algorithm is the numbeF of weak
classifiers used to form the final strong binary classifierr éach strong binary
classifier, we performed several experiments with up to 56@knclassifiers and
analyzed the classification error. The numibeof weak classifiers used to carry
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Figure 5.4: The image shows the robot used for the expersnenB21r robot

equipped with a SICK laser range finder and a camera systemtetban a pafilt
unit.

l T
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number of detected coffee machines

Figure 5.5: Likelihood of detecting coffee machines inside and outside a kitchen
using Haar-like classifiers.
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Binary Classifier T Training error [%]
lab 440 0.99
corridor 165 2.02
doorway 171 2.10
kitchen 68 2.46
seminar 334 2.58
office 288 7.31

Table 5.1: NumbeT of weak classifiers and training error for the individualdiiyn
classifiers.

out the experiments has then been determined as the minimtine ierror func-
tion. The resulting numbers of weak classifiers used to form the strong binary
classifiers and the classification errors of the finally otgdistrong classifiers on
the training data are given in Table 5.1.

In our current system, we determine the optimal sequencerarfigs binary
classifiers by considering all possible sequences of stoimayy classifiers. Al-
though this approach is exponential in the number of classesactual number of
permutations considered is limited in our domain due to thalknumber classes.
In practice, we found out that the heuristic which sorts tlasgifiers in increasing
order according to their training classification error ajgelds good results and
at the same time can be computetiogently. Compared to the optimal order, the
classifier generated by this heuristic for an applicatiothwsix diferent classes
performed on average only3P6 worse as demonstrated by Rottm#&Ra05. In
several situations, the sequence generated by this heutisted out to be the
optimal one.

5.5.1 Classifying Places along Trajectories

The first experiment is designed to demonstrate that theifixslearned from
the training data in combination with the HMM can be used toustly classify
observation sequences acquired with a mobile robot in aoffaé environment.
This environment contains sixfierent types of places, namelsfices, doorways,
a laboratory, a kitchen, a seminar room, and a corridor. Thargl truth for the
different places in this environment is shown in the top imageigiire 5.6. We
steered our robot through the environment and collectext &aed image data along
its trajectory. We then calculated the classification outpithout and with the
HMM filtering and compared this to the ground truth infornoati
The classification rate of the sequential classifier withaqylying the HMM

is 74.8%. The generated labels are shown in the middle imiggore 5.6. If we
additionally use the HMM to filter the output of the sequentiassifier, the clas-
sification rate increases to 83.8%. The labels obtained a&fi@dying the HMM are
shown in the lower image of Figure 5.6. As we can see in thisge, the model
for the HMM encodes the possible transitions and discamsiies with low prob-
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Figure 5.6: Ground truth labeling of the individual areaghia environment (top),
and typical classifications obtained for a test set using tm output of the se-
quential classifier (middle) and in combination with the HMbbttom).
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Figure 5.7: Classification obtained without (top) and witklM filtering (bottom)
for a different part of the building.
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Figure 5.8: Improvement of the HMM according to the percgataf weak classi-
fiers used in each of the binaryABoosr classifiers.

ability. For example, the wrongfiace labels that appear in the kitchen (Figure 5.6
middle image) are corrected after the application of the H{figure 5.6 bottom
image). The reason is that there is a very low probability @hg directly from
the kitchen to the fiice according to the learnt model shown in Figure 5.3. A
two-samplét test revealed that the improvements of the resulting ¢leagon are
significant at ther = 0.01 level. This illustrates that by using the HMM the overall
classification rate can be improved seriously.

A second experiment was carried out using test data frorfferelint part of the
same building. We used the same sequential classifier ag iprévious experi-
ment. Whereas the sequential classifier yields a classiiicedte of 77.19%, the
HMM generated the correct answer in 87.72% of all cases (gpegd=5.7). This
improvement is also significant at the= 0.01 level.

Finally, we studied how the HMM improves the final classificatrate accord-
ing to the output of AaBoost. For this purpose, we analyzed the improvement of
the HMM using diterent classification rates frompABoost. This is achieved by
increasing the percentage of weak classifiers used in eaelybtlassifier of the
ApaBoost decision list. Here, 100% corresponds to the number of wisasisifiers
used in the previous experiment (Table 5.1). For exampds;ldssification rate de-
creases to 60% if only 5% of the weak classifiers are used. dhdts are shown
in Figure 5.8. In average, the HMM improves the classificatate by 5.0%.

5.5.2 Improvement Obtained by Combining Laser and Vision D&

Additionally we analyzed whether the integration of visiand laser data yields
any improvements over using only laser. To perform this gBrpEnt, we trained
ApaBoost only with the three classedtice, corridor, and doorway, because the
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Sequential Error [%] Error [%]
Classifier laser laser & vision
corridor-doorway| 3.21 1.87
doorway-room 3.74 2.67
doorway-corridor|  3.21 2.14
room-corridor 1.60 1.34
corridor-room 1.60 1.34
room-doorway 1.60 1.60
average 2.50 1.83

Table 5.2: Classification error obtained when using onlgratta comparing to
both laser and vision data.

other classes kitchen, seminar room, and lab can hardlystiegliished from of-
fices using only laser observations. The classificationigdaby integrating both
modalities is summarized in Table 5.2. As can be seen, thdioaton of laser
and vision data yields better results than the classifiey mil/ing on laser range
data.

5.6 Related Work

Classifying the places along a trajectory of a mobile roka recent area of in-
terest. At the time of carrying out the work presented in thiapter, very few
works considered this problem. Maybe the most known is thek g Torralbaet
al. [200d, which applies a hidden Markov model to distinguish betwtberplaces
that a mobile robot traverses. Here, the information aboeitappearance of im-
ages is used to discriminate betweefiatent places. Compared to this approach,
the method presented in this chapter uses an additionalrasge finder sensor.
Moreover, we use the objects detected in the images insfezalanlating visual
features based on appearance. We classify the places haskdirngeometrical
2D structure and the objects found in them. In this way, webkenaur robot to
generalize better when classifying new environments.

Subsequent works analyze the capabilities for distingugsplaces along a tra-
jectory using camera images. Pronogisal. [2004 recognize the dierent places
of an dfice environment using vision. Their approach is based on twdskof
features extracted from the images: interest points descsi and appearance fea-
tures. A similar approach is used by Let al. [2007, but this time applying
incremental learning. Also ifSpexardet al,, 2004, rooms are classified accord-
ing to the appearance of images. In this case the goal of ta r® to recognize
already seen rooms. However, these approaches do not takectount past clas-
sifications when calculating the current semantic label.

In a very recent work, Pronobgt al.[200g extend their previous work using
additionally a laser range finder and the set of geometregaiufes presented in
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this thesis. Results show that the laser features impravgdheralization of the
classifier. In this case no HMM is used to smooth the clastifica

For related work about semantic place classification ofcspatses we refer the
reader to Section 3.7.

5.7 Conclusions

In this chapter, we presented a novel approach to clasdifgreint places in the
environment into semantic classes. This technique usesnaication of simple
geometric features extracted from laser range scans asawéflatures extracted
from camera images. It further applies theaBoost algorithm to form a strong
classifier. To distinguish between more than two classesuseea sequence of
binary classifiers arranged in a probabilistic decision Tis incorporate the spatial
dependency between places, we apply a hidden Markov maatesthpdated upon
sensory input and movements of the robot.

Our algorithm has been implemented and tested using a ntobite equipped
with a laser range finder and a camera system. Experimenteccaut on a real
robot as well as in simulation illustrate that our technitgievell-suited to classify
places in indoor environments. The experiments furtheend@monstrate that the
hidden Markov model significantly improves the classificatperformance. Addi-
tional experiments revealed that the combination of visind laser data increases
the robustness and at the same time allows to distinguiskeleet more classes
compared to the approach in which only laser is used.
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Chapter 6

Applications of Semantic
Information: Localization and
Multi-Robot Exploration *

6.1 Introduction

The work presented in the previous chapters showed how toewigthe represen-
tation of indoor environments using semantic and concépidarmation about

places. These extended representations were mainly udedilitate the interac-

tion between robots and humans. In this chapter we will see the semantic

information helps to improve other robotic tasks. The madieai is that mobile
robots can use the intrinsic information of human-maderenments to improve
their actions.

In this chapter, we will show the applications of semanticelang in two
robotic tasks: multi-robot exploration, and localization both cases, an improve-
ment is obtained when taking into account the classificaticthe robot location.

The exploration of environments belongs to the fundamemtablems in mo-
bile robotics. Exploration is the task of controlling a robdth the goal of max-
imizing its knowledge about the external world. There esesteral applications
in which the exploration task is an integral part of the ribotission (see, for
example,[Murphy, 2004, [Thrunet al, 2003, [Huanget al,, 1984, and[Jager
and Nebel, 200B. Additionally, the use of multiple robots is often suggesto
have advantages over single robot syst¢@eoet al, 1997; Dudeket al., 1994.
In particular, cooperating robots have the potential tmagdish a task faster than
a single robofGuzzoniet al,, 1997.

Indoor environments constructed by humans often contaitaioestructures,
like corridors with adjacent rooms offizes. This information has been typically
ignored when coordinating a team of robots in an explordtsh. In typical indoor

1The work presented in this chapter originated from a collation with Cyrill Stachniss
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environments, corridors usually provide more branchingsew unexplored areas
like adjacent rooms. Therefore, it makes sense to focusofirsorridors in order
to obtain a better assignment of targets to robots.

Mobile robot localization is the problem of determining {ese of the robot
relative to a given map of the environment. fierent approaches have been used
to solve this problem, like for example, grid-based Montel€calization[Sim-
mons and Koenig, 1995multi-hypothesis EKF$Jensfelt and Kristensen, 2401
and condensation-based algorithfBellaertet al, 1999. In this chapter we will
use the last approach, also known as Monte Carlo localizatie will show how
global localization can be improved using both odometry seghantic labels in
comparison to using only odometry.

In this chapter, we first present an approach to include sgeniafiormation
about places to better distribute the robots in human-masgigomments during
the exploration tasks. The key idea is to assign higher msviar robots that first
explore corridors. As a result, the overall completion tiohan exploration can be
significantly reduced.

In a second approach, we use the semantic labeling in theeMoatio local-
ization algorithm. The main idea here is to take as obsenvatiodel the semantic
classification of the current pose of the mobile robot.

The rest of the chapter is organized as follows. In Secti@nwe present our
method to assign semantic labels to target locations duhiagxploration task.
The algorithm for target assignment to robots using semanftormation is shown
in Section 6.3. In Section 6.4, we introduce the Monte Caplpraach for local-
ization using semantic labels. In Section 6.5 experimer@sililts are presented.
We discuss related work in Section 6.6. Finally, conclusiare presented in Sec-
tion 6.7.

6.2 Sematic Classification of Target Locations

During this chapter we assume that the knowledge about thipament is repre-
sented by an occupancy grid map. Thus, the exploration @mobbnsist of control-
ling the robot so that its maximizes the occupancy infororath the map. Using
this representation, target locations are located at tiér between known and
unknown areas and can be extracted using the approach byurameaal.[1999.
The left image of Figure 6.1 shows an example of a map togethietthe frontiers
detected there (shown as dashed lines). For each of théeh®ra target location
is generated.

The goal now is to classify each potential target locatido amsemantic class.
One possible solution to classify a target location is tousate an observation
at its position, and then classify this observation usireyapproach presented in
Chapter 3. However, the target position is located at a iggnivhich means that
part of the neighboring areas are not known. This situas@shown in Figure 6.1.
Therefore, the laser observations simulated at frontils centain a significant
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Figure 6.1: The left image shows a situation in which a rola bxtracted the
frontiers of the occupancy grid map (dashed lines). Addilly, a target location
is shown for one of the frontiers. In the right image, a vittuajectory to the target
is generated by the robot.

number of maximum-range readings, which can lead to higtsaiassification
rates. To increase the classification rate in these casegemezate a short virtual
trajectory to the desired goal location. We then simulaserdaange observations
at different poses along the virtual trajectory using the paytiaiow map. These
poses are generated selecting cells in the occupancy gichvahne as far away
as possible from the unknown locations in the current mape rElason for this
selection is that cells having more information about ite@undings will have
a lower error in its semantic classification, since theirudated range scans will
contain fewer maximum-readings.

To generate the ferent positions along the trajectory we apply the euclidian
distance transformatiolMeijsteret al., 2004 with respect to unknown and occu-
pied cells in the local area of the frontier. We select theepshe free space within
that local area containing the highest distance to unknoeasa Then an A* plan-
ner is used to generate the virtual trajectory to the tamgdtlon. An illustrating
example is depicted in Figure 6.1.

Once we have the virtual trajectory, we follow the approa@sented in Chap-
ter 5. We apply a hidden Markov model (HMM) and maintain a gost P(y;)
about the typsy; of the place the virtual sensor is currently at as

PO = aP@ 1Y) ), PO | Vo1, Ue-1)P(¥-1). (6.1)
Yi-1

The diterent components of this model are calculated in the samesvayplained
in Chapter 5. Using Equation (6.1), we classify the targeation P(Yiarget) USING
the classification of the positions leading to it.

6.3 Target Assignment using Semantic Place Labeling

We now present the algorithm used to assign target locatmeach robot of the
team during the exploration. As indicated above, the masa id to give priority
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to target locations that are located at corridors, as thay e a higher number of
unknown areas. The algorithm used for target assignmehbisrsin Figure 6.2.

In a first step, the algorithm calculates the set of frontedisc This is done us-
ing the method explained in Section 6.2. For each robothe team, the algorithm
then calculates the cosf of reaching each frontier cell This cost is based on the
distance the robot has to travel to reach the cell. Additlgntoe algorithm esti-
mates the semantic lablg] of the target location using the HMM-based approach
presented in Section 6.2.

Using the labeL; of cellt and the numbenm of robots in a team, an initial utility
function Ujnit(L¢, n) is assigned to each target locatibnAt this point the seman-
tic information about places is considered in the algorithihme target locations
classified as corridors get an initial utilityini; which isy times higher than other
locations of the current indoor environment. After severgleriments we select a
value of 5 fory. This value led to the best results irffdrent runs of the algorithm.

An iterative process is then carried out in which the besthioation of robot
i and target is selected. This selection is done maximizing the utiliipdtion
U; at each step. As several robots can be assigned the samierfregit, each
cell is discounted each time it is assigned to a robot. Inwyg, only one robot
is assigned to each frontier cell. Additionally, targetdtians which can poten-
tially be observed by other robots already assigned areuiiged. This is done by
introducing a utility functionU (t) given by

n-1
Ulta 1t tha) = Ug = > Puist, t), (6.2)
i=1

whereP,is(tn, tj) describes the probability that the frontigrcan be observed by a
robot moving tat;. In our approach, this probability density is approximalbgda
linear function.

The algorithm of Figure 6.2 furthermore reduces the intexéeof robots dur-
ing the exploration taking into account the visibility ctnaénts, which are included
in the utility function. Moreover, the inclusion of semaninformation about the
target locations improves the distribution of robots, ggvpreference to corridor
places when selecting goal position for exploring unknowgasa. As a result, the
time needed to explore an indoor environment using a tearohmits is signifi-
cantly reduced.

However, the exploration time reduction is not significaritew using teams
with a small number of robots. This fact can be explained mgiiering the single-
robot exploration scenario. In this case, it makes no serfgetis on exploring the
corridors first, since the robot has to cover the overallr@mvnent with its sensor.
In our experiments, the exploration time doesn'’t decrefibmiteam has less than
five robots.



Section 6.3. Target Assignment using Semantic Place Lapeli 75

Determine the set of frontier cells.

Compute for each robatthe cost\/ti for reaching each frontier cdll

Estimate for each frontier cellthe semantic labeling;.

Set the utilityU; of all frontier cellst to Uit (L¢, n) according to their seman-
tic labelingL; and the size of the team.

While there is one robot left without a target point
1. Determine a robatand a frontier celt which satisfy

i.t) = argmax Uy — V).
( ) (91’))( t t)

2. Reduce the utility of each target pothin the visibility area according

to
Ur « Uy — Pyis(t, t').

Figure 6.2: Algorithm for the assignation of target locaido the diferent robots
in a team.
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6.4 Localization Using Place Recognition

In this section we show how to include the semantic inforaraibout places in
the popular Monte Carlo localization approach introducg®ellaertet al.[1999.
This localization method applies a recursive Bayesianraeh® maintain a pos-
terior about the location of the robat given the mapm of the environment, the
odometry informationig_1, and the observatiors

P(X | M Z14, Upt-1) = 17+ P(Z | M, %) - p(x | m)- (6.3)
: f P(X | X, Ue—1) - p(X | M, Z14-1, Up—2) dX.
X/

In our implementationm is a occupancy grid map, in which each cell addi-
tional stores the the semantic label corresponding to ésepl The set of possible
places to be recognized are corridor, doorwdiice, kitchen, seminar room, and
laboratory. This set of places corresponds to the one apipli€hapter 5.

As observationg; ¢, we use the output of the classifier the robot uses for place
labeling. This classifier is the same as the one introduc8eation 5.2, and applies
a probabilistic decision list in which each element is a binApaBoost-based
classifier. The quantity(z | m, x) is then determine ap(z | y;), wherey; is
the class assigned t@ in m. To estimatep(z | yt), we generated statistics about
the output of the sequential multiclass classifier givenrtiteot was at a place
corresponding tg;. Additionally, we weight the particles inversely proportal to
the occupancy probability a¢ in m.

6.5 Experimental Results

The approaches presented in this chapter were implemesied teal robots as
well as simulations. The goal of the experiments is to shoat the semantic
information about places can improved both, multi-robgilesation in indoor en-
vironments, and localization of single robots.

6.5.1 Improving the Exploration Time Using Semantic Information

The first experiments were designed to show how the semanfiticiation about
places can improve the distributions of the robots in a teamnd the explo-
rationtasks. Due to the big numbers of robots used, we eealuzur technique
only in simulation experiments.

To prevent a loss of performance compared to approacheshwlbicot con-
sider semantic place information for small robot teams, mggér the influence
of the semantic place information depending on the sizeatdam. We linearly
decrease the influengefor teams smaller than 10 robots. The linear interpolation
of the influence of the semantic labels is encoded in thayufilinction Uit (Lt, n),
wheren denotes the number of robots in the algorithm of Figure 6.2.
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In a first experiment we used the map of the Fort Sam Hustonitab$pig-
ure 6.3, top), which contains several corridors togetheéh wboms adjacent to
them. In the experiment we apply our method for coordinasiegeral robots us-
ing semantic information about places, and compared itéocdse in which no
place information is used. The bottom image of Figure 6.3vshibe results when
using diferent robot teams. The number of robots varies from 5 to 58¢h éeam.
For each team size, we repeated the experiments 50 time$.tte axperiments
the robots started from the same initial position. As thé¢ gthows, the time needed
to explore the complete environment is significantly redietethe confidence level
of 0.05 when using semantic place information.

The reason for this time reduction is the increment of talgeations when
using our approach. As the robots concentrate on explonegarridor first, more
target locations appear coming from the adjacent roomsur€i§.4 depicts the
effect on the number of frontier cells when using place labeliAg the image
shows, a bigger number of target locations appears duriaglitferent decision
steps of the target assignment algorithm.

A similar experiment was carried out using the map of thel IResearch Lab
(top image of Figure 6.5). Again we observed a significanticédn in the explo-
ration time as shown in the bottom image of Figure 6.5.

Additionally, our assignation method reduces the interiees between the
path of the robots during the exploration. This reductiors wa up to 20% in
our experiments.

6.5.2 Influence of Noise in Place Labeling

So far we have assumed that the semantic classification ¢dtipet locations had
no errors. In real situations,however, errors usually apdaring the labeling pro-
cess (see experimental results in Chapter 3 and 5). It isftirerinteresting to ana-
lyze how the classification errordtact the performance of our method. For this,
we carried out an experiment in which we randomly misclassifitferent per-
centages of target locations, and measure the explorati@naccording to them.
Figure 6.6 shows the resulting performance usirfieteént team sizes. When the
error in the classification exceeds 15% the improvemenigusemantic informa-
tion is not significant anymore.

6.5.3 Localization Using Place Recognition

The last experiment is designed to illustrate how semamifticination about places
can be used to improve the localization of a mobile robotsrentvironment. In
this experiment, we used an ActivMedia Pioneer Il robot. eNtbiat the laser data
is only fed into the semantic classifier and not used for médalization.

Figure 6.7 illustrates the evolution of two particle setgmtime. In the first
row, the semantic information was available whereas in dw®3d row only the
odometry information was used. Both filters were initiatiagith a uniform dis-
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Figure 6.6: Exploration performance withfigirent classification errors.

tribution with 1Q 000 particles. The robot initially was located in the sectafd

office, north of the corridor. Therefore, particles locatedfiice received higher
importance weights compared to the other samples. Whdreapproach utilizing
semantic information converges quickly to the correct oty the particle filter
that relies only on the odometry informatiq(x; | m) finally diverges.

6.6 Related Work

Different aspects of multi-robot exploration have been stuiticithe past. For
example, Singh and Fujimuid 993 present a method for heterogeneous robot
teams. In this approach, if a robot is too big to pass throughreow passage, it
informs other robots to do this task. Howaetdal. [2004 introduce an incremental
deployment approach that explicitly deals with situationg/hich the path of one
robot is blocked by another.

Mataric and Sukhatm§2001] present dierent strategies for allocating tasks
in a robot teams and analyze their performance fiiletgnt experiments. The work
by Parker[2003 studies how a team of heterogeneous robots can jointly solve
certain task that can not be accomplished by a robot indiigluThe Hungarian
method to compute the assignments of frontier cells to mtsointroduced by Ko
et al.[200d. In contrast to our work, Ket al.[2003d mainly focuses on finding a
common frame of reference in case the start locations ofabets are not known.

The coordination technique presented is this chapter istemiéon of the work
by Burgardet al.[2005. We also discount the utility of target locations if they are
visible from a goal location already assigned to a robot.amnti@st to[Burgardet
al., 2004, our approach estimates and incorporates background kdge/labout



Figure 6.7: Global localization using semantic informatand odometry (first row) compared to an approach using dwyotdometry
information (second row). The images in one same columresgmt the corresponding filter at the same time. The arroivdtes the
ground truth position. As the results indicate, semanficrimation can be used to speed up global localization.
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environmental structure into the goal point assignmentguiare.

The semantic labels used to improve multi-robot coordimatian be seen as
background knowledge about spacial structures.gtak [2003 presented a tech-
nigue which aims to learn background knowledge in typicdbior environments
and later on use that knowledge for map building. They agyr approach to de-
cide whether the robot is seeing a previously built portiba map, or is exploring
new terrain.

Localization is a typical problem in mobile robotics, andfelient approaches
have been applied to solve this problem. The grid-basedl@zsed Monte Carlo
localization was introduced by Simmons and Koefi§94. This approach ap-
proximates the posterior of the robot pose using a histograen the possible
discrete poses. Several authors have successfully applithased Monte Carlo
localization in their work, as for example Burgaed al. [2000d, Hertzberg and
Kirchner[1994, and Simmonet al. [200d. Multi-hypothesis extended Kalman
filters is another approach for localization used ifiedent works, as for instance
in [Jensfelt and Kristensen, 2d0{Roumeliotis and Bekey, 20p0and[Reuter,
2004. Finally, particle filter approaches were introduced byl&stet al.[1999
and Foxet al.[1999. In this chapter we will use the last approach, also known as
Monte Carlo localization, including the semantic clasatiion of places.

For related work about the method for semantic labeling atgs, we refer the
reader to Sections 3.7 and 5.6.

6.7 Conclusions

In this chapter, we have shown how the semantic informatielpshto improve
other robotic tasks. In particular, we proposed a novelrtiegle that takes into ac-
count semantic information about places in the context ofadinated multi-robot
exploration. The main idea is that mobile robots can usattnesic information of
human-made environments to improve their actions. Thisovgment is obtained
by selecting the best target locations according to thairesdic classification. The
semantic labeling of the target locations is done using aaB&dst-based classi-
fier. Additionally, a hidden Markov model is apply to improtie classification in
a virtual trajectory to the target position.

Alternatively we have seen how the semantic informationuéiptaces can be
used to localize the robot in an indoor environment usingMioate Carlo local-
ization approach. In this case, the observation model ofdhet corresponds to
the semantic classification of its position.

Both methods demonstrated that the semantic informatiofbeaiseful in dif-
ferent tasks using autonomous mobile robots.



Chapter 7

Semantic Information in Sensor
Data:

7.1 Introduction

So far, we have seen how to augment the maps in the enviroemétht seman-
tic information. This additional information was obtainlkey classifying the laser
range data obtained by a mobile robot into some of the clabs¢sepresent the
different places in the environment.

Here, we present afiierent approach. Instead of classifying the pose of the
robot according to the corresponding range observationglassify the observa-
tion itself by assigning a semantic label to each of its meaments. The main
idea is to classify each laser beam into the class of objdutsit For example, if
a beam hits a person, then we assign the lakesonto it. In this way, the data
provided by the range sensor contains additionally semaritrmation about the
objects in the environment.

In this chapter we consider the binary case in which two jpesdabels are
assigned to the fferent range measurementsersonor non-person The choice
of these labels is given by the fact that the world is a dynaemgronment in
which different agents, such as people, cars, animals and others,comstantly.
In the specific case of indoor environments, likBaes or houses, we can consider
that people are the most common moving agents. It is thusestiag to design
methods for the detection of people by mobile robots.

The application of laser sensors for people detection haa pepular in the
past, as they provide a large field of view and, opposed towjsire mainly in-
dependent from ambient conditions. However, laser rangeatantain little infor-
mation about people, especially because they typicallgisbof two-dimensional
range information. Figure 7.1 shows an example scan frorateectd dfice envi-
ronment. While this scan was recorded, several people daliteugh the fice.
The scan suggests that in cluttered environments, peofdetiaba in 2D is dfficult

1This chapter originated from a joint work with Kai O. Arras.
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Figure 7.1: Example scan from a typicdlioe. It seems very flicult to detect
which beams are hitting people.
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Figure 7.2: Typical range readings from legs of people. Asloa seen, the ap-
pearance can change drastically, also because the legst eduvays be separated.
Accordingly, the proper classification of such pattern ifclilt.

even for humans. However, at a closer look, range measutsri&t correspond
to humans have certain geometrical properties such ascizalarity, convexity
or compactness (see Figure 7.2).

The key idea presented in this chapter is to divide the rahgergations into
segments, and then extract several scalar features framttia encode their ge-
ometrical properties. Finally, we apply a supervised lggymlgorithm based on
ApaBoosrT to select the best features while at the same time creatitegsifter for
the laser beams.

The rest of the chapter is organized as follows. Section @éstribes the
method to classify the beams in a scan. In Section 7.3, thefsgtometrical
features is described. Experimental results are showndtidder.4. We discuss
related work in Section 7.5. Finally, we conclude in Secfios
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7.2 Classification of Segments Using Boosting

The key idea of this work is to classify the beams correspanth a laser scan into
ones hitting a person or not. For this purpose we segmentegam$ into subsets
using a segmentation algorithm. We then extract some geizaidieatures from
these subsets and apply the generalizegdBdost algorithm to select the features
that best classify the beams into measurements correspptalpeople.

As explained in Section 2.3, the generalizedhBoost algorithm is a super-
vised learning algorithm designed to find a binary classthat discriminates be-
tween positive and negative examples:aBoost boosts the classification perfor-
mance of a simple learning algorithm by combining a coltattf weak classifiers
to a stronger classifier. The final strong classifier takefatme of a weighted com-
bination of weak classifiers followed by a threshold. Larggghts are assigned to
good classification functions whereas poor functions havallsveights.

To classify the dierent segments of a laser observation, we create a weak
classifier for each of the geometrical featufesxtracted from them. The weak
hypotheses have the form

+1 if p;fj(X) < p;o;

hj(x) = { -1 otherwise (7.1)

whereg; is a threshold ang; is either-1 or +1 and thus representing the direction
of the inequality. This form is similar to the one used in &&tB8.2. Also here the
algorithm determines for each weak classifig{x) the optimal values foé; and
pj, such that the number of misclassified training examplesngmzed

7.3 Feature Extraction

In this section we explain how the geometrical features @raeted from the laser
observations. We assume that the robot is equipped withgersensor that de-
livers observationg = {by,...,b_} that consist of a set of beams. Each bdam
corresponds to a tuple(, pj), whereg; is the angle of the beam relative to the
robot andpj is the length of the beam.

The beams in the observation s@are split into subsets using a jump distance
condition: If two adjacent beams are farther away than sstiolel distance, a new
subset is initialized. As we will see in the experimentss gimple method results
in good segmentations for the detection of people. For aitiandl list of segmen-
tation algorithms we refer the reader to the work by Preneehitt Nune$2005.

The output of the partitioning procedure is an ordered secg® = {S;, ..., S}
of segments such thal S; = z. The elements of each segmént (X1, Xo, ..., Xn}
are represented by Cartesian coordinates (X, y), wherex = pcosg) and
y = psin(®), and ¢, p) are the polar coordinates of the corresponding beam.

The final training set for the #Boost algorithm is then given by a set of
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segments together with their corresponding labels
E = {(Si.l)Ilie{+1-1}},

wherel; = +1 indicates that the segme8t represents a person ahd= -1 indi-
cates that the segme8i is not a person.

Once the laser observation is divided into thffedent segments, we can pro-
ceed to extract the geometrical features from them. We defifeaturef as a
function f : S — R that takes a segmeS8tas an argument and returns a real value.
Here,S is the set of all possible segments. For each segment warde&ethe
following fourteen features:

1. Number of points in the segment.

Standard deviation of the beams length.

Mean average deviation from median.

Jump distance from preceeding segment.

Jump distance to succeeding segment.

Euclidian distance between the first and last point of anse).
Linearity of the segment.

Circularity of the segment.

© © N o 00 bk~ 0 DN

Radius of the circle fit in the segment.

=
o

Boundary length.

=
=

. Boundary regularity.

[EnY
N

. Mean curvature.

[ =Y
w

. Mean angular ¢lierence.
14. Mean speed between two consecutive scans.

This collection of features constitutes a profile of eachrsmgt (see Figure 7.3).
Since certain features are not defined for less than thregsp@.g., circularity, ra-
dius) only segments witin > 2 points are taken into account. Details for the
calculation of each feature are given in Appendix B.

Some workd Fod et al, 2002; Cuiet al, 2005; Topp and Christensen, 2005
report the use of additional conditions on the distance beiwblobs, typically to
associate two legs to the same person. We deliberately doonstder such con-
ditions. The association of single legs to persons, esihewvhen several people
stand close together, is a complex data association prolliemur opinion, this
problem can more robustly be solved by integrating multipibservations over
time rather than directly on the level of the feature detecto
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number of points = 6
standard deviation = 0.055436
mad from median = 0.19294
jump dist start = -3.12
jump dist end = -0.45
5} width = 0.56931 i
linearity = 0.079474
circularity = 0.025282
+ radius = 0.26603
boundary length = 0.79191
boundary regularity = 0.061545
a5t mean curvature = 2.5883 |
mean angular diff = 0.38145
mean speed = -0.026042

1 15 2 25 3

Figure 7.3: Laser segment with its feature profile. The higied points corre-
spond to the segment and the crosses depicts other readitigssdcan. The circle
and line are fitted to the segment for tiveearity andcircularity features.
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Detected Label
True Label Person No Person | Total examples
Person 239(99.58%) 1(0.42%) 240
No Person| 27(1.03%) | 2589(98.97%) 2616

Table 7.1: Confusion matrix for the corridor environment.

7.4 Experimental Results

The approach presented above has been implemented using SIEK laser
range finder. The goal of the experiments is to demonstrateotir simple features
can be boosted to a robust classifier for the semantic clzst#iin of the beams
corresponding to a laser scan. Each beam is semanticalyethlas person or
non-person.

Throughout the experiments, the sensor was kept stati@marynounted 30 cm
above the floor. The corresponding scans where segmentethamgometrical
features were calculated for each segment according teo8etB8. The complete
set of labeled segments was then divided randomly into mifigdiand a test set,
each containing approximately 50% of the segments. Theitigaisets were em-
ployed for learning a strong classifier using the methodesresl in Section 7.2,
whereas the test set was used for the evaluations. The segimdioth sets were
labeled manually with the help of videos recorded duringekgeriment.

One important parameter of theoABoost algorithm is the number of weak
classifiersT used to form the final strong classifier. We need a fast peagikxtbr
as we want the classifier to work in real time. After severaleziments, we found
that a value ol = 10 weak classifiers was the best tradebetween the error rate
and the speed of the classifier.

7.4.1 Corridor and Office Environments

In the first experiment we analyze the performance of our atethhen used in a
corridor. We recorded a total of 540 scans in the corridohefliuilding 79 at the
University of Freiburg. This corridor is approximately 2@tars long. The scans
were recorded while a person was both moving and standith@Fitjure 7.4 left).
Each scan was divided into segments and for each segmeratueds #1 to #13
were calculated. The total number of segments extractedbWas. After dividing
the segments into a training and a test set, we trained oaBdost classifier. The
results from the test set are shown in Table 7.1. Only 1 frolhsggments (0.42%)
corresponding to the person was misclassified (false megdtiwhereas 27 from
2616 segments (1.03%) not corresponding to the person JWasgfeed as people
(false positives).

In a second experiment, we placed the laser inféoethat contained tables,
chairs, boxes, round shaped trash bins, and other furnitceating a cluttered en-
vironment (Figure 7.4 right). An example scan taken in tmgienment can be
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Figure 7.4: The corridor (left) andfice (right) environments in which the experi-
ments were carried out.

Detected Label
True Label Person No Person | Total examples
Person 497(97.45%)| 13(2.55%) 510
No Person| 171(2.73%) | 6073(96.26%) 6244

Table 7.2: Confusion matrix for theftce environment

shown in Figure 7.2. In this case two people were in the roorinduhe experi-
ment. Like in the previous experiment, the people were ngpeind occasionally
standing still. A total of 791 scans were recorded from whighextracted 13838
segments. The segments were divided into a training and ag¢eand a strong
classifier was learned. Although théioe was cluttered with objects and furniture
that strongly resemble features of legs, we still obtaineawerall classification
rate of 97.25%. The confusion matrix is shown in Table 7.2.

In a third experiment we created a common set of segmentsioorg all
the segments from both the corridor and tiféce environment. Again, the set
was divided into a training and a test set. Table 7.3 showsdahéusion matrix.
Although the error rates slightly increase with respectdblés 7.1 and 7.2, they
still remain under 4%, which in our opinion is a fairly goodridéé This result
demonstrates that a common classifier can be learned usthgebwironments
while still obtaining good classification rates.

Detected Label
True Label Person No Person | Total
Person 722(96.27%)| 28(3.73%) 750
No Person| 225(2.54%) | 8649(99.88%)| 8860

Table 7.3: Confusion matrix for both corridor anflice environments simultane-
ously.
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Detected Label
True Label Person No Person | Total
Person 217(90.42%)| 23(9.58%) 240
No Person| 112(4.28%) | 2504(95.72%)| 2616

Table 7.4: Results obtained in the corridor environmemgite classifier learned
in the dfice

7.4.2 Transferring the Classifiers to New Environments

In the following experiment we analyze wether a classifiarded in a particular
environment can be used to successfully classify the bea®mredtions in a new
environment.

For this purpose we trained oumABoost-based classifier using the training
set corresponding to thefice environment in the previous section. We then clas-
sified the test set from the corridor scenario. Table 7.4 shive results of this
classification. As expected, the errors increase compargtetsituation in which
the training and the test data were from the same environritntever, the clas-
sification rates remain above 90%, which indicates that tmarithm yields good
generalizations and can also be employed for people detettinew environ-
ments.

7.4.3 Comparison With a Heuristic Approach

To analyze how much can be gained by our learning approacltomgared the
classification results of our ®Boosrt-based classifier with the results obtained
using a manually designed classifier. This classifier engolegtures that are typi-
cally found in the literature on laser-based people tragkin particular, we create
a classifier using the following list of heuristics:

e Jump distance between adjacent beams for local minimactixingfeatures
#4 and #5). The threshold for both features has been set tm30 ¢

e Segment width (feature #6). In this case, local minima blgiesater than
5 cm and smaller than 50 cm are considered as people.

e Minimum number of points in the segment (feature #1). A segmath
four or more points is considered as corresponding to a perso

e Motion of beams (feature #14). Two consecutive scans agmedi and
beam-wise subtracted from each other. Segments that odrgams which
moved more than a certain distance are classified as peopls.minimal
distance was set to 2 cm, close above sensor noise.

e Standard deviation as a compactness measure of a segnatutgf#2). The
threshold was experimentally determined and set to 0.5rmete
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Heuristic Approach| AdaBoost
False Negatives (% 34.67 3.73
False Positives (%) 9.06 2.54
Overall Error (%) 11.06 2.63

Table 7.5: Comparison with the heuristic approach

Without Motion Feature With Motion Feature
False Negatives (% 3.73 3.47
False Positives (%) 2.54 3.13
Total Error (%) 2.63 3.15

Table 7.6: Classification errors including the motion featu

To compare the performance of oup#Boost-based method with the previous
set of heuristics, we repeated the experiment of Sectionl,7where segments
from the corridor and fiice were used together as examples. We then classified
the test set using both approaches. The results of thefidatisin are shown in
Table 7.5. As this table indicates, our approach yields niugtter results than the
heuristic approach.

7.4.4 Experiments Including the Motion Feature

In the previous experiments, only the first thirteen geoitatfeatures were used.
These features were static and did not take into accoungelsamm the observations
during time.

In the experiment of this section, we added the motion fea#il to the set
of features to be fed to the boosting process. All scans flarcorridor and the
office runs were simultaneously used for training and clastditéSection 7.4.1).
The results of the classification are shown in Table 7.6. Asbeaseen, adding the
motion feature results only in a marginal improvement ower ¢lassifier without
the motion feature (Table 7.3). Although the motion feattgeeives relatively
high weight (it is ranked as the third most informative feajuwe think that this
marginal improvement is simply an expression of the fadtpleaple do not always
move.

7.4.5 Best Features for People Detection

As we did in Section 3.6.5, we now look into the set of weaksifeers selected
by ApaBoosrt to find the most important. Since each weak classifier reptese
feature, this is somehow equivalent to choose the best $eanfres. We take into
account the importance of the individual feature weightgafinal strong classi-
fier. Table 7.7 lists the five best features for the classif@néd in the corridor,
office and both environments respectively. Note that sometiheesame features
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Environment| Five Best Feature
Corridor 9,4,5,2,4
Office 9,13,3,4,5
Both 9,13,4,3,5

U7

Table 7.7: The best five features for each classifier

occurs more than once in a classifieff@iing in their threshold or weight values.

Analyzing the Table 7.7, we can see that the most informdéet¢ure in all
the environments is the the radius of the circle fitted ineosbagment (feature #9).
This feature is an alternative estimation of the size of emgment. The mean an-
gular diference (feature #13) is the second most important featuestifying the
convexity of the segment. The following features in impoc& are the two jump
distances (features #4 and #5). These two features arallypised in the litera-
ture for people detection. Finally, we found the featurea#@ #3, which measure
the compactness of the segment. Feature #3 seems to bequefEne reason for
this is likely to be the more robust properties of the meamlaits deviation from
the median over the simple standard deviation.

7.5 Related Work

In the past, many researchers focused on the problem ofricapkeople in range
scans. One of the most popular approach in this context igttact legs by the
detecting moving blobs that appear as local minima in thgeamagdFodet al,,
2002; Kleinhagenbroclet al., 2002; Scheutzt al, 2004; Schulzt al., 20034.
To this end, two types of features have been quite populatiomand geometry
features. Motion in range data is typically identified bytsatting two subsequent
scans. If the robot is moving itself, the scans have first tallgmed, e.g., using
scan matching. The drawback of motion features is that omdyingpeople can
be found. Topp and Christensg2004 extend the method of Schudt al.[20033
by the ability to track also people standing still, whichr flastance, is useful for
interaction. They report on good results in typical sceghut also on problems
in cluttered environments. They also conclude that eitimgroved motion models
or more advanced pattern detection of people are necessary.

Cui et al.[200] pursue a multi-sensor approach to people tracking using mul
tiple laser scanners at foot height and a monocular caméter. registration of the
laser data, they extract moving blobs of 15 cm diameter dsciesdidates. Two
feet candidates at a distance of less than 50 cm are treatestes candidate.

Geometric features have also been used by Xatiat. [2005. With a jump
distance condition, they split the range image into clgséerd apply a set of geo-
metric rules to each cluster to distinguish between lingsles and legs. A leg is
defined as a circle with an additional diameter condition.

In all approaches mentioned above, neither the selectideabiires nor their
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thresholds are learned or determined other than by mansigrdand hand-tuning.
This motivates the application of the learning techniquesented in this chapter.

Finally, Haehnekt al.[2003 have considered the problem of identifying beams
in range scans that are reflected by dynamic objects. Thesidmmthe individual
beams independently and apply EM to determine, whetherta heam has been
reflected by a dynamic object such as a person. Our methodnirast, considers
groups of beams and classifies the entire groups accordihgitgproperties.

Parts of the approach presented in this chapter have bedrnussent works
on people detection ayat tracking. Zivkovic and Krosg007 apply our method
to detect people in 2D laser range data. The detection ofl@éoplso done using
vision. Both methods are combined to create a robust peaitcidr. In their
work, Premebidat al. [2007 use some of the geometrical features presented in
this chapter to the detection and tracking of objects inrlesa&dings.

7.6 Conclusions

This chapter addressed the problem of adding semantionafiton about people
in sensor readings. Our approach applies theBdosT algorithm to learn a robust
classifier from simple features, and it identifies groupsegfrhs that correspond to
legs of people. The method has been implemented and appledtiered dfice
environments. In practical experiments carried out ifiedént environments we
obtained encouraging detection rates of over 90%.

From the features selected by#Boost we can conclude that the shape of
people in range data is best recognized by a radius featwanexity feature, a
local minimum feature and a robust compactness feature.

Although in this chapter we concentrate only on the detactibpeople, we
think that the approach here presented can be easily exteéageld semantic in-
formation from other objects in the environment.
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Chapter 8

Conceptual Spatial
Representation of Indoor
Environmentst

8.1 Introduction

In this chapter we will show how the semantic classificatibiplaces is used as
part of a more complex representation system in a mobiletrdhgarticular, we
introduce our integrated system for conceptual spatialessmtations of indoor
environments for service robots.

Recently, there has been an increasing interest in robaisevéim is to assist
people in human-like environments, such as domestic orlgldare robots. In
such situations, the robots will no longer be operated biyndcdh personnel but
instead have to interact with people with little or no fornb@ining in robotics.
Communication and interaction between robots and humarse key issues for
these systems.

One of the most intuitive and powerful ways for humans to camicate is
spoken language. It is therefore interesting to designtsothat are able to speak
with people and understand their words and expressionsthispthe robot needs
to perceive the world similar to a human. However, when camgathe way
robots typically perceive and represent the world with thdifigs from cognitive
psychology about how humans do it, it is evident that thera large discrep-
ancy. Bridging the gap between human and robot spatial septations is thus of
paramount importance.

In this chapter we present an integrated approach for ageatinceptual rep-
resentations of human-made environments using mobilgésobbe concepts rep-
resent spatial and functional properties of typical indeavironments. Our model
is composed of layers containing maps dfatent levels of abstraction as shown

1This chapter originated from a joint work with Hendrik ZendRatric Jensfelt, and Geert-Jan
M. Kruij ff
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in Figure 8.1. The lower layers contain a metric map, a naiiganap and a topo-
logical map, each of which plays a role in navigation and-klélization of the
robot. On the topmost level of abstraction, the conceptugb provides a richer
semantic view of the spatial organization. The complete ehpdrmits the robot
to do spatial categorization rather than only instantratiddditionally, the multi-
layered representation is created in a semi-supervisedagpsition process, in
which a tutor communicates with the robot using spoken laggu

The rest of the is organized as follows. In Section 8.2, weriles the multi-
layered conceptual spatial representation. The map atigaiprocess is outlined
in Section 8.3. In Sections 8.4, we present implementatetaild of the complete
system. In Section 8.5, a demo is presented in which we shewapabilities of
the service robot. We discuss related work in Section 8.8allyi we conclude in
Section 8.7.

8.2 Multi-layered Conceptual Mapping

The aim of our multi-layered conceptual mapping is to geteespatial represen-
tations that enable a mobile robot to create a conceptuaehaichuman-made
environments similar to the way humans do. These conceptsspond to spatial
and functional properties of typical indoor environmeniollowing findings in
cognitive psychologyMcNamara, 1985 we assume that topological areas are the
basic spatial units suitable for situated interaction leemvhumans and robots. We
also proceed from the assumption that the way people regeplace is determined
by the functions people ascribe to that place.

Considering these ideas, our final representation modeVided into layers,
each representing aftkrent level of abstraction. Starting from sensory inpugdia
scanner and odometry), a metric map and a navigation mapseqing traveled
routes are constructed. On the basis of detected doorwaygokgical partition-
ing of the navigation map is maintained. The previous lapé&sg a crucial role for
the robot control systems. The conceptual map provides eepbmal abstraction
of the lower layers. In the conceptual layer, spatial knolgks innate conceptual
knowledge and knowledge about entities in the world stergririom other modal-
ities, such as vision and dialogue, are combined to allowsyonbolic reasoning
and situated dialogue. Figure 8.1 depicts the four layethetonceptual spatial
representation.

8.2.1 Metric Map

The first layer of our model (Figure 8.1, bottom) contains &immeepresentation of
the environment in an absolute frame of reference. The gemnpeimitives of the
metric map consist of lines extracted from laser range sc@ush lines typically
correspond to walls and other flat structures in the enviemtmlhe complete met-
ric map is created by a mobile robot using simultaneous iaEbn and mapping
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Figure 8.1. An example of a layered spatial representatomifi indoor environ-
ment.
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Figure 8.2: The metric map is represented by lines. The a#vig map is visually
represented by the stars. figirent colors representftirent areas separated by
doors, which are marked by bigger red stars.

(SLAM) techniques. In particular, we apply the same franives by Folkessoat

al. [2004, which uses general representations for features thagéssldymmetries
and constraints in the feature coordinates . Furthermbesigpresentation allows
for the features to be added to the map with partial initélom. The number of
dimensions for a feature can grow with time as more inforamais acquired. The
basis for integrating the feature observations is the eggrKalman filter (EKF)
[Thrunet al, 2005. An example metric map created using this method is shown
in Figure 8.2.

8.2.2 Navigation Map

The second layer contains the navigation map representadytgph. This repre-
sentation is based on the notion of a roadmap of virtual $paee markerfd.atombe,
1991; Newmaret al, 2004. As the robot navigates through the environment,
a marker (navigation node) is dropped whenever the robotrhasled a certain
distance from the closest existing marker. The graph sdorgslanning and au-
tonomous navigation in the known part of the environment.

We distinguish between two kinds of navigation nodes: plamges and door-
way nodes. Doorway nodes indicate the transition betwefarent places and
represent possible doors. They are detected and added wenéhe robot passes
through a narrow opening. Later, the status (gglesed) of a known door can
be monitored using the laser scanner. Additionally, dogrmades are assigned
information about the door opening such as width and orirmtia

Each place node is classified into one of two semantic labafagly Grripor
or Roowm, following the approach presented in Chapter 3. This metbosemantic
classification assigns a label to the pose which corresptintte place node we
want to classify. To increase the robustness of the metheddalitionally classify
each place node using the majority vote of the classificaifathe poses close to
it. As explained before, a node is added to the navigationwiagn the distance to
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the previous node is greater than a threshold. We use thitofatore the classifi-
cation of the laslN poses of the robot between two place nodes. We then compute
the majority vote of these la$l poses and assign the final classification to the
corresponding destination node.

8.2.3 Topological Map

The topological map divides the set of nodes in the navigagi@ph into difer-

ent areas. An area consists of a set of interconnected nbdpgd 8.2). In this
view, the exact shape and boundaries of an area are irrélevVae set of nodes

is partitioned on the basis of the door detection mechanigotamed in the pre-
vious section. This approach complies with previous stitiédcNamara, 1986;
Hirtle and Jonides, 1985which state that humans segment space into regions that
correspond to more or less clearly defined spatial areas.

Note that this method for topological map extraction is a@erahtive to the
one presented in Chapter 4. Here, the approach is basedyronittie detection of
doorways as the boundaries betweelfiedient regions. Then the nodes in the dif-
ferent regions are labeled according to its semantic dleason. This procedure
is more appropriate for an online creation of the topoldgicap. In contrast, the
method introduced in Chapter 4 is afllime approach which uses simulated range
data for the classification of the free poses in the map.

8.2.4 Conceptual Map

The conceptual map provides the link between the low-lexagdsrand the commu-
nication system used for situated human-robot dialogus.dliso in this layer that
knowledge about the environment stemming from other mbieslisuch as vision
and dialogue, is anchored to the metric and topological maps

Based on the work by ZendE2004, our system is endowed with a common-
sense OWL ontologySmithet al., 2004 of an indoor environment. The complete
ontology is shown in Figure 8.3. This ontology describesotmmies (s-a re-
lations) of room types and typical objects found thereirotigh has-arelations.
These conceptual taxonomies have been handcrafted andtdachanged on-
line. However, instances of the concepts are added to thwogmyt during run-
time. Through fusion ofcquiredandassertedknowledge (as will be explained in
Section 8.3), and through the use of theate conceptuaknowledge, a reasoner
[Haarslev and Molle, 20QXaninfer information about the world that is neither
given verbally nor actively perceived. In this way, lingidgsreferences to spatial
areas can be generated.

Acquired Knowledge

While the robot moves around constructing the metric andlagpcal maps, our
system derives higher-level knowledge from the informatiothese layers. Each
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topological area, for instance, is represented in the qg@naeémap as an ontolog-
ical instance of the typarea. Furthermore, as soon as reliable information about
the semantic classification of an area is available, thisfieeted in the concep-
tual map by assigning the area’s instance a more specificdfypéher Room or
Corridor. Information about recognized objects stemming from trsgow sub-
system is also represented in the conceptual map. Whenaewax abject in the
environment is recognized, a new instance of the objeqis,tg.g.Couch, is added

to the ontology. Moreover, the object’s instance and th&ime of the area where
the object is located are related via thieessObject relation. This process is shown
in Fig. 8.1.

Asserted Knowledge

During a guided tour with the robdElin A. Toppet al., 2004, the user typically
names areas and certain objects that he or she believesetebant for the robot.
Typical assertions in a guided tour include “You are in theridor," or “This is
the charging station." Any such assertion is stored in tmeeptual map, either by
specifying the type of the current area or by creating a ng@oblnstance of the
asserted type and linking it to the area instance witthtt®dbject relation.

Innate Conceptual Knowledge

We have handcrafted an ontology (Fig. 8.3) that models q@naeécommonsense
knowledge about an indooffice environment. On the top level of the conceptual
taxonomy, there are the two base conceyisa andObject. Area can be further
partitioned intdRoom or Corridor. The basic-level subconceptskdom are char-
acterized by the instances 0bject that are found there, as represented by the
hasObject relation.

Inferred Knowledge

Based on the knowledge representation in the ontology,ystes uses a description-
logics based reasoning softwdkaarslev and Molle, 20Q3hat allows us to move
beyond a pure labeling of areas. Combining and evaluatiqgieed and asserted
knowledge within the context of the innate conceptual mggl the reasoner can
infer more specific categories for known areas. For exangqumbining the ac-
quired information that a given topological area is clasdifis a room and contains
a couch, together with the innate conceptual knowledgengiveur commonsense
ontology, it can be inferred that this area can be categbasdbeing an instance of
LivingRoom. Conversely, if an area is classified as a corridor and thedlssvs
the robot a charging station in that area, no further infegetan be drawn. The
most specific category the area instantiates will stilCberidor.

Our method allows for multiple possible classification oy amea because the
main purpose of the reasoning mechanisms in our system &ciitdte human-
robot interaction. The way people refer to the same room o@erdrom situation
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to situation and from speaker to speaker, as reported byEliopp et al.[2004.
For example, what one speaker prefers to call the kitcheintnhig referred to as
the recreation room by another person. Since our aim is tdleeta resolve all
such possible referring expressions, our method suppotigaous classifications
of areas.

8.3 Interactive Map Acquisition

The multi-layered representation is created using the auatibn of a user-driven
supervised map acquisition process with autonomous extjiardiscovery by the
robot. This process is based on the notiorHaiman-Augmented Mappings in-
troduced by Elin A. Topgt al.[200d. We additionally use a linguistic framework
that actively supports the map acquisition process ande@ s situated dialogue
about the environment. More details about the dialog cédiiebiof the system are
given in[Kruijff et al, 2007.

The map can be acquired during a so-called guided tour sogmarwhich
the user shows the robot around and continuously teache®lloé new places
and objects. During such a guided tour, the user can comnhanebbot to follow
him or instruct it to perform navigation tasks. Our systeragioot require an initial
complete guided tour. Itis also possible to incrementaéch the robot new places
and objects at any time the user wishes. With every new piécefamation,
the robot’s internal representations become more compl8t#l, the robot can
always perform actions and conduct meaningful dialoguaiatie aspects of its
environment that are already known to it.

Whenever the user gives an assertion about areas in themmént or objects
found therein, the robot updates the conceptual map withskerted information.
The concurrent constructions of the metrical map and thelégjcal abstraction
level propagate the information in a bottom-up manner. fogrewith the laser-
based area classification, these pieces of informationttead update of the con-
ceptual map with acquired knowledge.

Following the approach by Kruij et al. [2004, the robot can also initiate a
clarification dialogue if it detects an inconsistency ingpmatial representation, il-
lustrating the mixed-initiative capabilities of the diglee system.

8.4 System Integration

Figure 8.4 sketches the connections between tfierdnt modalities implemented
in the CoSy explorer. The robot acquires information abbetenvironment using
different sensors, namely a laser range finder and a camera. nfdrimation is
used for object recognition, place classification, and [eetjacking. All these
perception components are also part of the navigation stdrsy which uses the
sensors for SLAM and motion planning.
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Figure 8.4: The information processing in the integrate@¥Bxplorer system.
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Figure 8.5: Two example objects used in the CoSy Explorenaste The left
image shows a couch and the right image depicts a bookcase.

The information coming from the sensors is then used to eatulti-layered
conceptual and spatial representation of the man-madeoenvent the robot is
acting in. Some of the information needed at the concepwadl to complete
this representation is given by the user through spokeogligs. In this case, the
communication between the user and the robot supports rmxgative: either the
user explains some concepts to the robot, or it is the roladtpibses questions to
the user.

The complete system was implemented and integrated in dnMadia Peo-
pleBot mobile platform (robot in Figure 8.4). The robot isuggped with a SICK
laser range finder, which is used for the metric map creapeople following,
and for the semantic classification of places. The placesifieation is based on
a 360 field of view. However our robot has only one laser at the framtering
a restricted 180field of view. To solve this problem we follow the approach de-
scribed in Section 3.5 and maintain a local map around thet iwhich permits us
to simulate the rest of the beams covering the rear part afoibet. Additionally,
a camera is used only for object detection. The detectioresysuses SIFT fea-
tures for finding typical objects like a television set, a dowr a bookcase. We
recognize instances of objects and not categdtiese, 2004. The objects must
be shown previously to the robot and learned by it. Examplexbjects used for
recognition are shown in Figure 8.5.

The communication with people was completely done usindgespdanguage
(Figure 8.4). The user can talk to the robot using a bluetbetidset and the robot
replies using a set of speakers mounted on the mobile piatfor

As an additional tool, we use an online viewer for the metrid aavigation
maps. The output of this program is composed of the lineaetdd by our SLAM
implementation extended to 3D planes to facilitate thealigation. The viewer
shows the dterent nodes and edges used to construct the navigation nuaj@sN
corresponding to doorways are drawn bigger and with redraotd with an as-
sociated doorframe as shown in Figure 8.6. Finally, the tre@lml the user are
constantly shown in the positions where they are localiz€de localization of
the robot is calculated using SLAMFolkessoret al, 2005, while the pose of
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the person is estimated using people tracking methods lmadgdn laser read-
ings[Schulzet al,, 20034.

The robot, being equipped with an onboard computer (850 Midahected to
two built-in loudspeakers, runs the Player softw@erkeyet al,, 2003 for control
and access of the hardware, and the Festival speech swsbétsiard Clarket al,,
2004. The rest of the system runs on five laptops (1.8 GHz) interected using
a wireless network. The first laptop is placed aboard thetrpladform. It is con-
nected to the onboard computer via an Ethernet crossovér aat to the rest of
the system using its wireless adapter. This laptop runsafieare for navigation,
SLAM and people tracking. A second laptop runs the Windoweraiing system
and is used for the real time speech recognitnance, 199P Itis also placed on
the robot platform in order to ensure a reliable bluetoothneation to the head-
set that recorded the user’'s voice commands. The recogseeeth strings are
sent to a third laptop, which runs the real-time dialogueessing and conceptual
mapping subsystems. The fourth computer constantly @lesshe current pose
of the robot into a semantic class based on laser data. Thedagputer handles
the viewer tool for debugging purposes. The communicatetween the dierent
processes is established in a mixed environment usinglPGBckets and an OAA
framework[Cheyer and Martin, 20Q1Fewer computers could have been used, but
the setup was convenient as it allowed each subsystem gevdtohave his own
computer.

8.5 Demo

In order to show all the functionalities explained in thevioes sections, we car-
ried out a demo at the 7th floor of the CAS building at the Rogatitute of Tech-
nology in Stockholm. In this demo the robot, together withsanigoes through
different situations (or episodes) along the environment. theptete demo was
carried out non-stop, i.e. we did not stop the robot or rester system at any
moment. The duration of the complete experiment was of aqpitely 6 min-
utes. Each of the episodes is explained in detail in the restians and a video
is available at the CoSy project webdit@oSy, 2004 under the explorer scenario.
The demo was thought of as a test, and for this reason we fea®e artificial
situations to simulate possible real ones (e.g. the falsendty in Section 8.5.2).
A similar experiment was carried out in which the robot iatds constantly with
the user and the environment for more than 30 minutes durfiffexent demo in
the CoSy projectCoSy, 2004. In this case, the robot was presented to an audience
while explaining its actions. Some of the episodes wereategeto clarify some
questions. The robot again run with no interruptions oreysproblems. This led
us to think that our implementation is quite robust and magdue serve as basis
for a long term service robot.

The idea of the demo is to show how the robot learns its enwigari while
interacting with a tutor. However, some previous knowletgeeeded during this
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Figure 8.6: Snapshots of the online viewer using during ¥peement. The stars
indicate the nodes in the navigation map. Small and blue daiidor, small and
yellow for room, big and red for doorways and medium and gifeerthe actual
position of the robot. Additionally, lines are extended @ @anes and simulated
doorways are drawn for facilitating the visualization. Tgerson is drawn in the
position detected by the people following software. In tbp image the robot
enters room after detecting a doorway. In the bottom imagetmplete map of
the room is created using lines.
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Figure 8.7: Trajectory followed by the robot to train thesdéier for distinguishing
between corridor and room. Thefidirent places are depicted with distinct colors.

process. First, the robot needs an ontology representm@edheral knowledge
about the environment. For this purpose, we use the ontaliegycted in Fig-
ure 8.3. Furthermore, the classification of places is base@revious general
knowledge about the geometry of rooms and corridors, wisi@ncoded in a clas-
sifier based on laser readings as explained in Section 8.Be2classifier is trained
using examples of corridors and rooms from real environmastthe one shown
in Figure 8.7. These two kinds of knowledge are independgtiieoenvironment
used for testing, in the sense that the robot does not neesl pbysically present
in the test environment to acquire the information. Finate robot has to recog-
nize ditferent objects, such as couches or TV sets, using vision {geesFB.5 for
some examples). Because we do instance recognition rdihercategorization,
the objects we want to recognize must be presented to the¢ bafore running
the experiment. For this purpose, we position the robotontfof these objects,
acquire a training image and label it with the correspondargn, which is added
to a small database of objects and also included in the lg@gagstems for its
posterior use.

We follow explain the dierent episodes contained in the complete demo.

8.5.1 Episode 1: Waking Up

The demo starts in the corridor, where the robot is positiatiese to the charging
station. The user activates the robot and tells it that ibéafed at the charging
station (Figure 8.8). The user then asks the robot to follow. iThe robot drops
markers (navigation nodes), which are classified as catrritioen the person fol-
lowed by the robot enters a room through a doorway. The do@ctizgnized and
the corresponding node is set. From this point the next nailebe classified as
a new area and correctly labeled as room.
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Figure 8.8: The user wakes up the robot and the demos starts.

8.5.2 Episode 2: Clarification Dialogues

In this episode we want to show the utility of the clarificatidialogues. As ex-
plained in Section 8.2.2, our door detection is simply basedetecting when the
robot passes through a narrow opening. However, this aldhstilV lead to some
false doors in cluttered rooms. Assuming that there are &sefnegatives in the
detection of doors, we get great improvements by enfordiagitis not possible to
change room without passing through a door. For exampldewmdving around
in a room the robot may detect a narrow passage and falsalynasthat a door
was passed, putting a door label on that particular node. rdlbat continues to
move around in the room and eventually reaches the nodesbiefone adding the
false door. These nodes will then hav&elient room labels, that is, the room has
changed without passing a door. If this happens, an indensig is found and a
clarification dialogue with the user is triggered.

To test the former situation we put a bucket close to a tabteérmroom creat-
ing an illusion of a doorway when using only the laser as seridee robot passes
through this false doorway and comes back to a previousljedisiode. At this
point the robot infers that there is an inconsistency in thg end initializes a clar-
ification dialogue asking if there was a door previously. Tler denies this fact
and the map is updated accordingly. A more detailed exptamaf the complete
process of clarification dialogues for a similar situatisrpiresented by Krufj et
al. [2004.
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Figure 8.9: The user asks the robot: “Where is the chargimtipst?".

8.5.3 Episode 3: Inferring New Concepts

In this episode we test how the robot infers new categodmatiof places when
discovering new objects. The goal is to use our SIFT-basgtbiletector together
with the laser-based place classification to detect simipjects and places. Then,
using the inference on thetie ontology as explained in Section 8.2.4, the robot
is able to come up with more specific concepts.

While staying in the room, the robot is asked for the currdate and it an-
swers with the indefinite description “a room", which is iméal from the naviga-
tion nodes in the area. A majority vote among the nodes inrbe ia used in case
the node classification is not unanimous. Then the robotkisca® look around.
This command activates the vision-based object detectipatilities of the robot.
The robot moves and detects a couch, and then a televisioAfsat that, the user
asks the robot for the name of the place. Because of the imferaver the detected
objects and places, the robot categorizes the placeldasingroom. Note that
previous to the detection of objects the same place wasarized as ®oom. As
a further test of the robot’s classification it is asked whbeecharging station is
located and correctly answers “it is in a corridor” (Figur@)8

8.5.4 Episode 4: Going to Objects

Finally, we show how the navigation map is used by the robataime back to
previously visited places.

After the door opening situation, the robot is asked to gdnéotélevision. The
robot then navigates to the node where the television wasrebgFigure 8.10)
This functionality permits the user to command the robot laxgs without the
need of giving concrete coordinates. It is also more povanfthe sense that the
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Figure 8.10: Following the order “go to the television", tabots approaches the
navigation node from where it saw the television the lasetim

user may not know the concrete name of the place, but he caamber it as ‘the
room with a television". After that, the robot is commandedb to the charging
station. Again the robot follows the navigation map untpdsitions itself on the
station, thus finishing the experiment.

8.6 Related Work

Several approaches on mobile robotics extend metric maps@br environments
with semantic information. The work by Diost al. [200 creates a metric map
through a guided tour. The map is then segmented accordihg tabels given by
the instructor. Friedmaet al.[2007 useVoronoi Random Fieldfor extracting the
topologies.

Research in spatial representations has yield&edrdint multi-layered environ-
ment models. Vasudevaet al. [2004 suggest a hierarchical probabilistic repre-
sentation of space based on objects. The work by Galatdd. [2004 presents
an approach containing two parallel hierarchies, spatidi@nceptual, connected
through anchoring. Inference about places is based ontelfgmnd in them. Fur-
thermore, theHybrid Spatial Semantic HierarchfHSSH) is introduced by Bee-
sonet al.[2007. This representation allows a mobile robot to describe thedv
using diferent representations each with its own ontology. Compiaréuese ap-
proaches our implementation uses human augmented majpiogllecting infor-
mation. The communication with the robot is made entireipgigatural language
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and dialogues. Moreover our conceptual representatioresdrom the fusion of
acquired, asserted, and both inferred and innate knowledge

There are more cognitively inspired approaches to robotgaten for con-
veying route descriptions from a technically naive user tadabile robot. These
approaches need not necessarily rely on an exact globdbsalfzation, but rather
require the execution of a sequence of strictly local, wefined behaviors in order
to iteratively reach a target position. Kuipd290d presents th&patial Semantic
Hierarchy (SSH). Alternatively, theRoute Graphmodel is introduced by Krieg-
Briickneret al.[1999. Both theories propose a cognitively inspired multi-lager
representation of thmap in the headwhich is at the same time suitable for robot
navigation. Their central layer of abstraction is the togatal map. Our approach
differs in that it provides an abstraction layer that can be useeference resolu-
tion of topological entities.

A number of systems have been implemented that permit a tobioteract
with humans in their environment. Rhino Burgatal. [20004 and Robox Sieg-
wartet al.[200d are robots that work as tour-guides in museums. Both rolkbts r
on an accurate metric representation of the environmenusadimited dialogue
to communicate with people. The robot BIRON Spexairdl.[2004 is endowed
with a system that integrates spoken dialogue and visualifadion capabilities
on a robotic platform similar to ours. This systenffeis from ours in the degree to
which conceptual spatial knowledge and linguistic mearirgggrounded in, and
contribute to, situational awareness.

8.7 Conclusions

We presented an integrated approach for creating condetpieesentations of
human-made environments where the concepts represerl spad functional
properties of typical fiice indoor environments. Our representation is based on
multiple maps at dferent levels of abstraction. The complete system was inte-
grated and tested in a service robot which includes a litiguisamework with
capabilites for situated dialogue and map acquisition. &tperiments show that
our system is able to provide a high level of human-robot comoation and cer-
tain degree of social behavior.
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Chapter 9

Conclusions

The work presented in this thesis presentdtedent approaches for adding seman-
tic information to the representations of indoor environtse We concentrated on
extending the information on the maps created by a mobiletralith labels that
represent dferent places in the environment. Each of these places hdkeeedi
functionality, such as corridorsfiices or kitchens.

Throughout this dissertation we have seen how the semaificriation about
places can improve the capabilities of mobile robots ffedent domains including
human-robot interaction, localization, and exploration.

We first presented a technique based on supervised leah@hgriables a mo-
bile robot to recognize the filerent places in an indoor environment. To carry out
this classification the robot must first take observatiorsthen extract some fea-
tures from them. These features will be used later to rezeghie diferent places.
As main observations we have used the range measuremeateofihders, from
which several features were extracted that encoded themegical properties.

The learning method used for classifying thé&elient places was based on the
ApaBoost algorithm. The input for the algorithm were the featuresamted from
the observations, and as output we obtained a strong ctaissifich included the
more informative features for each place.

The geometrical features are quite good candidates forrgieragion, since
they encode space information. We saw in Chapters 3 to Shbatttong classifier
created with geometrical features could successfully desterred among fier-
ent environments. The main reason is that indoor envirotsnesually contain the
same type of places, as for instance, corridors, doorwaysams. Additionally,
these places share similar structures between ffiereint indoor environments:
corridors are typically elongated, and rooms are usuallyencompact and clut-
tered. These common characteristics permit the robot to lealassifier in one
environment and recognize the same placesflierdint ones.

Furthermore, we used vision sensors to increase the nurhplaaes to clas-
sify. The main problem with vision observations was to dethe features that
maintained a good generalization in the classifier. We ofstedounting the num-



114 Chapter 9. Conclusions

ber of specific objects that appear in a panoramic image thkehe robot. The
selection of these features was motivated by the fact tipétal/objects appear at
different places with dlierent probabilities. For example, the probability of firglin
a computer monitor in anffice is larger than finding one in a kitchen. Again these
features are usually very common in several indoor envienis

The previous approach for semantic classification was wseldssify the pose
of a mobile robot using the laser and image-based featureseter, this method
did not take into account the classification of neighboringgs. To include this
information, we extended the approach with some probdbilischniques. We
first smoothed the classification of all poses in an envirartnusing probabilis-
tic relaxation and instance-based associative Markov orésy Both approaches
improved the final classification using neighboring infotima, which allowed the
robot to extract compact regions of the environment andet@#opological map.

Mobile robots are dynamic agents that move aloritgdent trajectories. When
operating in indoor environments, the robots usually harederate velocity and
a relatively continuous movement. That means, that obsengobtained by a
mobile robot at nearby poses are typically very similar.tik@mmore, certain tran-
sitions between classes in a trajectory are rather unlilkay example, to go from
the kitchen to the fhice the robot sholud traverse a doorway first. This transition
information was encoded in a hidden Markov model and sutwgsspplied to
smooth the classification of the poses of the mobile robatgabotrajectory. Some
nice examples results using this approach were presenteldapter 5.

As we stated above, the semantic information about placeégarove other
typical robotics tasks. The main idea is that mobile robeats ase the intrinsic
information of human-made environments to improve theiioas. In particular,
we showed how the information about places could improvedoirformance of
a team of mobile robots during exploration. The results ef éxperiments in
Chapter 6 demonstrated that places as corridors are bgfilrraion targets as
they lead to other rooms.

Another typical problem is the localization of mobile rokotn this problem
the robot must determine its pose relative to a given mapodtezing the type of
place the robot is located at can be seen as a high levelZatal. If the robot
is in an dfice, then other places can be discarded, and the robot caentoate
on selecting the poses that belong only to theces. This idea was presented in
Chapter 6 together with experiments that corroboratedsigulness.

The semantic information can also represent other kind jgotd in the envi-
ronment and not only places. In Chapter 7, we presented aoagpto include
the semantic labels directly to the beams of a laser rangerfital this way much
richer information is available from the sensor.

Since one of the main goals of the semantic labeling is toesteams, such
as corridor or ffice, with humans, it seems necessary to develop roboticrsgste
that can communicate these concepts to humans. In Chapier iBtroduced an
integrated system for conceptual representations of ineledgronments. This sys-
tem included a linguistic framework with capabilites fausited dialogue and map
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acquisition. The dferent episodes during the demo demonstrated the intamactio
capabilities of this system, and how a high level concepelesentation could be
create based on language communication and semantic atiomabout places.

We think that the work presented in this thesis is one of tha fiovering so
many diferent aspects relating semantic information about plase®umobile
robots. As we described in the related literature of sevdrapters, dferent pos-
terior works have applied and extended some of the ideasgiesented. This
indicates that a lot of work can still be done.

It would be interesting, for example, to move from the supad approach
presented in this work to other methods with less supemvisi@ne possibility
could be to use semi-supervised techniques, in which thet i initially create
an first classification of the environment autonomously.sTdassification can be
corrected later on by the user. In this way, the user doesewd to indicate the
label of each place the robot is located at. A second poggibbuld be to leave
the robot create a totally unsupervised classification @filaces.

In any case, it seems that information coming from the usenp®rtant, since
someone has to decide how to name tHEedint places. This last issue bring us to
the problem of personalization: people can describe thes gdate with diferent
terms. For example, what for a person is a living room, can sigtiag room for
another. It could be interesting to study approaches aldegde with this flexibility.

The work presented in this thesis concentrated in indooir@mwents. How-
ever, in the last years, outdoor robots have received arascrg interest. Some
initial works try to classify the dferent outdoors environments, but the complexity
here is quite high. One of the main problems is that rangereéens give lit-
tle information about places in outdoor environments. k@ teason, approaches
are moving to vision to do this classification. Semantic linfation can refer not
only to places and objects, but also to situations. Peojpleserg a road, or cars
overtaking, are examples of situations which can be labglddsemantic terms.

To conclude, we think that the semantic labeling is a re$earea which can
have a high impact in the future of mobile robotics.
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Appendix A

Simple Features for Place
Classification

In this appendix we give the mathematical formulation ofshaple features used
for place classification. We also include the ones from myiptes work in[Mo-
z0s, 2004 so that the reader can have the complete set of definitions.

A.1 Simple Features Extracted from Laser Beams

We usez = {bg,...,by_1} to define the set of beams taken as one observation.
Each beanb; is represented by a tuple;(d;), whereq; is the angle of the beam
relative to the robot and is the length of the beam.

A.1.1 Average Dfference Between the Length of Two Consecutive Beams

The average dlierence between the length of two consecutive befigageis
defined as

M-1
1
faverage= M Z |di - d[(i+1) mod M]| . (A-l)
i=0

A.1.2 Standard Deviation of the Diference Between the Length of
Two Consecutive Beams

The standard deviation of theffirence between the length of consecutive beams
fstq is defined as

M-1
1 2
fstd = J m y (|di - d[(i+1) mod M]| - faverag% s (A-Z)

where faveragels the feature defined in Equation (A.1).
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A.1.3 Average Dfiference Between the Length of Consecutive Beams
Considering Max-Range

The value max-range is a thresh@lahdicating the maximum lengtty for a beam.
Using thise, we define the function lengjtib;) as follows:

d ifdi<é6

6 otherwise (A-3)

length,(br) = {

The feature representing the averagéedence between the length of two consec-
utive beams using max-randgerage IS then defined as

M-1
1
1:averag(,:ﬁ = M Z |Iength9(bi) - Iength}(b[(iﬂ) mod M])| . (A-4)
i=0

A.1.4 Standard Deviation of the Dfference Between the Length of
Two Consecutive Beams Considering Max-Range

The standard deviation of theftiirence between the length of two consecutive
using max-rangdsqy is defined as

gl

M-1

1 - 2
fstd,e = J v (|Iength9(bi) - Iengtr‘b(b[(iﬂ) mod M])| - faverageQ) s (A-S)

Il
o

where faverage is the feature defined in A.1.3.

A.1.5 The Average Beam Length

The average beam lengfh is defined as

=
AN

5 di. (A.6)

2|~
T

A.1.6 The Standard Deviation of the Beam Length

The standard deviatiofy. of the beam length is defined as

[N

1 M= —\2
fFJm O(di—d), (A7)

wheref; is the feature defined in Equation (A.6).
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Gap

Figure A.1: Example of a gap in a laser scan.

A.1.7 Number of Gaps

Two consecutive beams build a gap if their lengtfietience is greater than a given
thresholdd. An example of a gap is shown in Figure A.1. Formally, we deéirse
gap with threshold as

1 if |di—dj|>9

gapy(bi. bj) = { 0 otherwise (A-8)

The featurefgapg representing the total number of gaps is calculated as

M-1

fgapss = Z gap,(bi, byis1) modmy) - (A.9)
=0

A.1.8 Number of Beams Lying on Lines Extracted from the Range

This feature is calculated using the method by Sack and Baifgack and Bur-
gard, 2004.

A.1.9 Euclidean Distance Between the Two Points Corresponty to
Two Consecutive Global Minima

This feature was designed to help in the classification ofrglodf we plot the
length of the beams of an observatiprnwve obtain a graph like the one shown in
Figure A.2(b). We can look in this graph for two global minimpa= (X1, y1), p2 =
(%2, ¥2) which can be the representation of a doorframe (Figurea))2(The Eu-
clidean distance betwegn andp; is then calculated as

fdistance-minima = \/(Xl - X2)? + (Y1 — Y2)?. (A.10)
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Doorframe

(@)

14 T T T T T T T

12 H

10 H

|

X X

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

(b)

Figure A.2: Representation of a set of beams collected wihereobot were in a
door. In Figure A.2(a) the arrows indicate the two minimaathcan indicate a
doorframe. Figure A.2(b) is a plot of the length of the bearfise two marksX
indicate the same two minimg{ and py in the text).
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A.1.10 The Angular Distance Between the Two Points Correspaling
to Two Consecutive Global Minima

The two points corresponding to the global minipap, calculated in Section A.1.9
correspond to the end of two beams, ile.andb,. The angular distance between
these two beams is used as a feature, in the form:

fo—minima = lo1 — @2| . (A-ll)

A.1.11 Average of the Relation Between Two Consecutive Beam

The average relation between the length of two consecutai faveragerel iS
defined as

i

(A.12)

f
averagerel = d[(,+1) mod M]

A.1.12 Standard Deviation of the Relation Between the Lengtof Two
Consecutive Beams

The standard deviation of theffiirence between the length of consecutive beams
fstarel IS defined as

fotg-rel = J Vi Z(

where faveragerel is the feature defined in Equation (A.12).

2
- 1:averagerel) s (A- 13)

d[(|+1) mod M]

A.1.13 Average of Normalized Beam Length

The average normalized beam lendf{ragenorm iS defined as

(A.14)

M-
favera enorm = T Z
g M

wherednax corresponds to

A.1.14 Standard Deviation of Normalized Beam Length

The standard deviation of the normalized beam lerfgthnorm is defined as

1 M-1 di 2
fsta-norm = M Z - faveragenorm > (A.16)
i=0

dmax
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where faveragenorm COrresponds to the feature defined is Equation (A.14).

A.1.15 Number of Relative Gaps

Two consecutive beams build a relative gap if the relatiomben their lengths is
greater than a given threshald Formally, we define a relative gap with threshold
0 as

if |4
rgap(bi, bj) = L |di| >0 (A.17)
0 otherwise
The featurefigapsy representing the total number of gaps is calculated as
M-1
frgapss = Z rgap, (i, byi+1) modmy) - (A.18)

i=0

A.1.16 Kurtosis

We define the kurtosi§irtosis Of @ sScan as

4
Z'l\io di - fa
fkurtosis = % -3, (A.19)

where fz and f, are the features defined in Equations (A.6) and (A.7) restyt

A.2 Simple Features Extracted from a Polygon Approxi-
mation

This set of features is calculated from a polygonal appratiom P(2) of the area
covered by the observatian= {by,...,by-1}. The verticess; of the closed poly-
gon P(2) correspond to the coordinates of the end-points of eacmlgaof z
relative to the robot

P@ = {vo....,VM-1,Vm = Vo}, (A.20)

wherev; = (X, Y;) with x; = d; cosa; andy; = d; sing;.

A.2.1 AreaofP(2

The area of the polygon approximati®(z) is given by

<

1

fArea = (XiYi+1 = Xis1Vi) - (A.21)

NI =

Il
o
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A.2.2 Perimeter of P(2)

The perimeter of the polygon approximati&gz) is given by

M-1

fperimeter= Z dist(i, Vi+1) (A.22)
i=0

where

dist, 1) = 06 = Xs2)? + 01 = Ye2)?. (A.23)

A.2.3 Mean Distance Between the Centroid and the Shape Bouady

The centroicc = (cy, ¢y) of P(2) is defined as

M-1
1
Cx = D06+ %2)(6¥41 = Xisa¥h) (A.24)
6- 1:Area i—0
M-1
= Vi) O6Yiet — Xie 1Y) - A.25
& = & fAreai;(y. Yir)(XYis1 = Xis23i) (A.25)

The mean distance between the centroid and the shape bgwid(z) is calcu-
lated as

M-1
1 .
fmean-shape= M Z dist(v;, c), (A.26)
i—0
where
distv, ©) = /(% — G2 + (i — )2 (A.27)

A.2.4 Standard Deviation of the Distances Between the Certid and
the Shape Boundary

The standard deviation of the distances between the cdratnal the shape bound-
ary of P(2) is given by

M-1
1 .
fstd-shape= M Z dist(vi, €) = fmean-shape (A.28)
i=0

where fmean-shapeanddist(vi, ) are defined in Equation (A.26) and Equation (A.27)
respectively.
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A.2.5 Invariant Descriptors Based on the Fourier Transformation

To calculate the Fourier céiiwients we transform each vertexe R? of P(2) into
a complex numbey; e C in the form[Burkhard, 200

Vi= (%), = ¥ =X+, j= V-1. (A.29)

The Fourier cofficients{c_p,...,C_1,Cg,C1,...,Cy} Of P(2) are then calculated as

1 M1
G = > (W + iy 1) | AV | (A.30)
k=0
Ch = ASq1 — AS)e T )k A.31
" G é( Scrl — A8 (A31)
with

AV = Vi =Y (A.32)
AS = AV/|aV| (A.33)

k-1
t = > |a%l k>01t=0 (A.34)

i=0
T = perimeter ofP(2). (A.35)

The Fourier descriptorS_, ..., Xo, .. ., X3}, which are invariant to similarity,
that is, translation, rotation and scale, are calculated as

{y(n = %ej(®n+(1—n)®z—(2—n)®1)} (A.36)
@, = phase ofc,. (A.37)

A.2.6 Major Axis Ma of the Ellipse that Approximates P(2)

Having the first two Fourier cdicients €_1,¢;) of P(2) (see Section A.2.5), we
can calculate the major axis of an ellipse that approximepolygonP(2) as

fma = [C1] +[C_1]. (A.38)

A.2.7 Minor Axis Mi of the Ellipse that Approximates P(2)

Having the first two Fourier cdicients €_1, c;) of P(2) (see Section A.2.5), we
can calculate the minor axis of an ellipse that approximttegolygonP(z) as

Mi = [Ica| = [c-all. (A.39)
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A.2.8 Invariant Moments of P(2)
The central momenis,q of P(2) up to three are:
M-1M-1
po= > > 6=y -9, (A.40)
i=0 j=0
M-1M-1
por= >0 > 06—y -y (A.41)
i=1 j=1
M-1M-1
pi= )0 > 6= 0Ny -9 (A.42)
i=1 j=1
M-1M-1
o= > > (6 =%y - y)°, (A.43)
i=1 j=1
M-1M-1
poa= ) > 06 =%y -y, (A.44)
i=1 j=1
M-1M-1
o= > > 06— R%y; -y)°, (A.45)
i=1 j=1
M-1M-1
pos= ) > (6= %%y -y)°, (A.46)
i=1 j=1
M-1M-1
IR R(TE) (A.47)
i=1 j=1
M-1M-1
po1 = (% = %%y =" (A.48)
i=1 j=1
with
1 M-1
X=— Xi (A.49)
M
i=1
and
_ 1E
V=172 Vi- (A.50)
j=1
The normalized central moments®@z), denotedyq, are defined as
M
Tpa = — » (A.51)
Hoo
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where

y=5+1, (A.52)

forp+gq=23,... .
A set of seven invariant moments with respect translatiotgtion and scale
can be derived from the second and third moments as

$1 = n20+1n02, (A.53)

¢2 = (20— 102)* + 421, (A.54)

¢3 = (30— 3112)° + (321 — 1M03)° (A.55)
¢a = (130+m12)° + (21 + 103)°, (A.56)

5 = (30— 3m2)(130 + m2) |30 + m12)* — 321 + moa)?|  (A57)
+(3n21 = 103)(m21 + 103) [ 30730 = 112)” = (121 + m03)°] ,

#6 = (120 —102) [(7730 +112)% = (721 + 7703)2] (A.58)
+4n11(n30 + 112) (21 + 103) ,

¢7 = (3121 —103)(M30 — 1712) [(7730 - m2)® - 3021 + 7703)2] (A.59)
+(3m12 — 130) (21 + M03) [ 3730 + M12)* — (121 + M03)?

A.2.9 Normalized Feature of Compactness dP(2)
The normalized feature of compactnesg.¥lof P(2) is calculated as
_ Areaa(z)

- H20 + HO2
whereuz, o2 are the central moments of second order calculated in $e&ti8.

cmp , 0<Mcmp<1, (A.60)
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A.2.10 Normalized Feature of Eccentricity ofP(2)

The normalized feature of eccentricity.Mof P(2) is defined as

\/(ﬂzo + 1102)? + 4uf,
Mect = , 0<Met<1, (A.61)
H20 + HO2
where uo, o2, 111 are the central moments of second order calculated in Sec-

tion A.2.8.

A.2.11 Form Factor of P(2)
The form factor of thé?(2) is given by:

4rfarea

ff—factor -,
aY fPerimeter

where farea and fperimeterare the features defined in Equations (A.21) and (A.22)
respectively.

(A.62)

A.2.12 Circularity of P(2)
The circularity ofP(2) is defined as

2

fs .
feircularity = —P:Arlmeter. (A.63)
rea

A.2.13 Normalized Circularity of P(2)
The normalized circularity oP(2) is defined as

£ _ 4-7- farea
‘circularity —  £2 ’
Perimeter
where farea and fperimeterare the features defined in Equations (A.21) and (A.22)

respectively.

(A.64)

A.2.14 Average Normalized Distance Between the Centroid anthe
Shape Boundary

The centroidc = (cy, ¢y) of P(2) is defined as

M-1
c = e Viel — Xis1Yi), A.65
X 6. fArea;(Xl Xi+1)(XiYi+1 — Xic1Vi) ( )
M-1
¢ =

i+ Yir1)(XYier — Xis1Vi) - A.66
6.f/m;(y. YrD) (o1 = Xie1¥) (A.66)
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The mean of the normalized distance between the centroitherghape boundary
of P(2) is calculated as

M-1
1 .
fmean-norm-shape= ™ Z dist(v;, ¢), (A.67)
i=0
where
disty. ¢) = — st 9 (A.68)
argmax dist(vj, c)
with

dist(v,©) = (X — G + (% — G, (A69)

A.2.15 Standard Deviation of the Normalized Distances Beteen the
Centroid and the Shape Boundary

The standard deviation of the normalized distances betwe=gentroid and the
shape boundary d#(2) is given by

M-1
1 —_—
fstd—shape= M Z d|3t(Vi, C) - fmeararnorm—shape’ (A-7O)
i=0

where fmean norm-shape @nd dist(vi, ¢) are defined in Equation (A.67) and Equa-
tion (A.68) respectively.



Appendix B

Simple Features for People
Detection

In this appendix we describe the mathematical definitiorheffeatures used for
segment classification. We define a segment as a $etcohsecutive beants =
{bo,...,bn_1}. Each beanty is represented by a tuple;(d;), whereq; is the angle
of the beam relative to the robot addis the length of the beam.

Additionally, each beanl; can be represented by its end-pomt= (x,V,),
with x; = dicosa; andy; = d; sing;. In this case, we assume that the origin of
coordinates lays on the center of the laser sensor.

B.1 Number of Points in the Segment

This is just the numbeN of points that composed the segment the segr8ent

B.2 Standard Deviation

The standard deviatiofy of the segmens if defined as

1 N-1
— . N2
fo = N—1§Hp' pIR. (B.1)

wherep denotes the center of gravity of the segment.

B.3 Mean Average Deviation from Median

This feature measures the segment compactness more yothasilthe standard
deviation. The median of a distributioh(x) is the value where the cumulative
distribution functionF(x) = 1/2. Given an ordered set &f scalar random samples
X the mediarnxTis defined as
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><

{ X(K+1)/2 if Kis odd (BZ)

2(XK/2 + XK/2+1) if Kis even

Opposed to the mean, the median is less sensitive to oullieosir multi-dimensional
case, we calculatp Using the vector-of-medians approach by AloJ@801, i.e.
p = (X, §). The average deviation from the median is then

1 N—
?‘NZ Ipi = Bl (B.3)
i=0

B.4 Jump Distance from Preceeding Segment

This feature corresponds to the Euclidian distance betwefirst point ofS; and
the last point of5;_1

fijump-prev = ||p0 - pS| 1” (B.4)

B.5 Jump Distance to Succeeding Segment

This feature corresponds to the Euclidian distance betweelast point ofS; and
the first point ofS;, 1

fjum p-next = | pﬁi_l SHl” (B.5)

B.6 Euclidian Distance Between the First and Last Point
of a Segment

This feature measures the Euclidian distance between #tefid last point of a
segment as

fwiath = llPo — Pn-1ll- (B.6)

B.7 Linearity

This feature measures the straightness of the segment eregmaonds to the resid-
ual sum of squares to a line fitted into the segment in the sepgires sense. Given
the segment points in polar coordinatgs= («;, d;), fitting a line in the Hessian
(¢, r)-representation that minimizes perpendicular errormftbe points onto the
line has a closed form solution. We use the (unweighted)essgions fronjArras,
2003. Once the line parameters, () are found, the residual sum of squares is
calculated as
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N-1

finearity = ), (xCOY®) + yisin(@) — r)?. (B.7)
i=0

B.8 Circularity

To calculate the circularity of a segme®f we sum up the squared residuals to a
fitted circle. Given a set of points in Cartesian coordinatefast way to find the
best circle in the least squares sense is to parameterizgdhiem by the vector
of unknowns ax = (X. Yo X2+ X2 —r2)T wherex, y. andr. denote the circle
center and radius. With this, the overdetermined equatistesA - X = b can be
established,

-2 -2y 1 X~y
2% - 1 —-X2 —
N I B ©.8)
2% 2y 1 —X3 = Yi
and solved using the pseudo-inverse
x = (ATA)AT . b. (B.9)
The residual sum of squares is then
n
fcircularity = Z (re - \/(Xc — %)+ (Ve - Yi)z)2 . (B.10)

i=1

B.9 Radius

This feature represents the radius of the circle fitted tesé#wgnent. It corresponds
to the valuer¢ in Equation (B.10).

B.10 Boundary Length

The boundary lengttiyoundary0f @ Segmens is defined as

N-2
fboundary= Z dist(pi, pi+1) - (B.11)
i=0

It measures the length of the poly-line corresponding tastggment. The function
dist(p;, pj) calculates the Euclidean distance between two pints.
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B.11 Boundary Regularity

The boundary regularity indicates the standard deviatidhedistances of adja-
cent points in a segment and is defined as

1 . 2
fo-reg = Jm (dlSt(pi, Pi+1) — Cﬁ , (B.12)

=z
N

Il
o

whered is the mean distance between consecutive points.

B.12 Mean Curvature

The average curvaturg = ; Rj over a segmerf is calculated using the following
curvature approximation. Given a succession of three p@iKitpg, andpc, let A
denote the area of the triangba pspc andda, dg, dc the three distances between
the points. Then, an approximation of the discrete cureatfithe boundary gbg

is given by

4A
fi = .
dadsdc
This is an alternative measurement for the radius of the eagnsince curvature
and radius are inverse proportional.

(B.13)

B.13 Mean Angular Difference

This feature traverses the boundary and calculates thagwef the angleg; be-
tween the vectorgj—1p; andp;pj.1. The corresponding featuffg, is then defined
as

fs, = 2(Pj—1P;}. PiPj+1) - (B.14)

Care has to be taken that angl&eliences are properly unwrapped. This features
is a measure of the convexitpncavity of segmerts.

B.14 Mean Speed

Given two scans with their associated timestamfipg .1, this feature determines
the speed; for each segment point along its beam as

K K
_ dt - d
Tier — T

whered‘f and d'j<+1 are the range values of beanat timesk andk + 1. The final
featuref, averages over all beams in the segment

Vi (B.15)
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fy=> v (B.16)
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Appendix C

Graphical Models

Probabilistic graphical models are graphs in which nodpsesent random vari-
ables, and arcs represent conditional dependence betiversn Hence, they pro-
vide a compact representation of joint probability disttibns[Murphy, 2001.

There are two main kinds of graphical models: directed ardiraated. The
first models are represented by graphs whose nodes are tethbydirected arcs.
They are also also known as Bayesian networks, belief ngsygenerative mod-
els or causal models. On the other hand, the arcs in an utetirgcaphical model
are undirected. Undirected graphical models are also kramsnarkov networks
(MN) or Markov random fields (MRFs). It is also possible to @a/model with
both directed and undirected arcs, called a chain graph.eMenvchain graphs are
out of the scope of this appendix.

C.1 Directed Models

An example of a simple directed graphical model is given muFe C.1(a). Here,

the arc from A to B can be informally interpreted as indicgtthatA causes BA

is also said to be thparentof B. A well known directed graphical model is the
Bayesian networkFigure C.1(b)). This representation has two main charzete
tics. First, each nod¥ has a conditional probability distributid®(Y;|ParentgY;))

that quantifies thefiect of the parents on the node. And second, the graph has no
directed cycles (a directed acyclic graph or DAG).

In a Bayesian network, a node is independent of its ancegiegs its parents,
where the ancestfarent relationship is with respect to some fixed topoldgica
dering of the nodes. In Bayesian networks, the expressiothéojoint probability
of all nodes can be simplified using the topology of the nekvenrd the conditional
independence relationships. As an example, the joint jitityeof the network of
Figure C.1(b) can be expressed using the chain rule as

P(A, B,C, D) = P(DI|A, B, C)P(CIA, B)P(BIA)P(A). (C.1)

By using the conditional independence relationships, werearite it as
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Figure C.1: Examples of directed graphical models.
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Figure C.2: Examples of Markov random fields.

P(A, B,C, D) = P(D|B, C)P(CIA)P(BIA)P(A). (C.2)

This expression indicates thét is independent of A giverB andC, andC is
independent oB givenA.

C.2 Undirected Graphical Models

An undirected graphical model, also callg@rkov random fieldfMRF) or Markov
network(MN), is a graphical model where no assumption is made albeudirec-
tion of the causality between nodes in the graph. Exampl®4RiFs are given in
Figure C.2.

We restrict ourselves here to the case in which nodes areseqied by discrete
variables. Each discrete variabtge Y corresponds to a set &f possible labels
Y, € {1,...,K}. We then define a Markov random field as an undirected graph
G = (V, &) where the set of node¥® represent discrete variables, and the edges
refer to the relations between them.
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>

(a) 1-clique (b) 2-clique

oi

(c) 3-clique (d) 4-clique

Figure C.3: Possible cliques extracted from the MRF of FegGr2(b). The 4-
clique in (d) corresponds to the complete original network.

A MRF can be divided into a subset of cliquéswhere each clique € C is
associated with a subs¥t € Y. The nodes in a cliqu¥; form a fully connected
graph in the MRF. Figure C.3 depicts some example cliquessponding to the
Markov random field of Figure C.2(b).

Each clique is accompanied by a potentig(Y.) which associates a non-
negative value with each assignmentto Y.. The Markov random field defines
the probability distribution

Pu) = 5 [ ] 4et0. ©3)

ceC

wherey represents an assignmentYof Additionally, Z is the partition function
given by

z=) | |otv0)- (C4)

y ceC

We focus now on pairwise Markov random fields. A pairwise Markandom
field is a network where all of the cliques involved are eithesingle node, or a
pair of nodes (1-clique or 2-clique). In a pairwise Markoxaam field with edges
E = {(ij)|i < j}, the nodes and edges are associated with potemiigfy and
#ij(Yi, Yj) respectively. This network defines the distribution
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N
[Toon [T #nony. (C5)

i=1 (i))es

NI

Py(y) =

whereN represents the total number of nodes in the network. Thaiparfunction
Z is now defined as

-3

y

N
a0 [ | et (C.6)
=1 (i))es
Additionally, in a Markov ramdom field, each node can be assigned a fea-
ture vectorx, € R%, which describes the properties of the object that the node
represents. Similarly, a feature vectgy e R% can be assigned to each ede.(
The feature vectox;; indicates the properties that describe the relation betwes
objects represented by the nodgésindY;.
The node and edge potentials are functions of the featur®rge¢ and x;;.
The simplest model of dependence of the potentials on therésais a log-linear
combination defined as

log gi(K) = W - ;. (C.7)
log ¢ij (k. 1) = wk' - i , (C.8)

wherewk andwX' are label-specific row vectors of node and edge parametits, w
sized, andd. respectively. This formulation assumes that all of the sadethe
network share the same set of weights, and the same for tles.edg

The representation of an assignmgiig done by a set dk - N indicators{y}(},
Whereyik = I(y; = K), with | being the indicator function which returns 1 if its
argument is true, and 0 otherwise. Remember ks the number of possible
labels for each nod¥, andN represents the total number of nodes in the graph.

We can now define the log conditional probability

K
DIl oY+ >0 T wWE XY, — 10gZa(®).  (C.9)

K
log Pw(YIX) =
k=1 (iHeskl=1

N
i=1
Here the partition functio,,(x) depends on the parametevand featurex, but
not on the labely.

The main task in a Markov random field consists on finding tlséggasnenty €
Y that maximizes lo@\,(y|X). This is actually anaximum a posteriofMAP) as-
signment that can be formulated as an integer linear progsshown by Task&2004.
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C.3 Associative Markov Networks

An important subclass of Markov networks are #esociative Markov networks
introduced by Taskd2004. These networks represent problems in which related
variables tend to have the same label. AMNs have been useekdmple, in text
classification domainkTaskar, 2004 or segmentation of 3D scan dd#nguelov
et al, 2009. In this last case, when the labels represent objects inDh&c8ne, it
is clear that 3D-points which are close to each other ten@ve khe same label, as
they probably pertain to the same object.

A common approach in AMNSs in to use generalized Potts modéPotts,
1954, which penalizes assignments that do not have the same dabeds the
edge. In this case the potential functions for edges haviothe

ik ) = Ajj, Aj <1, Vk#l, (C.10)
$ij (k. K) 1. (C.11)
Additionally, Taskar{2004 extends the Potter model with the goal of allow-

ing different labels to have fiierent attraction strengths. These new potentials are
defined as

gikl) = 1, Vk#l, (C.12)

gk k) = A5, A5 =1 (C.13)

C.3.1 Training Associative Markov Networks

Training an associative Markov network consists on learire weightsv given
an already labeled instancg, ) of the network. Herey indicates the labeling
given to the nodes, andrepresent the features of nodes and edges. The weights
are selected in a way that maximize Bg(y1x). This is computational expensive,
as the partition functioZ depends on the weightg and it has to be calculated for
each assignment @f during the search.

An alternative way of finding the weightgconsists on maximizing the margin
between the optimal labelingahd any other possible labeliggt § as

log Pw(¥1X) — log Pw(y1X) . (C.14)

In this case the partition functiafi cancels out and the maximization can be done
efficiently. This method is callethaximum margiroptimization. We refer the
reader td Taskaret al,, 2003 for more details in the training process.

C.3.2 Inference with Associative Markov Networks

Once we have learnt the weights for the network, we can appinfarence pro-
cess to label the nodes of a new unlabeled network. This is 8grfinding the
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assignmeny that maximizes Equation (C.9). Since the partition funtfodoes
not depend on the labels we can ignore it in the maximization process. Taking
into account some constraints imposed on the varia%‘lﬁme inference can be
done solving the linear program

N K K
DUk ) DT> xS (C.15)

i1 k=1 (iDee k=1
K

st W20, Vik >y=1 vi;
kel

YOSy WS <y vijesk.

More details about inference in associative Markov netwa#n be found in
[Taskar, 200k
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