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Zusammenfassung

Innenumgebungen können normalerweise in Orte verschiedener Funktionalität un-
terteilt werden, wie etwa Korridore, Räume oder Türdurchgänge. Die Fähigkeit
solch semantische Kategorien aus Sensordaten zu lernen, ermöglicht einem Robo-
ter die Umgebungsrepräsentation zu erweitern und seine Fertigkeiten zu verbessern.
So können beispielsweise natürlichsprachliche Ausdrücke, wie etwaKorridor oder
Raum, dazu verwendet werden um die Position des Roboters in einerintuitiveren
Weise mitzuteilen. Andere Aufgaben, wie Exploration oder Lokalisierung, kön-
nen durch den Roboter ebenfalls besser bewältigt werden, wenn dabei semantische
Informationen berücksichtigt werden.

In dieser Doktorarbeit wird ein Verfahren vorgestellt, daseinem mobilen Ro-
boter ermöglicht, verschiedenen Orten in Innenumgebungensemantische Kate-
gorien zuzuordnen und die Umgebungsrepräsentation durch diese Information zu
erweitern. Die Kernidee dabei ist, die Position des Roboters durch die aktuellen
Beobachtungen des Roboters zu klassifizieren. Die Beobachtungen, die wir in
der vorliegenden Arbeit nutzen werden, sind die Abstandsmessungen eines Laser-
scanners. Aus jedem Scan wird eine Menge von Merkmalen extrahiert, welche
Informationen über die geometrischen Eigenschaften des Ortes an dieser Position
tragen. Der Scan wird dann aufgrund dieser Merkmale in die entsprechende se-
mantische Kategorie eingeteilt. Das Ergebnis der Klassifikation ist eine Wahr-
scheinlichkeitsverteilung über der Menge möglicher semantischer Klassen. Diese
wahrscheinlichkeitstheoretische Darstellung erlaubt esuns weitere probabilistische
Techniken einzusetzen, um die Klassifikation zu verbessern, und somit die An-
zahl an Fehlern zu verringern. Wir werden auch eine Erweiterung des Verfahrens
vorstellen, die es dem Roboter ermöglicht andere Beobachtungsmodalitäten, wie
etwa Kamerabilder, in den Klassifikationsprozess zu integrieren.

Zusätzlich stellen wir in dieser Arbeit verschiedene Anwendungen des obi-
gen Verfahrens im Bereich der Robotik vor. Zunächst werden wir zeigen, wie wir
semantische Informationen dazu verwenden können, topologische Karten von In-
nenumgebungen zu erstellen. In einer zweiten Anwendung stellen wir eine Meth-
ode vor, welche die übergänge zwischen verschiedenen Ortenin Betracht zieht,
um die Trajektorie eines mobilen Roboters zu klassifizieren. Zudem kann durch
Berücksichtigung semantischer Information die von einem Roboter benötigte Zeit
für Explorations- und Lokalisierungsaufgaben verringertwerden. Die vorliegende
Arbeit wird solche Verbesserungen aufzeigen. Schließlichstellen wir die seman-



tische Klassifikation als Teil eines Robotersystems vor, das dazu ausgelegt ist, mit
Menschen in natürlicher Sprache zu kommunizieren.



Summary

Indoor environments can typically be divided into places with different function-
alities like corridors, rooms or doorways. The ability to learn such semantic cat-
egories from sensor data enables a mobile robot to extend therepresentation of
the environment, and to improve its capabilites. As an example, natural language
terms likecorridor or roomcan be used to communicate the position of the robot
in a more intuitive way. Other tasks, like exploration or localization, can also be
carried out by the robot in a better way when semantic information is taken into
account.

In this thesis, we present a method that enables a mobile robot to classify the
different places of indoor environments into semantic classes,and then use this in-
formation to extend its representations of the environments. The main idea is to
classify the position of the robot based on the current observations taken by the
robot. In this work, we use as main observations the scans obtained from a laser
range sensor. Each scan is represented by a set of features that encode the geomet-
rical properties of the current position. These features are then used to classify the
scan into the corresponding semantic class. The output of the classification is rep-
resented by a probability distribution over the set of possible semantic classes. This
probabilistic representation permits us to apply further probabilistic techniques to
improve the final classification, reducing the number of errors. We also present
an extension which enables the robot to include other types of observations in the
classification, like camera images.

This work additionally introduces several applications ofthe previous approach
in different robotic tasks. First, we will show how the semantic information can be
used to extract topological maps from indoor environments.In a second appli-
cation, we present a method that incorporates transitions between different places
when classifying a trajectory taken by a mobile robot. It will also be shown that the
semantic information can reduce the time needed by the robotin exploration and
localization tasks. Finally, we present the semantic classification of places as part
of an integrated robotic system designed for interacting with humans using natural
language.
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Chapter 1

Introduction

1.1 Semantic Labeling of Places in Indoor Environments

Building accurate maps of indoor environments is one of the typical problems in
mobile robotics. In this task, a mobile robot moves along a trajectory while gather-
ing information with sensors. This information is then usedto construct the map.
Typical maps represent the parts in the environment which are occupied by objects,
as for example occupancy grid maps[Elfes, 1989; Moravec, 1988]. The maps are
then used for localization and navigation tasks.

The problem of how to augment such maps by adding semantic information has
been of increasing interest during the last years. For a lot of applications, robots
can improve their service if they are able to recognize places and distinguish them.
A robot that possesses semantic information about the type of places can enrich its
human-robot communication capabilities and easily be instructed, for example, to
“open the door to the corridor.” The semantic information can additionally augment
the abilities of a robot in other tasks such as localization or exploration.

In this dissertation, we consider the problem of semantically classifying the
different locations of indoor environments using a mobile robot. An example is
given in Figure 1.1. The top image shows the occupancy map corresponding to
the ground floor of the building 52 at the University of Freiburg. In this map,
only information about occupied and free space is given. However, some natural
divisions can be extracted from this environment, as for example rooms, doorways
and a corridor. These divisions are depicted in the bottom image of Figure 1.1.
Using this information, the robot can communicate its position in a more natural
way saying, for instance, that it is placed “in the corridor,” or “in the doorway
leading to the corridor.” It seems clear that communicationbecomes more human-
friendly.

The process of applying a term to some division of the map is also known
as asemantic labelingof the map. In this labeling process, the terms refer to
semantic expressions that relate each division of the map tosome place or objective
situation. For example, a corridor implies a place which communicates different
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DoorwayRoomCorridor

Figure 1.1: The top image shows the occupancy grid map corresponding to the
ground floor of the building 52 at the University of Freiburg.Some natural divi-
sions can be extracted from this environment, as for examplerooms, doorways,
and a corridor. This is shown in the bottom image.
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rooms. Furthermore, doorways indicate a transition between two different rooms,
or between a room and a corridor. Therefore, semantic labelsnot only represent
places but also possible affordances.

One of the main questions that arrises when doing semantic labeling is how
a mobile robot can recognize the different places of an indoor environment. This
question, at the same time, leads us to the problem of finding the adequate charac-
teristics or features of each place that can be used to recognize it.

The work presented in this thesis presents different solutions to the previous
problems. We introduce novel methods for the semantic labeling of places in in-
door environments using autonomous mobile robots. Some of these techniques
allow us, at the same time, to select the features that can be used to best character-
ize each place.

The first contribution of this work is a supervised method based on AB
to assign semantic labels to the different places in indoor environments using a
mobile robot. The main idea is to classify each pose of a mobile robot into one
of the semantic classes according to the laser range observation the robot gathered
at that pose. The classification is carried out using geometrical features extracted
from the laser beams. Additionally, the boosting approach allow us to determine
which are the most informative features used to recognize each place.

The above method is additionally extended for the extraction of topological
maps from indoor environments. The key idea is to apply the semantic classifica-
tion to all possible poses of the robot in a map, obtaining a complete classification
of the free spaces. Neighboring poses with similar classification are then grouped
into regions, which form the different nodes in the final a topological map. Pre-
vious to the grouping, a filtered method is applied that takesinto account spatial
dependencies between different labels.

The previous two methods cover the semantic classification of the different
poses of a mobile robot, but they do not take into account the movement of the
robot along a trajectory. When operating in indoor environments, the robots usually
have a moderate velocity and a relatively continuous movement. That means, that
observations obtained by a mobile robot at nearby poses are typically very similar.
Based on this assumptions, we present a method that takes into account previous
classifications when classifying a new pose of a mobile robotalong a trajectory
using hidden Markov models. The approach also includes information from other
sensors rather than lasers. In particular, we use information of objects extracted
from images to extend the classification of places. In this way, we are able to
increase the number of labels to places such as kitchen, laboratory, offices, and
seminar room.

The semantic labeling can be applied not only to improve the human-robot
communication, but also to better carry out some other specific tasks for autonomous
mobile robots. A further contribution of this work presentsthe exploration of en-
vironments with a team of robots using place information. Wewill show how the
semantic labeling of places can improve the distribution ofthe robots during the
exploration. The main idea here is that places as corridors are better exploration
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targets as they lead to other rooms. On a second application,we will see how to
accelerate the localization process of a single robot usingthe classification of the
different rooms.

The above mentioned techniques are used to augment the maps in the environ-
ments with semantic information. However, the AB-based classifiers can
also be applied to include semantic information in sensor data. In this work, we
will show an approach to label each of the beams of a laser scan. The main idea is
to assign each beam the class of the object it hits. In this work, we restrict the clas-
sification to the labelspersonandnon-person, although the method can be easily
extended to use additional labels.

Finally, in this thesis we present the sematic labeling of poses as part of a high
level conceptual representation of indoor environments, which we callmulti-layer
conceptual map. This representation extends the semantic classification of places
adding upper layers which include more complex conceptual terms as, for example,
living rooms. The terms not only represent places but also objects, as TV sets or
couches, and are used to create a human-friendly dialogue while interacting with
people.

The rest of this thesis is organized as follows. Chapter 2 gives an introduction
to supervised learning, and presents some of the methods we will use in the pos-
terior chapters. Chapter 3 presents the approach for semantic labeling of places
using range data. The extraction of topological maps from indoor environments is
described in Chapter 4. In Chapter 5, we present the classification of trajectories
using hidden Markov models. The speeding-up of multi-robotexploration, and sin-
gle robot localization using semantic place information isdescribed in Chapter 6.
In Chapter 7, we explain how add semantic information to proximity sensor data.
Chapter 8 gives an overview of the multi-layer conceptual model for indoor envi-
ronments. Finally, in Chapter 9 we present conclusions about the complete work
presented in this dissertation.

1.2 Publications

The following is a list of publications derived from the workpresented in this
thesis:

Journals

• Andrzej Pronobis, Óscar Martínez Mozos, and Barbara Caputo. Semantic
Place Classification Integrating Multiple Sensory Modalities. Robotics and
Autonomous Systems. 2008. Under review.

• Hendrik Zender, Óscar Martínez Mozos, Patric Jensfelt, Geert-Jan M. Krui-
jff and Wolfram Burgard. Conceptual Spatial Representations for Indoor
Mobile Robots. Robotics and Autonomous Systems. 2008. Accepted for
publication.
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• Cyrill Stachniss, Óscar Martínez Mozos, and Wolfram Burgard. Efficient
Exploration of Unknown Indoor Environments using a Team of Mobile Robots.
Annals of Mathematics and Artificial Intelligence. 2008. Accepted for pub-
lication.

• Óscar Martínez Mozos, Rudolph Triebel, Patric Jensfelt, Axel Rottmann,
and Wolfram Burgard. Supervised semantic labeling of places using infor-
mation extracted from sensor data.Robotics and Autonomous Systems. Vol-
ume 55, issue 5, pp. 391-402. May, 2007.

• Cyrill Stachniss, Giorgio Grisetti, Óscar Martínez Mozos,and Wolfram Bur-
gard. Efficiently Learning Metric and Topological Maps with Autonomous
Service Robots.it - Information Technology. Volume 49, issue 4, pp. 232-
237. 2007.

Book Chapters

• Rudolph Triebel, Óscar Martínez Mozos, and Wolfram Burgard. Relational
Learning in Mobile Robotics: An Application to Semantic Labeling of Ob-
jects in 2D and 3D Environment Maps.Studies in Classification, Data Anal-
ysis, and Knowledge Organization. Springer, 2007. Accepted for publica-
tion.

• Óscar Martínez Mozos, Cyrill Stachniss, Axel Rottmann and Wolfram Bur-
gard. Using AdaBoost for Place Labeling and Topological MapBuilding.
Robotics Research: Results of the 12th International Symposium ISRR. S.
Thrun, R. Brooks, H. Durrant-Whyte (Eds.), Springer Tractsin Advanced
Robotics, Vol 28, pp 453-472, 2007.

Conferences

• Andrzej Pronobis, Óscar Martínez Mozos, and Barbara Caputo. SVM-based
Discriminative Accumulation Scheme for Place Recognition. Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA).
Pasadena, California, USA. May, 2008. Accepted.

• Hendrik Zender, Patric Jensfeld, Óscar Martínez Mozos, Geert-Jan M. Krui-
jff, and Wolfram Burgard. An Integrated Robotic Systen for Spatial Under-
standing and Situated Interaction in Indoor Environments.In Proceedings of
the Conference on Artificial Intelligence (AAAI), pp 1584-1589. Vancouver,
British Columbia. July, 2007.

• Kai O. Arras, Óscar Martínez Mozos, and Wolfram Burgard. Using Boosted
Features for the Detection of People in 2D Range Data.In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA). pp.
3402-3407. Rome, Italy. April, 2007.
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• Rudolph Triebel, Richard Schmidt, Óscar Martínez Mozos, and Wolfram
Burgard. Instace-based AMN Classification for Improved Object Recogni-
tion in 2D and 3D Laser Range Data.In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). pp. 2225-2230. Hyder-
abad, India. January, 2007.

• Óscar Martínez Mozos and Wolfram Burgard. Supervised Learning of Topo-
logical Maps using Semantic Information Extracted from Range Data. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2772-2777. Beijing, China. October, 2006.

• Cyrill Stachniss, Óscar Martínez Mozos, and Wolfram Burgard. Speeding-
Up Multi-Robot Exploration by Considering Semantic Place Information.In
Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1692-1697. Orlando, FL, USA, May, 2006.

• Axel Rottmann, Óscar Martínez Mozos, Cyrill Stachniss, andWolfram Bur-
gard. Semantic Place Classification of Indoor Environmentswith Mobile
Robots using Boosting.In Proceedings of the National Conference on Arti-
ficial Intelligence (AAAI), pp. 1306-1311. Pittsburgh, PA, USA. July, 2005.

• Óscar Martínez Mozos, Cyrill Stachniss, and Wolfram Burgard. Supervised
Learning of Places from Range Data using AdaBoost.In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pp.
1742-1747. Barcelona, Spain. April, 2005.Finalist best student paper.

Workshops and Symposia

• Óscar Martínez Mozos, Patric Jensfeld, Hendrik Zender, Geert-Jan M. Krui-
jff, and Wolfram Burgard. An Integrated System for Conceptual Spatial Rep-
resentations of Indoor Environments for Mobile Robots.Proceedings of the
IEEE/RSJ IROS 2007 Workshop: From Sensors to Human Spatial Concepts
(IROS). pp 25-32. San Diego, CA, USA. November, 2007.

• Óscar Martínez Mozos, Axel Rottmann, Rudolph Triebel, Patric Jensfelt,
and Wolfram Burgard. Semantic Labeling of Places using Information Ex-
tracted from Laser and Vision Sensor Data.In Proceedings of the IEEE/RSJ
IROS 2006 Workshop: From Sensors to Human Spatial Concepts (IROS), pp.
1742-1747. Beijing, China. October, 2006.

• Cyrill Stachniss, Óscar Martínez Mozos, Axel Rottmann, andWolfram Bur-
gard. Semantic Labeling of Places.In Proceedings of the International Sym-
posium of Robotics Research (ISRR). San Francisco, CA, USA, 2005.
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The simulation of rear beams to cover a complete field of view in the classifi-
cation of lasers was done together with Patric Jensfelt.

The application of instance-based associative Markov networks to the classifi-
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The approach for the classification of trajectories using additional vision infor-
mation was developed in collaboration with Axel Rottmann while supervising his
master’s thesis.
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Chapter 2

Supervised Learning

In this chapter we give a short introduction to supervised learning and to the prob-
ably approximately correct (PAC) framework. We then present two methods for
classification. The first method, called AB, is based on boosting. The sec-
ond one is an implementation of a decision list. Both approaches will be often used
in this thesis.

2.1 Introduction

In supervised learning we are interested in finding a function that best classifies
a set of given examples into a set of classes. This function will be used later to
classify new examples, which in general are different from the given ones. This
process is also called alearning task[Mitchell, 1997] and is described as follows.

There is some space of possible instancesX over which different target con-
cepts or classesC can be defined. Each target conceptc ∈ C corresponds to some
subset ofX. Alternatively, a function can be used which maps each instance x to
some conceptc. An example of such function is the boolean-valued functionde-
fined asc : X→ {0, 1}. Here, if one instancex ∈ X is a positive example ofc, then
we will write c(x) = 1; andc(x) = 0 if x is a negative example. Additionally, each
instancex ∈ X is described by a set of attributes or features. We will call the set of
features thefeature vector f∈ F, whereF is the set of all possible feature vectors.

We additionally assume that different instances inX may be encountered with
different frequencies. A convenient way to model this is to assume that there is
some unknown probability distributionD that defines the probability of encoun-
tering each instance inX. Notice thatD says nothing about whetherx is a positive
or negative example of some concept. It only determines the probability thatx will
be encountered.

The setX of all possible instances may be large or even infinite, and obtaining
a training set with all possible instances may be impossiblefor the majority set
of problems. For this reason, a subsetS ⊂ X is usually used during the learning
process. The setS must be sufficiently representative of the whole set of instances
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X. Some guidelines for obtaining an adequate training set aregiven in[Witten and
Frank, 2000].

Given a setS of training examples corresponding to the target conceptc, we
need to apply a learning algorithmL, which will select the hypothesish which best
approximates the target conceptc. Let H be set of all possible hypotheses that the
learnerL may consider regarding the identity of the target conceptc. Similarly to
the case of target concepts, we can represent each hypothesis h in H as a boolean-
valued function defined overX: h : X → {0, 1}. The goal of the learner is then to
find a hypothesish such thath(x) = c(x) for all x ∈ X. On one hand, the learner
L must learn from a training setS, which is a subset ofX. But on the other hand,
the target conceptc is defined over the whole setX. That means, that the output
h(x) generated by the learner must always be considered as an approximation of
the target conceptc(x). It may be possible thath(x) = c(x) ∀x ∈ X, but we can only
be sure of that whenS = X. Finally, the hypotheses output by the learner will be
somehow used to create a classifier to classify new instancesin X.

In summary, the goal of the learnerL is to find a hypothesish that best approx-
imates the target conceptc using a set of training examplesS. The question here
is, wether the hypothesish will be also a good approximation when using a set of
unseen examples. An answer to this question is given by theinductive learning
assumption. Informally, any hypothesis found to approximate the target function
well over a sufficiently large set of training examples will also approximate the
target function well over other unobserved examples.

Alternatively, we can face this question using the error in the classification for
the output hypothesish. For that, we can try to estimate the error in the classifica-
tion of the selected hypothesish with respect to new examples providing the error
of h in the training set. These two errors are formally defined as follows [Mitchell,
1997]

True error The true error errorD(h) of hypothesish ∈ H with respect to target
conceptc ∈ C and distributionD is the probability thath will misclassify an
instancex ∈ X drawn at random according toD

errorD(h) = Pr
x∈D

[c(x) , h(x)] . (2.1)

Training error The training error errorS(h), also called sample error, of hypothe-
sish with respect to target conceptc ∈ C and training setS is the fraction of
misclassified instancesx ∈ S

errorS(x) =
1
|S|

∑

x∈S
δ(c(x), h(x)) , (2.2)

where

δ(c(x), h(x)) =

{

1 if c(x) , h(x)
0 otherwise.

(2.3)
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Different statistical approximations can be used to calculate the true error pro-
vided the training error as shown in[Mitchell, 1997] and[Witten and Frank, 2000].

Another problem when selecting a hypothesish is its overfitting. A hypothesis
h ∈ H overfits the training examplesS if some other hypothesish′ that fits the
training examples less well actually performs better over the entire setX, including
instances beyond the training set. In his book, Mitchell[1997] defines overfitting
as following

Overfitting Given a hypotheses spaceH, a hypothesish is said to overfit the train-
ing setS ⊂ X if there exists some alternative hypothesish′ ∈ H, such that
h has smaller error thanh′ on S, but h′ has a smaller error thanh over the
entire setX of instances.

Different methods can be used to avoid overfitting as, for example, use a sep-
arate validation set of examples to modify the learned hypothesis. For a further
discussion on this topic we refer the reader to[Mitchell, 1997] and [Witten and
Frank, 2000].

2.2 PAC Learning

Some other important questions related to some specific learning task are:

• What is the number of training examples needed to assure thatthe hypothesis
output by the learner has a low true error?

• Can this number be bounded in some way?

• Can we bound the time the learner needs to output a hypothesis?

These questions can be answered for certain sets of problemsusing the proba-
bly approximately correct (PAC) framework[Valiant, 1984]. The idea of the PAC
learnability is to characterize classes of target conceptsthat can be reliably learned
from a polynomial number of randomly drawn training examples, and a polynomial
amount of computation. PAC learnability is defined formallyas follows

PAC learnability Consider a concept classC over a set of instancesX of length
n, and a learnerL using hypothesis spaceH. C is PAC learnableby L using
H, if for all c ∈ C, distributionD overX, ǫ such that 0< ǫ < 1/2, andδ such
that 0< δ < 1/2, the learnerL will, with probability at least (1− δ), output a
hypothesish ∈ H such as thaterrorD(h) ≤ ǫ, in time polynomial in 1/ǫ, 1/δ,
n, andsize(c).

Heren is the size of the feature vectorf representing each instancex ∈ X. The
second space parameter,size(c), is the encoding length of the targetc.
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The previous definition of PAC learning may appear at first to be concerned
only with the computational time, whereas we are usually interested in the number
of training examples. However they are closely related. In fact, a typical approach
to show that some classC of target concepts is PAC learnable, is to first demostrate
that each target conceptc ∈ C can be learned from a polynomial number of training
examples and then show that the processing time per example is also polynomial
bounded.

A learnerL following the previous definition is also known as astrong PAC
learning algorithm. On the other hand, aweak PAC learning algorithmis defined
analogously except that it is only required to satisfy the condition ǫ ≥ 1/2 − γ,
whereγ > 0 is either a constant, or decreases as 1/p, wherep is a polynomial in
the relevant parameters. A hypothesis learned from a weak PAC learning algorithm
is called aweak hypothesis. This term is also used for a hypothesis which performs
just slightly better than a random guessing, as we will se in the next section.

Other various extensions and generalizations of the basic PAC concept are
given by by Anthony and Bartlett[1999], Haussler[1992], and Kearns and Vazi-
rani [1994].

2.3 Boosting

Boosting is a general method which attempts to improve the accuracy of a given
learning algorithm[Freund and Schapire, 1999; Meir and Rätsch, 2003; Schapire,
2001]. This approach has its roots in the PAC framework (see previous Sec-
tion 2.2).

Kearns and Valiant[1988; 1994] were the first to pose the question of whether a
weak learning algorithm, which performs just slightly better than a random guess-
ing in the PAC model, can be combined into an arbitrarily accurate strong learning
algorithm. Later, Schapire[1990] demonstrated that any weak learning algorithm
can be efficiently transformed or boosted into a strong learning algorithm.

The underlying idea of boosting is to combine a set of weak hypotheses{h1, h2, . . . , hT}
to form a strong hypothesishS such that the performance of the strong hypothesis
is better than the peformance of each of the single weak hypothesisht. Formally

hS(x) =
T

∑

t=1

wtht(x) , (2.4)

herewt denotes the weight of hypothesisht. Both wt and the hypothesisht are to
be learned within the boosting procedure. The resulting strong hypothesishS has
the form of a weighted majority vote classifier.

Formally, boosting proceeds as follows: the boosting algorithm is provided
with a set of labeled training examples (x1, y1), ..., (xN, yN), whereyi is the label
associated with instancexi . On each roundt = 1, . . . ,T, the boosting algorithm
devises a distributionDt over the set of examples, and requests (from an unspec-
ified oracle) a weak hypothesisht with low error ǫt with respect toDt, where
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ǫt = Pr[ht(xi) , yi ]. Thus, the distributionDt specifies the relative importance
of each example for the current round. AfterT rounds, the booster must combine
the weak hypotheses into a strong one. The intuitive idea is to alter the distribution
over the training examples in a way that increases the probability of the harder el-
ements, thus forcing the weak learner to generate new hypotheses that make less
mistakes on these elements.

An important aspect related to boosting is overffiting. Large part of the early
literature explain that boosting would not overfit even whenusing a large number
of rounds. However, simulations by Grove and Schuurmans[1998] and Rätschet
al. [2001] show that data sets with higher noise content could clearly show overfit-
ting effects.

2.3.1 AB

The AB algorithm, introduced by Freund and Schapire[1995], is one of the
most popular boosting algorithms. Following the general idea of boosting, the A-
B algorithm takes as an input a training set of examples (x1, y1), ..., (xN, yN),
where eachxi belongs to some domain spaceX, and each labelyi pertains to the
label setY. In the case of a binary classification we have| Y |= 2. On each round
t = 1, . . . ,T, AB calls a weak learning algorithm (weak learner) repeatedly
to select a weak hypothesis. This weak learner takes as inputthe training set of
examples and outputs a weak hypothesis for their classification.

Unlike previous boosting algorithms[Freund, 1993; 1990] and[Schapire, 1990],
the AB algorithm needs no prior knowledge of the accuracies of the weak
hypotheses. Rather, it adapts to these accuracies and generates a weighted ma-
jority hypothesis in which the weight of each weak hypothesis is a function of its
accuracy.

The complete algorithm, presented by Freund and Schapire[1995] is described
in Figure 2.1. In this algorithm, the distributionD indicates the importance of the
examples at the begining of the training process and later itis controlled by the
learner. This distribution can be set initially as the uniform distribution so that
D1(i) = 1/N, meaning that all examples have the same importance at the begining.
On each roundt, the algorithm maintains a set of weightsDt(i), . . . ,Dt(N) over the
training examples and computes a distributionpt by normalizing these weights.
The distributionpt is fed to the weak learner which generates a hypothesisht that,
hopefully, has a small error with respect to the distribution pt. The accuray of the
weak hypothesisht is measured by its error as

ǫ = Pri∼Dt

[

ht(xi) , yi
]

=
∑

i:ht(xi ),yi

pt(i) . (2.5)

Notice that the error is measured with respect to the distribution pt on which the
weak learner was trained. In practice, the weak learning algorithm may be able
to use the weightspt on the training examples. Alternatively, when this is not
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possible, a subset of the training examples can be sampled according to pt, and
these resampled examples can be used to train the weak learner.

Using the new hypothesisht, the boosting algorithm generates the next weight
vector Dt+1, and the process is repeated. AfterT iterations, the final strong hy-
pothesishS is generated. The hypothesishS combines the outputs of theT weak
hypotheses using a weighted majority vote.

Freund and Schapire[1995] proved that, for binary classification problems, the
training error of the final hypothesishS generated by the AB algorithm is
bounded by

ǫ ≤ 2T
T

∏

t=1

√

ǫt(1− ǫt) ≤ exp

















−2
T

∑

t=1

γ2

















, (2.6)

whereǫt = 1/2 − γt is the error of thetth weak hypothesis. Since a hypothesis
that makes an entirely random guess has error 1/2, γt measures the accuracy of the
weak hypothesisht relative to random guessing. This bound shows that the final
training error drops exponentially if each of the weak hypotheses is better than a
random guess.

2.3.2 Generalized AB

An alernative version to the original AB algorithm was introduced by Schapire
and Singer[1999]. This version, called generalized AB, presents several
improvements with respect the previous one. First, the weakhypothesis can have
a range over all� rather than only two values. Second, in this version of the
algorithm the differentαt, which correspond to the weights of the final weak hy-
potheses, are left unspecified. The complete algorithm is shown in Figure 2.2.

Schapire and Singer[1999] also give a possible choice for the diferent weights
αt as follows

αt =
1
2

ln

(

1+ rt

1− rt

)

, (2.7)

wherert is chosen at each iteration so that its absolute value|rt | is maximum ac-
cording to

rt =

N
∑

i=1

Dt(i)yiht(xi) . (2.8)

In their work, Schapire and Singer[1999] present different versions of the gen-
eralized AB algorithm together with some experimental comparison.
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• Input:
set ofN labeled examples (x1, y1), . . . , (xN, yN),
whereyi = 1 if the examplexi is positive,
andyi = 0 if the examplexi is negative;

distributionD over theN examples;
weak learner;
integerT specifying number of iterations.

• Initialize the weight vectorw1(i) = D1(i) for i = 1, . . . ,N.

• For t = 1, . . . ,T

1. Set

pt(i) =
wt(i)

∑N
j=1 wt( j)

2. Train weak learner, providing it with the distributionpt and get back a
hypothesisht : X→ [0, 1].

3. Calculate the error ofht

ǫt =

N
∑

i=1

pt(i) |ht(xi) − yi |

4. Set
βt =

ǫt

(1− ǫt)
5. Set the new weights:

wt+1(i) = wt(i)β
1−|ht(xi )−yi |
t

• The final strong hypothesis is given by:

hS(x) =











1 if
∑T

t=1

(

log 1
βt

)

ht(x) ≥ 1
2

∑T
t=1 log 1

βt

0 otherwise

Figure 2.1: The AB algorithm.
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• Input:
set ofN labeled examples (x1, y1), . . . , (xN, yN),
whereyi = 1 if the examplexi is positive,
andyi = −1 if the examplexi is negative;

weak learner;
integerT specifying number of iterations.

• Initialize the weightsD1(i) = 1/N for i = 1, . . . ,N.

• For t = 1, . . . ,T

1. Train the weak learner using distributionDt and get back a hypothesis
ht : X→ �.

2. Chooseαt ∈ �.

3. Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

whereZt is a normalization factor so thatDt+1 is a distribution

• The final strong hypothesis is given by:

hS(x) = sign

















T
∑

i=1

αtht(x)

















.

Figure 2.2: A generalized version of the AB algorithm.
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Test1
No

Yes

No

Yes

Testn

V alue1 V aluen

. . . V aluelast

Figure 2.3: Structure of a decision list.

2.4 Decision Lists

A decision list is an alternative way of constructing a classifier. It is based on
logical expressions of a restricted form, and consists of a series of tests, each of
which is a conjunction of literals[Russell and Norvig, 2003]. If a test succeeds
when applied to an example description, then the decision list specifies the value
to be returned. If the test fails, processing continues withthe next test in the list.
Figure 2.4 shows the structure of a decision list.

In this learning task we want to find a consistent decision list with the training
data. This can be done using the algorithm of Figure 2.4. Thisprocedure repeatedly
finds a test that will agree exactly with some subset of the training setS. Once such
a test is found, it adds it to the decision list outputting thevalue corresponding to
the class assigned to the subset. At the same time, the examples that correspond to
the test are removed from the training set. This process is repeated until there are
no more examples. The process shown in Figure 2.4 does not specify the method
to select the next test to add to the list. This selection willdepend on the specific
task and on the implementation of the different tests. Some examples of such
selection for some concrete tasks are shown by Russell and Norvig [2003], Viola
and Jones[2001], and Rottmannet al. [2005].
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• Input:
setS of training labeled examples,

• Do until S is empty

1. Select a testTestthat matches a nonempty subsetSTest of S such that
the examples of the subset are positive with respect toTest.

2. If the there is no suchTestthen returnf ailure.

3. Output the valueValuecorresponding to the label of the examples in
STest.

4. AddTestandValueto the decision list.

5. UpdateS = S − STest.

• Return the output valueValuelast.

Figure 2.4: Algorithm to learn the different tests and their positions inside the list.



Chapter 3

Semantic Learning of Places from
Range Data

3.1 Introduction

As we explained in the introductory section, building accurate maps of indoor en-
vironments is one of the typical problems in mobile robotics. In this task, a mobile
robot moves along a trajectory while gathering informationwith sensors. This in-
formation is then used to construct the map, and for navigation and localization
tasks. However, little work have been done in the area of semantic mapping.

In this chapter, we address the problem of assigning semantic labels to loca-
tions of the environment using a mobile robot. Indoor environments, like the one
depicted in the top image of Figure 1.1, can typically be decomposed into areas
with different functionalities, such as office rooms, corridors, hallways, or door-
ways. Generally, each of these places has a different structure. For example, the
bounding box of a corridor is usually longer than that of rooms and hallways. Fur-
thermore, rooms are typically smaller than hallways, and also are more cluttered
than corridors or hallways. As an example, Figure 1.1 (bottom) showed a typical
hand-labeled division of the environment into three possible categories of places.

The key idea presented in this chapter is to classify the position of the robot
based on the current scan obtained from the range sensor. Figure 3.1 shows an
example of a range scan taken by a mobile robot in a corridor. Other examples for
typical range scans obtained in an office environment are shown in Figure 3.2.

The approach presented in this chapter uses the AB algorithm to boost
simple geometrical features from the scans into a strong classifier. Each of this
features alone is insufficient for a reliable categorization of places. The features
are represented by a numerical value computed from the beamsof a laser range
scan as well as from a polygon representation of the covered area. Since A-
B provides only binary decisions, we determine the decision list with the best
sequence of binary classifiers. Experimental results shownin this chapter illustrate
that the resulting classification system can determine the type of the place with
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Figure 3.1: Range scan obtained by a mobile robot in a corridor. The image also
shows the complete map of the environment where the scan was taken. The scan
covers the complete 360o field of view of the robot.

Figure 3.2: Example scans recorded in a room, a doorway, and acorridor.

high classification rates. Moreover, results are presentedillustrating that the result-
ing classifier can even be used in environments from which no training data was
available.

Throughout this chapter we assume that the robot is equippedwith a laser range
scanner that covers 360o field of view around the robot. However, common config-
urations on real mobile robots have only a laser covering 180o in front of the robot.
We also present a solution for these cases.

The rest of the chapter is organized as follows. In the next section we describe
the particular implementation of the AB algorithm for place labeling. Sec-
tion 3.3 presents its extension to multiple classes. Section 3.4 introduces the fea-
tures extracted from laser range scans. A solution to the problem of restricted field
of view is given in Section 3.5. In Section 3.6, experimentalresults are presented.
We discuss related work in Section 3.7. Finally, we concludein Section 3.8.
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3.2 Binary Classification Using AB

The AB algorithm, introduced by Freund and Schapire[1995], is one of the
most popular boosting algorithms. Following the general idea of boosting, the A-
B algorithm takes as an input a training set of examples (x1, y1), ..., (xN, yN),
where eachxi belongs to some domain spaceX, and each labelyi pertains to the
label setY. In the case of binary classification we have| Y |= 2. On each round
t = 1, . . . ,T, AB calls a weak learning algorithm, calledweak learner, re-
peatedly to select a weak hypothesis. This weak learner takes as input the training
set of examples and outputs a weak hypothesis for their classification.

The key idea of the algorithm is to maintain a weight distribution D over the
training examples. The distributionD indicates the importance of the examples
at the beginning of the training process and later it is controlled by the learner.
This distribution can be set initially as the uniform distribution so thatD1(i) =
1/N, meaning that all examples have the same importance at the beginning. Some
other initializations have provided good results, as the one presented by Viola and
Jones[2001].

Throughout this work we apply the generalized version of AB [Schapire
and Singer, 1999], which have several advantages and gives us de possibility of
calculating a confidence value for the final classification (see below). More details
about this algorithm are given in Section 2.3.

The representation of the weak classifiers is done followingthe ideas presented
by Viola and Jones[2001]. This implementation restricts the weak classifiers to
depend only on single-valued featuresf j. Thus, each weak classifier has the form

h j(x) =

{

+1 if p j f j(x) < p jθ j

−1 otherwise,
(3.1)

whereθ j is a threshold andp j is either−1 or 1 and represents the direction of the
inequality. The algorithm determines for each weak classifier h j(x) the optimal
values forθ j and p j, such that the number of misclassified training examples is
minimized

(p j , θ j) = argmin
(pi ,θi)

N
∑

n=1

|hi(xn) − yn| . (3.2)

The final generalized AB algorithm modified for the concrete task of place
labeling given in Figure 3.3.

Using the generalized version of the AB algorithm shown in Figure 3.3,
and following the method suggested by Friedmanet al.[2000], we can additionally
compute a confidence valueC+ ∈ [0, 1] for a positive binary classification of a new
example as

C+ = P(y = +1 | x) =
eF(x)

e−F(x) + eF(x)
, (3.3)



22 Chapter 3. Semantic Learning of Places from Range Data

• Input:
set ofN labeled examples (x1, y1), . . . , (xN, yN),
whereyi = 1 if the examplexi is positive,
andyi = −1 if the examplexi is negative;

integerT specifying number of iterations.

• Initialize weightsD1(n) = 1
2l for positive examples, andD1(n) = 1

2m for
negative examples, wherel is the number of positive examples andm the
number of negative ones.

• For t = 1, . . . ,T

1. Normalize the weightsDt(n)

Dt(n) =
Dt(n)

∑N
i=1 Dt(i)

.

2. For each featuref j train a weak classifierh j using the distributionDt.

3. For each classifierh j calculate

r j =
∑

i

Dt(i)yih j(xi),

whereh j(xn) ∈ {−1,+1}.
4. Choose the classifierh j that maximizes|r j | and set (ht, rt) = (h j , r j).

5. Update the weights

Dt+1(n) = Dt(n) exp(−αtynht(xn)),

whereαt =
1
2 log(1+rt

1−rt
).

• The final strong classifier is given by

hS(x) = sign(F(x)) ,

where

F(x) =
T

∑

t=1

αtht(x).

Figure 3.3: The generalized version of the AB algorithm for place labeling
using laser-based features.
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Figure 3.4: A decision list classifier fork classes using binary classifiers. The out-
put of each binary classifierzk contains the probability that the classified example
belongs to thek-th class

whereF(x) is the output of the algorithm according to Figure 3.3. If the example
is classified as negative, a positive confidence value can be calculated as

C+ = P(y = −1 | x) = 1.0−C− (3.4)

with

C− = P(y = −1 | x) =
e−F(x)

e−F(x) + eF(x)
. (3.5)

3.3 Multi-class Classification Using AB

The previous AB algorithm was designed for binary classification problems.
To label places in the environment, however, we need the ability to handle multiple
classes. A way to construct a multi-class classifier is to arrange several binary clas-
sifiers into a decision list (Section 2.4). Each element of such a list represents one
binary classifier which determines if an example belongs to one specific class. In
addition, ech binary classifier outputs a confidence valueC+k for a positive classifi-
cation of its classk. Figure 3.4 illustrates the structure of the probabilisticdecision
list.

In the decision list, each test example is fed into the first binary classifier, which
outputs a confidence valueC+ for a positive classification. Then the example is
passed to the next binary classifier. This process is repeated until the last element
in the list. The complete output of the decision list is represented by an histogram
z. In this histogram, thek-th bin stores the probability that the classified location
belongs to thek-th class according to the sequence of classifiers in the decision list
(Figure 3.4). LetCk refer to the confidence value of thek-th binary classifier in our
decision list. Then, the probability that the location to beclassified belongs to the
k-th class is given by thek-th bin of the histogramzcomputed as
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z[k]
t

 0
 0.2
 0.4
 0.6
 0.8

 1  2  3  4  5  6

class (k)

Figure 3.5: An example of a classification output for the decision list of Figure 3.4
using six classes.

z(k) = C+k

k−1
∏

j=1

(1−C+j ), (3.6)

whereas for the confidence valueCK of the last bin (theK-th bin) holdsCK =

1 according to the structure of the decision list in Figure 3.4. An example of a
histogram for six classes is illustrated in Figure 3.5

One important question in the context of a sequential classifier is the order in
which the individual binary classifiers are arranged. This order can have a major in-
fluence on the overall classification performance, because the individual classifiers
typically are not error-free and classify with different accuracies.

In general, the problem of finding the optimal order of binaryclassifiers that
minimizes the classification error is NP-hard. In this chapter, however, we typi-
cally are confronted with a small number of classes and we caneasily enumerate
all potential permutations to determine the optimal sequence. Since the first ele-
ment of such a sequential classifier processes more data thansubsequent elements,
it is typically a good strategy to order the classifiers in increasing order according
to their training error rate. Compared to the optimal order,the classifier gener-
ated by this heuristic for an application with several classes performed on average
only 1.3% worse as demonstrated by Rottmann[2005]. In several situations, the
sequence generated by this heuristic turned out to be the optimal one.

3.4 Simple Features from Sensor Range Data

In the previous section we described the key principles of the AB algorithm
for boosting simple features to strong classifiers. It remains to describe the features
of the range scans used in the system. We assume that the mobile robot is equipped
with a 360o field of view range sensor. Each observationz= {b0, ..., bM−1} contains
a set of beamsbi . Each beambi consists of a tuple (αi , di) whereαi is the angle of
the beam relative to the robot anddi is the length of the beam.
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Each training example for the AB algorithm consists of one observation
zand its classificationy. Thus, the set of training examples is given by

E = {(zi , yi) | yi ∈ Y = {Room,Corridor, . . .}} , (3.7)

whereY is the set of classes corresponding to the places we want to recognize.
Throughout this chapter we assume that the classification ofthe training examples
is given in advance. In practice this can be achieved by manually labeling places in
the map or by instructing the robot while it is exploring its environment. The goal
is to learn a classifier that is able to generalize from these training examples and
that can classify so far unseen places in this environment oreven new ones.

As already mentioned, the method for place classification isbased on simple
geometrical features extracted from the range scans. We call themsimplebecause
they are single-valued features. All features are rotational invariant to make the
classification of a pose dependent only on the (x, y)-position of the robot and not
of its orientation. Most of the features are standard geometrical features often
used in shape analysis[Gonzalez and Wintz, 1987; Haralick and Shapiro, 1992;
Loncaric, 1998; O’Rourke, 1998; Russ, 1992].

We define a featuref as a function that takes as argument one observation and
returns a real value:f : Z→ �, whereZ is the set of all possible observations.

Two sets of simple features are calculated for each observation. The first setB
is calculated using the raw beams inz. The following is a list of the single-valued
features pertaining to this set:

1. The average difference between the length of consecutive beams.

2. The standard deviation of the difference between the length of consecutive
beams.

3. Same as feature #1, but considering different max-range values.

4. Same as feature #2, but considering different max-range values.

5. The average beam length.

6. The standard deviation of the beam length.

7. Number of gaps in the scan. Two consecutive beams build a gap if their
difference is greater than a given threshold. Different features are used for
different threshold values.

8. Number of beams lying on lines that are extracted from the range scan[Sack
and Burgard, 2004].

9. Euclidean distance between the two points correspondingto two consecutive
global minima.
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Figure 3.6: Example of polygon approximations of scans recorded in a room, a
doorway, and a corridor.

10. The angular distance between the two points corresponding to two consecu-
tive global minima.

11. Average of the relation between the length of two consecutive beams.

12. Standard deviation of the relation between the length oftwo consecutive
beams.

13. Average of normalized beam length.

14. Standard deviation of normalized beam length.

15. Number of relative gaps.

16. Kurtosis.

The second setP of features is calculated from a polygonal approximationP(z)
of the area covered byz. The vertices of the closed polygonP(z) correspond to the
coordinates of the end-points of each beambi of z relative to the robot:

P(z) = {(di cosαi , di sinαi) | i = 0, . . . ,M − 1} (3.8)

As an example, the polygonal representations of the laser range scans depicted
in Figure 3.2 are shown in Figure 3.6. The list of features corresponding to the set
P is as following:

1. Area ofP(z).

2. Perimeter ofP(z).

3. Area ofP(z) divided by Perimeter ofP(z).

4. Mean distance between the centroid and the shape boundary.

5. Standard deviation of the distances between the centroidand the shape bound-
ary.
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Figure 3.7: Examples of features generated from laser data,namely the average
distance between two consecutive beams, the perimeter of the area covered by a
scan, and the mayor axis of the ellipse that approximates thepolygon described by
the scan. The laser beams cover a 360o field of view.

6. Similarity invariant descriptors based in the Fourier transformation. We use
the first 200 descriptors.

7. Major axis Ma of the ellipse that approximatesP(z) using the first two
Fourier coefficients.

8. Minor axisMi of the ellipse that approximateP(z) using the first two Fourier
coefficients.

9. Ma/Mi.

10. Seven invariants calculated from the central moments ofP(z) [Gonzalez and
Wintz, 1987].

11. Normalized feature of compactness ofP(z).

12. Normalized feature of eccentricity ofP(z).

13. Form factor ofP(z).

14. Circularity ofP(z).

15. Normalized circularity ofP(z).

16. Average normalized distance between the centroid and the shape boundary.

17. Standard deviation of the normalized distance between the centroid and the
shape boundary.

Figure 3.7 shows graphically some of the features corresponding to theB and
P sets. In particular, the features are the average distance between two consecutive
beams (feature #1 in setB), the area covered by a scan (feature #3 in setP), and
the mayor axis of the ellipse that approximates the polygon described by the scan
(feature #7 in setP).

The complete list of features, together with their mathematical definition can
be found in Appendix A.
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Figure 3.8: The top image shows a laser observation covering360o field of view.
In the middle image the range observation covers only 180o in front of the robot. In
the bottom image, the rear beams are simulated using the occupancy information
contained inside the shaded area (local map).

3.5 Feature Extraction with Restricted Field of View1

As mentioned in the previous section, the simple features are based on laser obser-
vations covering 360o field of view (top image in Figure 3.8). However, common
configurations on real mobile robots have only a laser covering 180o in front of the
robot (middle image in Figure 3.8). In these last cases we propose to maintain a
local map around the robot when classifying a pose of the robot during a trajectory.
This local map can be updated during the movements of the robot, and then used
to simulate the rear laser beams (bottom image in Figure 3.8).

In our case, we maintain a sparse local map around the robot. This map con-
tains the endpoints of the previous laser beams that hit someobject around the
robot. We simulate the rear beams using this sparse map. For each simulated
beam that does not hit any object in the sparse map, we calculate its value using an
interpolation between the values of their (known) neighboring beams at both sides.

1The work presented in this section originated from a collaboration with Patric Jensfelt.
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Figure 3.9: On the left, an ActivMedia Pioneer 2-DX8 equipped with two SICK
laser range finders. On the right, a PowerBot robot equipped with a front laser.

3.6 Experimental Results

The complete approach described in this chapter has been implemented and tested
on a real robot as well as in simulation using the Carnegie Mellon Robot Navi-
gation Toolkit (CARMEN)[Montemerloet al., 2003]. The robots used to carry
out the experiments were an ActivMedia Pioneer 2-DX8 equipped with two SICK
laser range finders, and a PowerBot robot equipped only with afront laser. Both
robots are shown in Figure 3.9. The goal of the experiments isto demonstrate that
the simple features can be boosted to a robust classifier of places. Additionally,
we analyze whether the resulting classifier can be used to classify places in envi-
ronments for which no training data were available. We first describe the results
obtained with the sequential version of AB. In the next experiment we ana-
lyze how well a mobile robot can utilize the resulting classifier. Furthermore, we
present an experiment illustrating that a classifier can be applied to robustly clas-
sify places in a completely new environment. Finally, we present results comparing
the method presented in this chapter with previous approaches.

One important parameter of the AB algorithm is the number of weak
classifiersT used to form the final strong classifier. All in all we formulated more
than 300 simple features, each of them with one free parameter, which is deter-
mined in the learning phase according to Equation (3.2). AB even uses
features multiple times with different parameters. Thus, much more than the initial
sets of simple features are available to form the strong classifier. We performed
several experiments with different numbers of weak classifiers and analyzed the
classification error. Throughout the experiments, we foundthat 100 weak clas-
sifiers provide the best trade-off between the error rate of the classifier and the
computational cost of the algorithm. Therefore we used thisvalue in all the exper-
iments presented in this chapter.
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3.6.1 Results Using a Decision List

The first experiment was performed using data from the office environment in
building 79 at the University of Freiburg. This environmentcontains three dif-
ferent types of places, namely rooms, doorways, and a corridor. For the sake of
clarity we give a result obtained by separating the environment into two parts. The
left half of the environment contains the training examples, and the right half of the
environment was then used as a test set, as shown in the top image of Figure 3.10.

In this experiment we used a probabilistic sequential classifier as shown in
Section 3.3. In this particular case, each binary classifieridentifies one place of
the environment, i.e. room, door or corridor. Because we only have three classes,
we tried all the possible combinations of binary classifiersfor the decision list. We
used the sequential classifier corridor-room which gives the best results and cor-
rectly classifies 97.27% of the test examples. The classification results are also
depicted as colored/grey-shaded areas in the lower image of Figure 3.10. This il-
lustrates that the approach presented in this chapter is well-suited to classify places
according to a single laser range scan.

A similar experiment was carried out in the office environment of building 52
at the University of Freiburg (see Figure 3.11). In this case, the classification result
in the test data was of 97%.

3.6.2 Transferring the Classifiers to New Environments

The next experiment is designed to analyze whether a classifier learned in a par-
ticular environment can be used to successfully classify the places of a new envi-
ronment. To carry out the experiment we trained a decision list classifier using the
training examples of the maps corresponding to buildings 79and 52 at the Univer-
sity of Freiburg (Figure 3.10 and Figure 3.11), with different scales. In this way,
we obtained a classifier with a better generalization. The resulting classifier was
then evaluated on scans simulated in the map denoted asSDR site Bin the Radish
repository[Howard and Roy, 2003] (top image in Figure 4.5). This map represents
an empty building in Virginia, USA. We use the sequence corridor-doorway which
results in a classification rate of 92.36%, as can be seen in the bootom image of
Figure 4.5.

3.6.3 Classification of Trajectories Using Sensors with Restricted Field
of View

In this experiment we show the results of applying the previous classification me-
thods when the laser range scan has a restricted field of view.We first steered
a PowerBot robot equipped with only a front laser along the 6th floor of the CAS
building at KTH (right to left). The trajectory is shown in the top image of Fig. 3.13.
The data recorded in this floor was used to train the AB classifier. We then
classified a trajectory on the 7th floor in the same building. We started the trajec-
tory in an opposite direction (left to right). The rear beamswere simulated using
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DoorwayRoomCorridor

Figure 3.10: The top image shows the training of the building79 used to train
the classifiers. The lower image shows the classified test data using the sequential
AB algorithm.
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DoorwayRoomCorridor

Figure 3.11: The top image shows the training of the building52 used to train
the classifiers. The lower image shows the classified test data using the sequential
AB algorithm.
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DoorwayRoomCorridor

Figure 3.12: The top image shows the map of the building denoted asSDR site B
in the Radish repository. The lower image shows the resulting classification.
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DoorwayRoomCorridor

Figure 3.13: The top image shows the training trajectory on the 6th floor of the
CAS building at KTH. The bottom image depicts the labeling ofthe trajectory
of the 7th floor using only a front laser with a classification rate of 84.4%. The
map shown is for informative purposes only and does not represent exactly the
environment in which the experiments were carried out, as furniture is missing.

a local map as explained in Section 3.5. The resulting classification rate of 84.4%
is depicted in the bottom image of Fig. 3.13. As the results indicate, restricting the
field of view decreases the classification rate. However, theclassification maintains
at acceptable levels.

3.6.4 Comparison of Feature Sets

We compare now the feature set described in Section 3.4 with the one proposed in
my previous master’s thesis[Mozos, 2004]. For this purpose, we trained a A-
B-based decision list for each of the feature sets using the training set shown
in Figure 3.10. The different sequential classifiers were then applied to the test set
depicted in Figure 3.10. The obtained classification results are shown in Table 3.1.
As can be seen, the new extended feature-set provides betterresults in all of the
experiments.
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Decision List New feature set [%] Original feature set [%]
room-door 96.94 93.94

room-corridor 97.26 93.31
corridor-room 97.27 93.16
corridor-door 87.73 80.10
door-corridor 87.21 80.10

door-room 86.60 80.49

Table 3.1: Classification results of the new improved feature set compared to the
one in[Mozos, 2004].

binary classifier seven best features
corridor P.7,B.15,P.6,B.2,B.7,B.3

room P.5,P.12,B.7,P.7,B.1,B.12
doorway B.15,P.17,B.11,P.6,B.3,B.9

Table 3.2: The best six features for each binary classifier.

3.6.5 Selected Weak Features

Finally, we analyzed the importance of the individual weak features in the final
strong classifier. To carry out the experiment, we trained a decision list classifier
using the training examples of the maps shown in Figure 3.10 and Figure 3.11 with
different scales. This classifier was transferred to classify the map of Figure 4.5
(Section 3.6.2).

Table 3.2 lists the six best features for each binary classifier with the leftmost
feature the most important. In this table an entryB.i represents thei-th feature for
raw beams inz, whereas an entryP. j represents the j-th feature of the polygon
P(z). Both sets of features were described in Section 3.4.

Analyzing the table we can see that featureP.7 is the most important to rec-
ognize the corridor. This feature represents the major axisof an ellipsis approx-
imation of the laser observation. This indicates that more elongated ellipses cor-
responds to corridors. For recognizing room places, we can see that the feature
P. 5 is the most critical. This feature represents the standarddeviation of the dis-
tance from the centroid to the shape boundary of the observation. The feature has
a smaller value for rooms because they have a more regular perimeter. The second
feature for rooms,P.12, confirms this fact.

Doorways are more complicated to describe. For these placesthe most impor-
tant feature is the number of relative gaps,B.15, which indicates the number of
jumps from one beam to its neighbor. This is another way of detecting big changes
in the beam lengths corresponding to the doorframes (middleimage in Figure 3.6).
Another feature designed to detect doorframes isB.9, which is also selected as one
of the six more importants for door detection.

Comparing the Table 3.2 with previous results in[Mozos, 2004], we can see
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that several of the new features are selected as more important. This fact confirms
the usefulness of the new feature sets presented in this chapter.

3.7 Related Work

In the past, several authors considered the problem of adding semantic information
to places. Buschka and Saffiotti [2002] describe a virtual sensor that is able to
identify rooms from range data. Also Koenig and Simmons[1998] use a pre-
programmed routine to detect doorways from range data. Additionally, Althaus
and Christensen[2003] use line features to detect corridors and doorways.

Some authors also apply learning techniques to localize therobot or to iden-
tify distinctive states in the environment. For example, Oore et al. [1997] train a
neural network to estimate the location of a mobile robot in its environment using
the odometry information and ultrasound data. Torralbaet al. [2003] use Hid-
den Markov Models for learning places from image data. Compared to these ap-
proaches, the algorithm presented in this chapter does not require any pre-defined
routines for extracting high-level features. Instead, it uses the AB algorithm
to boost simple features to strong classifiers for place categorization.

Additionally, Kuipers[2000] detect distinctive states in the map that are used
as places in a topological graph. However, these states doesnot contain semantic
information. Finally, Wolf and Sukhatme[2006] present some automated tech-
niques for classifying, modeling and ultimately understanding the usage of space
in a typical urban outdoor environments.

Boosting has been used to identify objects using different features. Maybe one
of the most famous applications of AB is the fast recognition of faces in
images by Viola and Jones[2001]. Also Treptowet al. [2003] use the AB
algorithm to track a ball without color information in the context of RoboCup.

Some of the ideas in this chapter are similar to the work by Viola and Jones[2001].
For example, we use a similar AB algorithm and also create simple features
for the classification. However, the problem to solve is totally different, since we
classify locations in indoor environments using 2D range data.

The work from this chapter is an extension of my master’s thesis [Mozos,
2004]. However, in[Mozos, 2004] only a discrete classification was possible.
In contrast, the work presented in this chapter extends the classification methods
adding confidence values to the output of the classifiers. Theoutput of the decision
list is now represented by a histogram which allows us to use the labeling in fur-
ther probabilistic methods. Moreover, the set of geometrical features is extended,
improving the classification of the different places.

Some ideas presented in this chapter have been used in several posterior works
about semantic place recognition. For instance, Friedmanet al. [2007] present an
approach for the classification of places using Voronoi random fields. This work
also uses simple features that are selected using boosting as characteristics for the
nodes in a Markov random field. The paper by Pronobiset al. [2006] shows an
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approach to classify the different places of an indoor environment using vision.
An extension to this work has been recently introduced by Pronobiset al. [2008],
in which the classification of places is done using an additional laser sensor to-
gether with the set of features presented in Section 3.4. Moreover, Topp and Chris-
tensen[2006] use a similar idea of describing regions with simple geometrical fea-
tures extracted from laser readings. The work by Brunskillet al. [2007] presents
an online method for generating topological maps from raw sensor information
based on spectral clustering. Here, the laser observationsare represented by the
set of features presented in this chapter, and submap recognition uses the boosting
method similar to the one of Section 3.2. Finally, Sousaet al. [2007] apply the
same set of features for classifying places in indoor environments. Instead of A-
B, they use a support vector machines as a classifier. In their work, only laser
readings with a 180o field of view in front of the laser are classified.

Other works use the semantic labeling of places presented inthis thesis as base
for other high level tasks. For example, the approach by Kersting et al. [2007]
shows that the semantic classification of places presented in this chapter can be
used to learn navigation policies using relational Markov decision processes.

The idea of classifying laser range readings into categories using boosted sim-
ple features has also been applied in tasks other than place recognition. Arraset
al. [2007] apply similar methods as the ones presented in this chapter but using a
different set of features for the laser scans. The idea here is to classify each beam
as hitting a person or not. This work is presented in detail inChapter 7.

Finally, boosting simple features is also used in the work byPerssonet al.[2007]
to create a virtual sensor for the semantic classification ofimages in outdoor.

3.8 Conclusions

In this chapter we presented an approach to classify different places in the envi-
ronment into semantic classes, like rooms, corridors, and doorways. The described
technique uses simple geometric features extracted from a single laser range scans
and applies the AB algorithm to form a strong classifier. To distinguish be-
tween more than two classes we use a sequence of binary classifiers arranged in a
decision list. Experiments carried out on a real robot as well as in simulation illus-
trate that our technique is well-suited to classify places in different environments
even without training the classifier for each environment.



38 Chapter 3. Semantic Learning of Places from Range Data



Chapter 4

Topological Map Extraction with
Semantic Information

4.1 Introduction

In the previous chapter we have seen how a robot can classify its pose in an in-
door environment into a semantic class. The different semantic classes represented
typical divisions of the environment, as for example corridors, rooms or doorways.
This chapter will show how a robot can extract a topological map from the envi-
ronment using the previous semantic labeling.

Topological maps have been quite popular in the robotics community because
they are believed to be cognitively more adequate, since they can be stored more
compactly than geometric maps, and can be also communicatedmore easily to
users of a mobile robot. In the past, many researchers have considered the problem
of building topological maps of the environment from the data gathered with a mo-
bile robot. However, few techniques exit that permit to add semantic information
to the maps.

In this chapter, we consider the problem of learning topological maps with se-
mantic information from geometric maps that were obtained with a mobile robot in
an indoor environment using range data. The approach is based on the assumption
that indoor environments, like the one depicted in the left image of Figure 4.1, can
be typically decomposed into areas with different functionalities such as rooms,
corridors and doorways, and that these areas build the vertices of a topological
graph. The connections of the vertices are then given by the neighborhood of the
regions in the occupancy map. For example, a doorway is typically connected to
two rooms, two corridors, or to a room and a corridor. The right image in Fig-
ure 4.1 depicts a possible topological representation for the map in the left image
of the same figure.

Throughout this chapter we assume that the robot is given a map of the envi-
ronment in the form of an occupancy grid. The main idea is to decide about the
semantic label of each free cell in the occupancy grid using local and neighbor-
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Corridor

Room 4

Room 2Room 1 Room 3

Door 2 Door 3

Door 5

Door 4

Door 1

Door 6

Room 5

DoorwayRoomCorridor

Figure 4.1: The left image shows a geometric map of a typical indoor environment
with rooms, doorways, and a corridor, depicted in colors/grey levels. The right
image shows the corresponding semantic-topological map.

ing information. By local information we mean the set of geometrical features the
robot obtains from a laser observation at a concrete location, as explained in Chap-
ter 3. By neighboring information we refer to the semantic information from the
neighboring cells of the location to be classified.

Two different methods are presented which use both local and neighboring in-
formation for the final classification. The first approach determines for each unoc-
cupied cell of a grid map its semantic class. This is achievedby simulating a range
scan of the robot given it is located in that particular cell,and then classifying this
scan into one of the semantic classes. Examples for typical simulated range scans
obtained in an office environment were shown in Chapter 3 (Figure 3.2). The clas-
sification is then done using a sequence of classifiers learned with the AB
algorithm arranged in a probabilistic decision list as explained in Section 3.3. To
remove noise and clutter from the resulting classifications, we apply an approach
denoted as probabilistic relaxation labeling. This methodcorrects the classification
at each location taking into account the semantic class of neighboring positions.

The second method for the classification is based on associative Markov net-
works (AMNs). In this case, the classification of one position is done using si-
multaneously the local information together with the relation between semantic
labels from neighboring positions. We apply an variant of AMNs called instance-
based associative Markov networks (iAMNs). This approach combines AMNs
with nearest-neighbor techniques.

One we have a final labeling resulting from any of the previousmethods, a
graph is constructed whose nodes correspond to the regions of identically labeled
poses, and whose edges represent the connections between them. Additionally,
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each node contains geometrical information about the region it represents, like the
area, the centroid and the orientation. A typical topological map obtained with this
approach is shown in the right image of Figure 4.1. The approaches for topological
map building presented in this chapter are off-line methods.

The rest of the chapter is organized as follows. In Section 4.2, the probabilistic
relaxation approach is described. Instance-based associative Markov networks are
introduced in Section 4.3. Section 4.4 describes the methodused to extract seman-
tic regions and to create the final topological map. In Section 4.5, experimental
results are presented. We discuss related work in Section 4.6. Finally, we conclude
in Section 4.7.

4.2 Probabilistic Relaxation Labeling

The first approach for extracting topological maps determines for each unoccupied
cell of the grid its semantic class. This is achieved by simulating a range scan
of the robot given it is located at that particular cell, and then labeling this scan
into one of the semantic classes using a probabilistic decision list. This approach
was already introduced in Section 3.3. This results in an occupancy map with a
semantic label in each free cell. However, the final maps usually contain some
errors in the classification. To smooth the final classification of each cell, we apply
a probabilistic relaxation labeling method introduced by Rosenfeldet al. [1976].
This method changes (or maintains) the label of a cell according to the labels of its
neighborhood.

The probabilistic relaxation labeling problem is defined asfollows. LetG =
(V,E) be a graph consisting of nodesV = {v1, . . . , vN} and edgesE ⊆ V × V.
Let furthermoreL = {l1, . . . , lL} be a set of labels. We assume that every nodevi

stores a probability distribution about its label. This distribution is represented by
a histogramPi. Each binpi(l) of that histogram stores the probability that the node
vi has the labell. Thus,

∑L
l=1 pi(l) = 1. For each nodevi , N(vi) ⊂ V denotes its

neighborhood which consists of the nodesv j , vi that are connected tovi . Each
neighborhood relation is represented by two values. Whereas the first one describes
the compatibility between the labels of two nodes, the second one represents the
influence between the two nodes. The termR = {r i j (l, l′) | v j ∈ N(vi)} defines
the compatibility coefficients between the labell of nodevi and the labell′ of v j .
Additionally, we defineC = {ci j | v j ∈ N(vi)} as the set of weights indicating the
influence of nodev j on nodevi .

Given an initial estimation for the probability distribution over labelsp(0)
i (l)

for the nodevi , the probabilistic relaxation method iteratively computes estimates
p(r)

i (l), r = 1, 2, . . . , based on the initial probabilitiesp(0)
i (l), the compatibility

coefficientsR, and the weightsC, in the form

p(r+1)
i (l) =

p(r)
i (l)

[

1+ q(r)
i (l)

]

∑L
l′=1 p(r)

i (l′)
[

1+ q(r)
i (l′)

] , (4.1)
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where

q(r)
i (l) =

M
∑

j=1

ci j
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r i j (l, l
′)p(r)

j (l′)
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













. (4.2)

Note that the compatibility coefficients r i j (l, l′) ∈ [−1, 1] do not need to be
symmetric. A valuer i j (l, l′) close to−1 indicates that labell′ is unlikely at nodev j

when labell occurs at nodevi , whereas values close to 1 indicate the opposite. A
value of exactly−1 indicates that the relation is not possible, and a value of exactly
1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smoothing but does not spec-
ify how the compatibility coefficients are computed. In this work, we apply the
coefficients as defined by Yamamoto[1979]

r i j (l, l
′) =



















1
1−pi (l)

(

1− pi (l)
pi j (l|l′)

)

if pi(l) < pi j (l | l′)
pi j (l|l′)

pi (l)
− 1 otherwise,

(4.3)

wherepi j (l | l′) is the conditional probability that nodevi has labell given that node
v j ∈ N(vi) has labell′. Each of the valuespi(l) and pi j (l | l′) are pre-calculated
only once and remain the same during the iterations of the relaxation process. The
coefficientsR remain the same as well.

So far, we have described the general method for relaxation labeling. It remains
to describe how we apply this method for spatial smoothing ofthe classifications
obtained by our classifier. To learn a topological map, we assume a given two-
dimensional occupancy grid map in which each cellm(x,y) stores the probability
that it is occupied. We furthermore consider the eight-connected graph induced by
such a grid. Letvi = v(x,y) be a node corresponding to a cellm(x,y) from the map.
Then we define a neighborhoodN8(v(x,y)) using the 8-connected cells tov(x,y) as
described in[Gonzalez and Wintz, 1987].

For the initial probabilitiesp(0)
(x,y)(l), we use the outputz of the classifier as de-

scribed in Section 3.3. This output is represented by a histogram in which each bin
k indicates de probability that the pose belongs to classk. Furthermore, our set of
labelsL is composed by the labels corridor, room, doorway, and wall.For each
nodev(x,y) in the free space of the occupancy grid map, we calculate the expected
laser scan by ray-casting in the map. We then classify the observation and obtain a
probability distributionz over all the possible places according to Equation (3.6).
The classification outputz for each pose (x, y) is used to initialize the probability
distribution P(0)

(x,y) of nodev(x,y). For the nodes lying in the free space, the prob-

ability p(0)
(x,y)(wall) of being a wall is initialized with 0. Accordingly, the nodes

corresponding to occupied cells in the map are initialized with p(0)
(x,y)(wall) = 1.

Each of the weightsci j ∈ C is initialized with the value1
8, indicating that all the

eight neighborsv j of nodevi are equally important. The compatibility coefficients
are calculated using Equation (4.3). The valuespi(l) and pi j (l | l′) are obtained
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from statistics in the given occupancy grid map corresponding to previously labeled
training data.

4.3 Instance-based Associative Markov Networks1

The second approach for topological map extraction presented in this chapter is
based on associative Markov networks (AMNs). In particular, we use the instance-
based associative Markov networks (iAMNs) introduced by[Triebelet al., 2007b].
The idea behind AMNs is to combine the advantage of instance-based nearest-
neighbor (NN) classification with the AMN approach to obtaina collective classi-
fier that is not restricted to the linear separability requirement.

4.3.1 Associative Markov Networks

This section gives a short overview on associative Markov networks. A more de-
tailed description about AMNs can be found in Appendix C.

An associative Markov network is an undirected graphical model in which no
assumption is made about the direction of the causality between nodes in the graph.
We restrict to the case of discrete variables, that is, each variableYi ∈ Y corre-
sponds to a set ofK possible labelsYi ∈ {1, . . . ,K}. Thus, we define a Markov
random field as an undirected graphG = (V,E) where the set of nodesV repre-
sent discrete variables, and the edgesE refer to the relations between them[Taskar,
2004]. An AMN can be divided into a subset of cliquesC, where each cliquec ∈ C
is associated with a subsetYc ∈ Y. The nodes in a cliqueYc form a fully connected
subgraph.

Each clique is accompanied by a potentialφc(Yc) which associates a non-
negative value with each assignmentyc to Yc. To simplify things, we focus on
pairwise associative Markov networks[Taskar, 2004], where all of the cliques in-
volved are either a single node, or a pair of nodes (1-clique or 2-clique). In a
pairwise AMN with edgesE = {(i j ) | i < j}, the nodes and edges are associated
with potentialsφi(Yi) andφi j (Yi ,Yj) respectively.

In an AMN, each nodeYi can be assigned a feature vectorxi ∈ �dn, which
describes the properties of the object represented by that node. Similarly, a feature
vectorxi j ∈ �de can be assigned to each edge (i j ). The feature vectorxi j indicates
the properties that describe the relation between the objects represented by the
nodesYi andYj. The node and edges potentials are functions of the feature vectors
xi andxi j . The resulting network defines the distribution

log Pw(y|x) =
N

∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(i j )∈E

K
∑

k,l=1

(wk,l
e · xi j )y

k
i y

l
j − logZw(x) . (4.4)

1The work presented in this section originated from a collaboration with Rudolph Triebel.
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Here the partition functionZw(x) depends on the parametersw and featuresx, but
no on the labelsy.

The main task in an associative Markov network consists on finding the assign-
menty ∈ Y that maximizes logw P(y|x). This is actually amaximum a posteriori
(MAP) assignment that can be formulated as an integer linearprogram (see[Taskar,
2004] for more details).

4.3.2 Feature Vector Transformation

The main drawback of the AMN classifier, which is based on the log-linear model,
is that it separates the classes linearly. This assumes thatthe features are separable
by hyper-planes, which is not justified in all applications.This restriction does not
hold for instance-based classifiers such as the nearest-neighbor, in which a query
data point ˜p is assigned to the label that corresponds to the training data point p
whose featuresx are closest to the features ˜x of p̃. In the learning step, the NN
classifier simply stores the entire training data set and does not compute a reduced
set of training parameters.

To combine the advantage of instance-based NN classification with the AMN
approach, we convert the feature vector ˜x of lengthL pertaining to query point ˜p
using the transformτ : RL → RK given by

τ(x̃) = (d(x̃, x̂1), . . . , d(x̃, x̂K)) , (4.5)

whereK is the number of classes and ˆxk denotes the training example with label
k closest to ˜x. In this way, the transformed features are more easily separable by
hyperplanes. An example is given in Figure 4.2. Here, the topimage depicts the
training and test data for a two class problem, in which the length of the feature
vector x = (x1, x2) is two . The classification of the test data (triangles) is shown
as lines connecting each training example with the closest example (square) in
the ground truth. This nearest neighbor classification results in very few errors.
However, it seems difficult to separate the test data into the two classes they pertain
using an hyperplane (in this case a line). The bottom image ofFigure 4.2 shows
the training examples in the transformed space using the transformation given by
τ(x̃) = (d(x̃, x̂1), d(x̃, x̂2)). In this case, the linear separability is improved.

Additionally, theM nearest neighbors can be used in the transform function.
For this, we compute theM nearest distances to each of the classesk = 1, . . . ,K.
The final transformationτM : RL → RKM given by

τM(x̃) = (d(x̃, x̂1
1), . . . , d(x̃, x̂M

1 ), . . . , d(x̃, x̂1
K), . . . , d(x̃, x̂M

K )) . (4.6)

The resulting model, introduced by[Triebel et al., 2007b], is called instance-
based associative Markov network (iAMN).
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Figure 4.2: Example of the feature transformτ for a two-class problem with two
features. The top image shows the training and test data withground truth labeling.
In the bootom image the transformationτ is applied to the test data.
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4.3.3 Feature Selection

One of the problems when classifying points represented by range data consists
on selecting the size of the feature vectors. As we showed in the experiments of
Chapter 3, the number of possible features that can be used torepresent each data
point is usually very large and can easily be in the order of hundreds. This problem
is known ascurse of dimensionality. There are at least two reasons to try to reduce
the size of the feature vector. The most obvious one is the computational complex-
ity, which in our case, is also the most critical, sice we haveto learn and inference
in networks with thousands of nodes. Another reason is that although some fea-
tures may carry a good classification when treated separately, maybe there is a little
gain when combined together if they have a high mutual correlation [Theodoridis
and Koutroumbas, 2006]. The goal thus is to reduce the size of the feature vec-
tors when used with the iAMN and, at the same time, try to maintain their class
discriminatory information.

The reduction on the numbers of features used for the classification of places
is somehow implicit in the AB-based classifiers used in the previous Sec-
tion 4.2. There, the final number of weak classifiersT can be selected. Each se-
lected weak classifier represents a feature together with a threshold (Chapter 3).
The problem is that the same feature can appear multiple times with different
thresholds and different priorities, which makes it difficult to decide which are
the best original features.

In this section we follow an alternative approach. We apply ascalar feature
selection procedure which uses a class separability criterion and incorporates cor-
relation information. The selection is independent of the classification algorithm
that will use the features (iAMN in our case). This kind of methods are also de-
noted asfilters. A filter relies on general characteristics of the data to evaluate and
select feature subsets without involving any classification algorithm[Guyon and
Elisseeff, 2003].

As separability criterionC, we use the Fisher’s discrimination ratio (FDR) ex-
tended to the multi-class case[Theodoridis and Koutroumbas, 2006]. For a scalar
feature f andK classes {w1, . . . ,wK}, C( f ) can be defined as

C( f ) = FDRf =

K
∑

i

K
∑

j,i

(µi − µ j)2

σi + σ j
, (4.7)

where the subscriptsi, j refer to the mean and variance of the classeswi andw j re-
spectively. Additionally, the cross-correlation coefficient between any two features
f andg givenT training examples is defined as

ρ f g =

∑T
t=1 xt f xtg

√

∑T
t=1 x2

t f

∑T
t=1 x2

tg

, (4.8)

wherext f denotes the value of the featuref in the training examplet. Finally, the
selection of the bestL features involves the following steps
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• Select the first featuref1 as

f1 = argmax
f

C( f ).

• Select the second featuref2 as

f2 = argmax
f, f1

{

α1C( f ) − α2|ρ f1 f |
}

,

whereα1 andα2 are weighting factors.

• Selectfl, l = 3, . . . , L, such that

fl = argmax
f, fr















α1C( f ) − α2

l − 1

l
∑

r=1

|ρ fr f |














, r = 1, 2, . . . , l − 1

After the scalar feature selection, the learning and inference steps on the instance-
based associative Markov network are carried out. More detail about the inference
process can be found in Appendix C and in[Triebelet al., 2007a].

4.4 Region Extraction and Topological Mapping

After applying any of the previous approaches for classifying the free cells in an
occupancy grid map, we extract the regions from the final classified graph. We de-
fine a regionλl on a adjacency graphA as a set of 8-connected nodes with the same
label l. For each labell ∈ {corridor, room, doorway}, regions are extracted from the
adjacency graph using the algorithm by Rosenfeld and Pfaltz[1966]. Each region
λl is assigned a different identifier. The connections between regions are extracted
using a similar algorithm[Gonzalez and Wintz, 1987]. Finally, a topological graph
T = (VT ,ET ) is constructed in which each nodevi ∈ VT represents a region and
each edgeei ∈ ET represents a connection. Additionally, we add to each nodevi

information about the properties of the regionλl which represents: area, centroid,
and major and minor axis of the ellipse approximation ofλl . The major and minor
axis are vectors which represent the elongation of the region and its orientation.
The topological graph together with the region properties form the final topologi-
cal map. We finally apply a heuristic region correction to thetopological map to
increase the classification rate:

1. We mark each region corresponding to a room or a corridor whose size does
not exceed a given threshold of 1 m2 compared to the training set as a clas-
sification error and assign the label of one of its connected regions.

2. We mark each region labeled as doorway whose size does not exceed a given
threshold of 0.1 m2 or that is connected to only one region as a false classi-
fication and assign the label of one of its connected regions.
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4.5 Experimental Results

The approaches described above have been implemented and tested using occu-
pancy maps obtained from real environments. The laser rangedata used for the
training and classification were simulated using the Carnegie Mellon Robot Navi-
gation Toolkit (CARMEN)[Montemerloet al., 2003]. The goal of the experiments
is to demonstrate that we can construct a semantic-topological map of typical in-
door environments using only laser range data. We first applyour method using
probabilistic relaxation. Additionally, we analyze whether this method can be used
to create a topological map of an environment for which no training data were
available. Finally we present one experiment in which iAMNsare use to train and
classify an indoor environment.

4.5.1 Results Using Relaxation Labeling

The first experiment was performed using data obtained in theoffice environment
of building 79 at the University of Freiburg. This environment contains rooms,
doorways and a corridor, which has a length of approximately22 meters. For the
sake of clarity we give the result of the obtained classification by separating the
environment into two parts. The left half of the environmentcontains the poses
used as training examples (see Figure 4.3(a)), and the righthalf of the environment
was used for test classification and for the topological map creation. We used the
sequential classifier corridor-room which correctly classifies 97.27% of the test ex-
amples. The classification is depicted as colors/grey levels in Figure 4.3(b). After
the sequential classification, the probabilistic relaxation method explained in Sec-
tion 4.2 is applied for 50 iterations. This method generatesmore compact regions
and eliminates noise. The result is illustrated in the Figure 4.3(c). Finally, the
topological map is created using the connections between regions. As can be seen
in Figure 4.3(c), some regions detected as doorways (markedwith circles) do not
correspond to real doorways. After applying the heuristicsdescribed in Section 4.4
on the corresponding topological map, these false doorwaysare eliminated. Fur-
thermore, the two left rooms situated above the corridor aredetected as only one
region. That is due to the fact that the doorway in between wasnot completely
detected. Thus, the two rooms remain connected and are classified as only one re-
gion. The final topological map, depicted in Figure 4.3(d), has a final classification
rate of 98.95% of the data points.

In a second experiment we created a topological map of the right part of the
office environment of building 52 at the University of Freiburg (see Figure 4.4(a)).
The length of the corridor in this environment is approximately 20 meters. After
applying the decision list classifier room-corridor, the classification of the test set
was 97%. Like in the previous experiment, we applied the relaxation process for
50 iterations as well as the operations for region correction. The final result gives
a classification rate of 98.66% of the data points. The different steps of the pro-
cess are illustrated as colors/grey levels in Figure 4.4. As opposed to the previous
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(a) Training map (left half) and test map (right half)

(b) Sequential classification (c) Incorrect regions

Door 1
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Room 4

Door 2 Door 3

Room 2Room 1

Door 4 Door 5 Door 6

Room 3 Room 5

(d) Resulting topological map

DoorwayRoomCorridor

Figure 4.3: This figure shows (a) the training and test map of the building 79
at the University of Freiburg, (b) the result of applying thedecision list with a
classification rate of 97.27%, (c) the result of applying relaxation and the detection
of incorrect labeled regions (marked with circles), and (d)the final topological map
with the corresponding regions.
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experiment, the doorway between the two right-most rooms under the corridor is
correctly detected (Figure 4.4(c)). Therefore, the rooms are labeled as two different
regions in the final topological map.

4.5.2 Application to a New and Unknown Indoor Environment

This experiment is designed to analyze whether our approachbased on boosting
and relaxation labeling can be used to create a topological map of a new envi-
ronment from which no training data were available. To carryout the experiment
we trained a decision list classifier using the training examples of the maps shown
in Figure 4.3(a) and Figure 4.4(a) with different scales. In this way, we obtained
a classifier with a better generalization. The resulting classifier was then evalu-
ated on scans simulated in the map denoted asSDR site Bin the Radish repository
[Howard and Roy, 2003]. This map represents an empty building in Virginia, USA.
The corridor is approximately 26 meters long. The whole process for obtaining the
topological map is depicted in Figure 4.5. We use the sequence corridor-doorway
which gives a first classification of 92.36%. As can be seen in Figure 4.5(c), rooms
number 11 and 30 are originally part of the corridor, and thusfalsely classified.
Moreover, the corridor is detected as only one region, although humans potentially
would prefer to separate it into six different corridors: four horizontal and two ver-
tical ones. Doorways are very difficult to detect by the sequential classifier. The
majority of poses detected as doorways disappear after the relaxation process be-
cause they are very sparse. The main reason for the problem ofdoorway detection
is that the maps have different sizes and resolutions, and the features are not scale
invariant. In the final topological map, 96.94% of the data points are correctly
classified.

We also analyzed the results obtained without applying the relaxation process.
This had several effects. First, omitting the relaxation procedure reduces theclas-
sification rate. Furthermore, the finally obtained regions typically are more sparse
and do not represent the original ones as well as with relaxation. Finally, omitting
the relaxation procedure increases the number of errors in the resulting topological
map. For example, the map for the building in Virginia contained four incorrect
nodes without relaxation, whereas there were only two incorrect nodes when we
used the probabilistic relaxation.

4.5.3 Results using Instance-based Associative Markov Networks

In this experiment we apply our classification approach using iAMNs to the indoor
environment corresponding to the building 79 at the University of Freiburg. For
efficiency reasons we used a grid resolution of 20 cm, which lead us to a graph
with 8088 nodes. Smaller resolutions result in much bigger networks difficult to
treat. As in the first experiment, the map was divided into twoparts, the left one
used for learning, and the right one used for classification purposes (Figure 4.6).
For each cell we calculate 203 geometrical features. This number was reduced to
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(a) Training map (left half) and test map (right half)

(b) Sequential classification (c) Incorrect regions
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Figure 4.4: This figure shows: (a) the training and test map ofthe building 52
at the University of Freiburg; (b) the result of applying thedecision list with a
classification rate of 97%, (c) the result of applying relaxation and the detection of
incorrect labeled regions (marked with circles), and (d) the final topological map
with the corresponding regions.
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(a) SDR site B map (b) Map after relaxation and region correction
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DoorwayRoomCorridor

Figure 4.5: This figure shows: (a) the original map of the building, (b) the resulting
classification after the relaxation an region correction, and (c) the final topological
map with semantic information. The regions are omitted in each node. The rooms
are numbered left to right and top to bottom with respect the map in (a). For the
sake of clarity, the corridor-node is drawn maintaining part of its region structure.
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DoorwayRoomCorridor

Figure 4.6: The left image depicts the training map of building 79 at the University
of Freiburg. The right image shows the resulting classified map using an iAMN
with 30 selected features.

30 applying the feature selection of Section 4.3.3. The right image of Figure 4.6
shows the resulting classification with a success rate of 97.6%, which is similar to
the classification obtained using relaxation labeling. We can also see in the results
that some doorways are lost in the final classification. The reason for this can be
the low resolution of the map (20 cm) in comparison with the original resolution
(5 cm). However, maintaining the original resolution wouldlead us to a huge
Markov network almost impractical to use.

4.6 Related Work

Different algorithms for extracting topological maps in indoorenvironments have
been proposed. Kuipers and Byun[1991] extract distinctive points in the map,
which are defined as the local maximum of some measure. These points are used



54 Chapter 4. Topological Map Extraction with Semantic Information

as nodes in a toplogical map. In their work, Kortenkamp and Weymouth[1994]
fuse vision and ultrasound information to determine topologically relevant places.
Additionally, Shatkey and Kaelbling[1997] apply a based learning approach based
on hidden Markov models to learn topological maps in which the nodes represent
points in the plane. Critical points are also found by Thrun[1998], in this case
using Voronoi diagrams. The critical points minimize the clearance locally, and
are then used as nodes in a topological map. Also Beesonet al. [2005] detect topo-
logical places with an extension of the Voronoi graph. Furthermore, Choset[2001]
encodes metric and topological information in a generalized Voronoi graph to solve
the SLAM problem.

In comparison to these previous approaches, the technique described in this
chapter applies a supervised learning method to identify complete regions in the
map like corridors, rooms or doorways that have a direct relation with a human
understanding of the environment.

In addition, mathematical morphology is used in the work by Fabrizi and Saf-
fiotti [2000]. This method uses a disc as structuring element for the dilation and
erosion operations. This approach extract large open spaces from the map, but is
quite sensitive to irregularities in the map.

Other works use vision sensors to distinguish places in an indoor environment.
Tapus and Siegwart[2005] use fingerprints extracted from images to create topo-
logical maps. In their work, Zivkovicet al. [2005] create a higher level conceptual
map with visual landmarks and geometric constraints. Theseapproaches used fea-
tures extracted from images that are quite specific to the environment the robot is
located at, which makes it difficult to generalize to new environments. In contrast
to these works, the methods presented in this chapter have better generalization,
since they used the geometrical properties of the different places.

In a recent work, Friedmanet al. [2007] use Voronoi Random Fields for ex-
tracting the topologies of occupancy grid maps. This work also uses simple fea-
tures that are selected using boosting as characteristics for the nodes in a Markov
random field. This approach is similar to the one in Section 4.3. However, in
[Friedmanet al., 2007], only the points lying in the Voronoi diagram are used in
the MRF, whereas we used all the free positions in the map.

For related work about semantic place classification we refer the reader to Sec-
tion 3.7.

4.7 Conclusions

In this chapter, we presented several approaches to create topological maps from
indoor environments. The first one uses AB to learn a strong classifier for
categorizing places into semantic classes such as rooms, doorways, and corridors.
A probabilistic relaxation process is applied on the resulting classifications to re-
duce classification errors. The second approach is based on iAMNs together with
scalar feature selection. Finally, we extract regions and their connections. The ad-
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vantage of both approaches is that the nodes of the resultinggraph correspond to
the individual semantic regions.

Both methods has been implemented and evaluated on various maps from real-
world environments. Experiments demonstrate that they arewell-suited to create
topological maps from indoor environments even without training the classifier for
each environment.
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Chapter 5

Probabilistic Semantic
Classification of Trajectories1

5.1 Introduction

The approaches described in the previous chapters are able to classify static ob-
servations of a mobile robot. However, mobile robots are dynamic agents that
move along different trajectories. When operating in indoor environments, the
robots usually have a moderate velocity and a relatively continuous movement.
That means, that observations obtained by a mobile robot at nearby poses are typ-
ically very similar. Furthermore, certain transitions between classes in a trajectory
are rather unlikely. For example, if the classification of the current pose iskitchen,
then it is rather unlikely that the classification of the nextpose isoffice given the
robot moved a short distance only. To get from the kitchen to the office, the robot
first has to move through a doorway.

In this chapter, we present an approach that takes into account the dependencies
between the classification of the poses along a trajectory. In particular, we use
a hidden Markov model (HMM) to filter the output of the currentclassification
based on previous ones. In this way, we reduce the number of outliers during the
classification.

Additionally, in this chapter we add new places to be recognized in indoor
environments. In particular, we want to recognize corridors, doorways, kitchens,
seminar rooms, offices, and laboratories. For this purpose, we include a camera
on the robot and extract new features from images that permitus to extend the
classification to the additional places. The new vision features are based on the
recognition of objects. As an example, Figure 5.1 shows an office environment
together with some laser and vision data. The increment on the number of places
to be recognized shows clearly the improvement of the final classification when
applying an HMM to the different place transitions.

1The work presented in this chapter originated from a collaboration with Axel Rottmann.
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office

corridor

laboratory kitchen

doorway

room

��

Figure 5.1: An environment with offices, doorways, a corridor, a kitchen, and a lab-
oratory. Additionally, the figure shows typical observations obtained by a mobile
robot at different places.

The approach presented in this chapter uses a probabilisticdecision list to clas-
sify each pose of the robot along a trajectory. Then it applies a Hidden Markov
Model to filter the current classification result based on previous ones. As a re-
sult the mobile robot is able to classify the different places it traverses with high
confidence.

The rest of the chapter is organized as follows. The following section intro-
duces our modification of the AB algorithm to include the new weak classi-
fiers for vision features. Section 5.3 describes the complete set of simple features
extracted from laser and vision data. The models for the HMM are introduced
in Section 5.4. In Section 5.5, experimental results obtained with this approach
are presented. We discuss related work in Section 5.6. Finally, we conclude in
Section 5.7.

5.2 Generalized AB

As explained in Section 2.3, the generalized AB algorithm is a supervised
learning algorithm designed to find a binary classifier that discriminates between
positive and negative examples. AB boosts the classification performance
of a simple learning algorithm by combining a collection of weak classifiers to a
stronger classifier. The final strong classifier takes the form of a weighted combi-
nation of weak classifiers followed by a threshold. Large weights are assigned to
good classification functions whereas poor functions have small weights.

To classify the different places using laser and vision features, two kinds of
weak classifiers are created. The first type is used for laser and vision features and
has the form

h j(x) =

{

+1 if p j f j(x) < p jθ j

−1 otherwise,
(5.1)

whereθ j is a threshold andp j is either−1 or +1 and thus representing the direc-
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tion of the inequality. Note that this form is the same as the one introduced in
Section 3.2.

The second type of weak classifiers is designed for our set of vision features
and has the form

h j(x) =

{

p j if θ1j < f j(x) < θ2j
−p j otherwise,

(5.2)

hereθ1j and θ2j are thresholds delimiting an interval, andp j is either+1 or −1
indicating if the examples inside the interval are positiveor negative. The kind of
weak classifier is motivated by that fact that objects appearat different places in
different numbers. For example, in an office room we expect more monitors than
in the kitchen, but less than in the laboratory. Equation (5.2) was thought to encode
this kind of information.

For the multiple class case, we use the same approach as in Section 3.3, and
create a probabilistic decision list. Each elementk in the list is represented by a
classifier for the classk in the environment.

5.3 Simple Features from Laser and Vision Data

In this section, we describe the complete set of features used to create the weak
classifiers for each binary AB classifier in the decision list.

The robot used for the experiments in this chapter is equipped with a 360o field
of view laser sensor and a camera. Each laser observation consists of 360 beams.
Each vision observation consists of eight images which forma panoramic view.
Figure 5.1 shows typical laser range readings as well as fractions of panoramic
images taken in an office environment. Accordingly, each training example for the
AB algorithm consist of one laser observation, one vision observation, and
its classification.

Our method for place classification is based on single-valued features extracted
from laser and vision data. In the case of laser observations, we extract the set of
simple features presented in Section 3.4. These are standard geometrical features
used for shape recognition. Furthermore, they are rotational invariant to make the
classification of a pose dependent only on the (x, y)-position of the robot and not
on its orientation.

In the case of vision, the selection of the features is motivated by the fact that
typical objects appear with different probabilities at different places. For example,
the probability of detecting a computer monitor is larger inan office than in a
kitchen. For each type of object, a vision feature is defined as a function that takes
as argument a panoramic vision observation and returns the number of detected
objects of this type in it. This number represents the single-valued featuref j within
AB according to Equations (5.1) and Equation (5.2).

In our case, we consider monitors, coffee machines, soap dispensers, office
cupboards, frontal faces, face profiles, full human bodies,and upper human bodies.
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An example of such objects is shown in Figure 5.1. The individual objects are
detected using classifiers also trained with AB and based on the set of Haar-
like features proposed by Lienhartet al. [2003].

5.4 Probabilistic Place Classification

The approach described so far is able to classify single observations, but it does not
take into account past classifications when determining thetype of place the robot
is currently at. However, whenever a mobile robot moves through an environment,
the semantic labels of nearby places are typically identical. Furthermore, certain
transitions between classes are unlikely. For example, if the robot is currently in a
kitchen, then it is rather unlikely that the robot ends up in an office given it moved
a short distance only. In many environments, to get from the kitchen to the office,
the robot has to move through a doorway first.

To incorporate such spatial dependencies between the individual classes, we
apply an HMM and maintain a posteriorP(yt) about the type of the placeyt ∈ Y
the robot is currently at, whereY represents the set of possible semantic labels.
The posterior is calculated as

P(yt) = αP(zt | yt)
∑

yt−1

P(yt | yt−1, ut−1)P(yt−1). (5.3)

In this equation,α is a normalizing constant ensuring that the left-hand side
sums up to one over allyt. To implement this HMM, three components need to
be known. First, we need to specify the observation modelP(zt | yt), which is the
likelihood that the classification output iszt given the actual class isyt. Second, we
need to specify the transition modelP(yt | yt−1, ut−1), which defines the probability
that the robot moves from classyt−1 to classyt by executing actionut−1. Finally,
we need to specify how the beliefP(y0) is initialized.

In our current system, we choose a uniform distribution to initialize P(y0).
Furthermore, the classification outputzt is represented by a histogram. In this
histogram, thek-th bin stores the probability that the classified location belongs to
thek-th class, as shown in Section 3.3.

To determineP(zt | yt), we use the KL-divergence between two histograms[Cover
and Thomas, 1991]. The first distribution is the current classification outputzt.
The second one is learned from a statistics: for each classy, we compute a his-
togram ẑ1:h(y) usingh observations recorded within a place belonging to classy
(hereh = 50). This histogram ˆz1:h(y) is obtained by averaging over the individual
histograms ˆz1, . . . , ẑh, which are computed according to Equation (3.6). To deter-
mine P(zt | yt), we use the KL-divergencekld(· ‖ ·) which provides a measure
about the similarity of two distributions

P(zt | yt) = e−kld(zt ‖ ẑ1:h(yt)). (5.4)
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ẑ[k
]

1:
h
(y

)

 1  2  3  4  5  6  1  2  3  4  5  6  1  2  3  4  5  6  1  2  3  4  5  6  1  2  3  4  5  6  1  2  3  4  5  6

class (k) class (k) class (k) class (k) class (k) class (k)

z[k]
t

 0
 0.2
 0.4
 0.6
 0.8

 1

co
rri

do
r (

1)
do

or
w

ay
 (2

)
ki

tc
he

n 
(3

)
la

b 
(4

)
se

m
in

ar
 (5

)
of

fic
e 

(6
)

Eq. (5.4)
−→

P(zt | yt)

 0
 0.2
 0.4
 0.6
 0.8

 1

co
rri

do
r (

1)
do

or
w

ay
 (2

)
ki

tc
he

n 
(3

)
la

b 
(4

)
se

m
in

ar
 (5

)
of

fic
e 

(6
)

Figure 5.2: The distributions depicted in the first row show the learned histograms
ẑ1:h(y) for the individual classes (here corridor (1), doorway (2), kitchen (3), lab
(4), seminar room (5), and office (6)). The left image in the second row depicts a
possible classification outputzt. In the right image, each bar represents the corre-
sponding likelihoodP(zt | yt) for the different estimates ofyt.

To illustrate the computation of the observation likelihood P(zt | yt) consider
Figure 5.2. The first row depicts examples for the histogramsẑ1:h(y). The left
image in the second row depicts the outputzt of the sequential classifier while the
robot was in an office. As can be seen, also the classes doorway and seminar room
have a probability significantly larger than zero. This output zt and the histogram
ẑ1:h(yt) is than used to computeP(zt | yt) according to Equation (5.4). The result
for all classes is depicted in the right image in the second row. In this image, each
bin represents the likelihoodP(zt | yt) for the individual classesyt. As can be seen,
the observation likelihood given the robot is in a doorway isclose to zero, whereas
the likelihood given it is in an office is around 90%, which is actually the correct
class.

To realize the transition modelP(yt | yt−1, ut−1), we only consider the two
actionsut−1 ∈ {Move,Stay}. The transition probabilities were learned in a manually
labeled environment by running 1000 simulation experiments. In each run, we
started the robot at a randomly chosen point and orientation. We then executed a
random movement so that the robot traveled between 20 cm and 50 cm forward.
These values correspond to typical distances traveled by the robot between two
consecutive updates of the HMM. The finally obtained transition probability matrix
P(yt | yt−1, ut−1) for the actionMoveis depicted in Figure 5.3. As can be seen, the
probability of staying in a place with the same classification is higher than the
probability of changing the place. Moreover, the probability of moving from a
room to a doorway is higher than the probability of moving from a room directly
to a corridor. This indicates that the robot typically has tocross a doorway first in
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Figure 5.3: The image depicts probabilities of possible transitions between places
in the environment. To increase the visibility, we used a logarithmic scale. Dark
values indicate low probability.

order to reach a different room. Furthermore, the matrix shows a lower probability
of staying in a doorway than staying at the same type of room. This is due to
the fact that a doorway is usually a small area in which the robot never rests for a
longer period of time.

5.5 Experimental Results

The approach described above has been implemented and tested using simulated
and real robot data obtained in our office environment. The goal of the experi-
ments is to demonstrate that our approach provides a robust classification of places
in indoor environments into typical categories. We furthermore describe results
indicating that the filtering of the classification output using an HMM significantly
increases the performance of the overall approach. Additionally, we analyze the
benefits of using vision features for the classification.

To train the classifier used throughout the experiments, we used 38,500 training
examples. For each training example, we simulated the laserobservations given an
occupancy grid map of the environment. To generate the features extracted from
vision data, we used 350 panoramic views recorded with our B21r robot, which is
equipped with a SICK laser range finder and a camera system mounted on a pan/tilt
unit as shown in Figure 5.4. Each panoramic view consists of 8images covering
the 360o field of view around the robot. For each simulated laser scan,we then ran-
domly drew a panoramic view from those corresponding to the type of the current
place and used the vision features extracted from this view.Figure 5.5 shows two
distributions over the number of coffee machines detected in the database images.

One important parameter of the AB algorithm is the numberT of weak
classifiers used to form the final strong binary classifier. For each strong binary
classifier, we performed several experiments with up to 500 weak classifiers and
analyzed the classification error. The numberT of weak classifiers used to carry
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Figure 5.4: The image shows the robot used for the experiments, a B21r robot
equipped with a SICK laser range finder and a camera system mounted on a pan/tilt
unit.
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Figure 5.5: Likelihood of detectingn coffee machines inside and outside a kitchen
using Haar-like classifiers.



64 Chapter 5. Probabilistic Semantic Classification of Trajectories

Binary Classifier T Training error [%]
lab 440 0.99

corridor 165 2.02
doorway 171 2.10
kitchen 68 2.46
seminar 334 2.58
office 288 7.31

Table 5.1: NumberT of weak classifiers and training error for the individual binary
classifiers.

out the experiments has then been determined as the minimum in the error func-
tion. The resulting numbersT of weak classifiers used to form the strong binary
classifiers and the classification errors of the finally obtained strong classifiers on
the training data are given in Table 5.1.

In our current system, we determine the optimal sequence of strong binary
classifiers by considering all possible sequences of strongbinary classifiers. Al-
though this approach is exponential in the number of classes, the actual number of
permutations considered is limited in our domain due to the small number classes.
In practice, we found out that the heuristic which sorts the classifiers in increasing
order according to their training classification error alsoyields good results and
at the same time can be computed efficiently. Compared to the optimal order, the
classifier generated by this heuristic for an application with six different classes
performed on average only 1.3% worse as demonstrated by Rottmann[2005]. In
several situations, the sequence generated by this heuristic turned out to be the
optimal one.

5.5.1 Classifying Places along Trajectories

The first experiment is designed to demonstrate that the classifier learned from
the training data in combination with the HMM can be used to robustly classify
observation sequences acquired with a mobile robot in a realoffice environment.
This environment contains six different types of places, namely offices, doorways,
a laboratory, a kitchen, a seminar room, and a corridor. The ground truth for the
different places in this environment is shown in the top image of Figure 5.6. We
steered our robot through the environment and collected laser and image data along
its trajectory. We then calculated the classification output without and with the
HMM filtering and compared this to the ground truth information.

The classification rate of the sequential classifier withoutapplying the HMM
is 74.8%. The generated labels are shown in the middle image of Figure 5.6. If we
additionally use the HMM to filter the output of the sequential classifier, the clas-
sification rate increases to 83.8%. The labels obtained after applying the HMM are
shown in the lower image of Figure 5.6. As we can see in this example, the model
for the HMM encodes the possible transitions and discards the ones with low prob-
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Figure 5.6: Ground truth labeling of the individual areas inthe environment (top),
and typical classifications obtained for a test set using only the output of the se-
quential classifier (middle) and in combination with the HMM(bottom).
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Figure 5.8: Improvement of the HMM according to the percentage of weak classi-
fiers used in each of the binary AB classifiers.

ability. For example, the wrong office labels that appear in the kitchen (Figure 5.6
middle image) are corrected after the application of the HMM(Figure 5.6 bottom
image). The reason is that there is a very low probability of going directly from
the kitchen to the office according to the learnt model shown in Figure 5.3. A
two-samplet test revealed that the improvements of the resulting classification are
significant at theα = 0.01 level. This illustrates that by using the HMM the overall
classification rate can be improved seriously.

A second experiment was carried out using test data from a different part of the
same building. We used the same sequential classifier as in the previous experi-
ment. Whereas the sequential classifier yields a classification rate of 77.19%, the
HMM generated the correct answer in 87.72% of all cases (see Figure 5.7). This
improvement is also significant at theα = 0.01 level.

Finally, we studied how the HMM improves the final classification rate accord-
ing to the output of AB. For this purpose, we analyzed the improvement of
the HMM using different classification rates from AB. This is achieved by
increasing the percentage of weak classifiers used in each binary classifier of the
AB decision list. Here, 100% corresponds to the number of weak classifiers
used in the previous experiment (Table 5.1). For example, the classification rate de-
creases to 60% if only 5% of the weak classifiers are used. The results are shown
in Figure 5.8. In average, the HMM improves the classification rate by 5.0%.

5.5.2 Improvement Obtained by Combining Laser and Vision Data

Additionally we analyzed whether the integration of visionand laser data yields
any improvements over using only laser. To perform this experiment, we trained
AB only with the three classes office, corridor, and doorway, because the
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Sequential Error [%] Error [%]
Classifier laser laser & vision

corridor-doorway 3.21 1.87
doorway-room 3.74 2.67

doorway-corridor 3.21 2.14
room-corridor 1.60 1.34
corridor-room 1.60 1.34
room-doorway 1.60 1.60

average 2.50 1.83

Table 5.2: Classification error obtained when using only laser data comparing to
both laser and vision data.

other classes kitchen, seminar room, and lab can hardly be distinguished from of-
fices using only laser observations. The classification obtained by integrating both
modalities is summarized in Table 5.2. As can be seen, the combination of laser
and vision data yields better results than the classifier only relying on laser range
data.

5.6 Related Work

Classifying the places along a trajectory of a mobile robot is a recent area of in-
terest. At the time of carrying out the work presented in thischapter, very few
works considered this problem. Maybe the most known is the work by Torralbaet
al. [2003], which applies a hidden Markov model to distinguish betweenthe places
that a mobile robot traverses. Here, the information about the appearance of im-
ages is used to discriminate between different places. Compared to this approach,
the method presented in this chapter uses an additional laser range finder sensor.
Moreover, we use the objects detected in the images instead of calculating visual
features based on appearance. We classify the places based on their geometrical
2D structure and the objects found in them. In this way, we enable our robot to
generalize better when classifying new environments.

Subsequent works analyze the capabilities for distinguishing places along a tra-
jectory using camera images. Pronobiset al. [2006] recognize the different places
of an office environment using vision. Their approach is based on two kinds of
features extracted from the images: interest points descriptors and appearance fea-
tures. A similar approach is used by Luoet al. [2007], but this time applying
incremental learning. Also in[Spexardet al., 2006], rooms are classified accord-
ing to the appearance of images. In this case the goal of the robot is to recognize
already seen rooms. However, these approaches do not take into account past clas-
sifications when calculating the current semantic label.

In a very recent work, Pronobiset al. [2008] extend their previous work using
additionally a laser range finder and the set of geometrical features presented in



Section 5.7. Conclusions 69

this thesis. Results show that the laser features improve the generalization of the
classifier. In this case no HMM is used to smooth the classification.

For related work about semantic place classification of static poses we refer the
reader to Section 3.7.

5.7 Conclusions

In this chapter, we presented a novel approach to classify different places in the
environment into semantic classes. This technique uses a combination of simple
geometric features extracted from laser range scans as wellas features extracted
from camera images. It further applies the AB algorithm to form a strong
classifier. To distinguish between more than two classes, weuse a sequence of
binary classifiers arranged in a probabilistic decision list. To incorporate the spatial
dependency between places, we apply a hidden Markov model that is updated upon
sensory input and movements of the robot.

Our algorithm has been implemented and tested using a mobilerobot equipped
with a laser range finder and a camera system. Experiments carried out on a real
robot as well as in simulation illustrate that our techniqueis well-suited to classify
places in indoor environments. The experiments furthermore demonstrate that the
hidden Markov model significantly improves the classification performance. Addi-
tional experiments revealed that the combination of visionand laser data increases
the robustness and at the same time allows to distinguish between more classes
compared to the approach in which only laser is used.
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Chapter 6

Applications of Semantic
Information: Localization and
Multi-Robot Exploration 1

6.1 Introduction

The work presented in the previous chapters showed how to augment the represen-
tation of indoor environments using semantic and conceptual information about
places. These extended representations were mainly used tofacilitate the interac-
tion between robots and humans. In this chapter we will see how the semantic
information helps to improve other robotic tasks. The main idea is that mobile
robots can use the intrinsic information of human-made environments to improve
their actions.

In this chapter, we will show the applications of semantic labeling in two
robotic tasks: multi-robot exploration, and localization. In both cases, an improve-
ment is obtained when taking into account the classificationof the robot location.

The exploration of environments belongs to the fundamentalproblems in mo-
bile robotics. Exploration is the task of controlling a robot with the goal of max-
imizing its knowledge about the external world. There existseveral applications
in which the exploration task is an integral part of the robotic mission (see, for
example,[Murphy, 2004], [Thrun et al., 2003], [Huanget al., 1986], and[Jäger
and Nebel, 2002]). Additionally, the use of multiple robots is often suggested to
have advantages over single robot systems[Caoet al., 1997; Dudeket al., 1996].
In particular, cooperating robots have the potential to accomplish a task faster than
a single robot[Guzzoniet al., 1997].

Indoor environments constructed by humans often contain certain structures,
like corridors with adjacent rooms or offices. This information has been typically
ignored when coordinating a team of robots in an explorationtask. In typical indoor

1The work presented in this chapter originated from a collaboration with Cyrill Stachniss
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environments, corridors usually provide more branchings to new unexplored areas
like adjacent rooms. Therefore, it makes sense to focus firston corridors in order
to obtain a better assignment of targets to robots.

Mobile robot localization is the problem of determining thepose of the robot
relative to a given map of the environment. Different approaches have been used
to solve this problem, like for example, grid-based Monte Carlo localization[Sim-
mons and Koenig, 1995], multi-hypothesis EKFs[Jensfelt and Kristensen, 2001],
and condensation-based algorithms[Dellaertet al., 1999]. In this chapter we will
use the last approach, also known as Monte Carlo localization. We will show how
global localization can be improved using both odometry andsemantic labels in
comparison to using only odometry.

In this chapter, we first present an approach to include semantic information
about places to better distribute the robots in human-made environments during
the exploration tasks. The key idea is to assign higher rewards to robots that first
explore corridors. As a result, the overall completion timeof an exploration can be
significantly reduced.

In a second approach, we use the semantic labeling in the Monte Carlo local-
ization algorithm. The main idea here is to take as observation model the semantic
classification of the current pose of the mobile robot.

The rest of the chapter is organized as follows. In Section 6.2, we present our
method to assign semantic labels to target locations duringthe exploration task.
The algorithm for target assignment to robots using semantic information is shown
in Section 6.3. In Section 6.4, we introduce the Monte Carlo approach for local-
ization using semantic labels. In Section 6.5 experimentalresults are presented.
We discuss related work in Section 6.6. Finally, conclusions are presented in Sec-
tion 6.7.

6.2 Sematic Classification of Target Locations

During this chapter we assume that the knowledge about the environment is repre-
sented by an occupancy grid map. Thus, the exploration problem consist of control-
ling the robot so that its maximizes the occupancy information in the map. Using
this representation, target locations are located at the frontier between known and
unknown areas and can be extracted using the approach by Yamauchiet al. [1999].
The left image of Figure 6.1 shows an example of a map togetherwith the frontiers
detected there (shown as dashed lines). For each of the frontiers, a target location
is generated.

The goal now is to classify each potential target location into a semantic class.
One possible solution to classify a target location is to simulate an observation
at its position, and then classify this observation using the approach presented in
Chapter 3. However, the target position is located at a frontier, which means that
part of the neighboring areas are not known. This situation is shown in Figure 6.1.
Therefore, the laser observations simulated at frontier cells contain a significant
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potential
target

robot virtual trajectory

observations
poses of simulated

Figure 6.1: The left image shows a situation in which a robot has extracted the
frontiers of the occupancy grid map (dashed lines). Additionally, a target location
is shown for one of the frontiers. In the right image, a virtual trajectory to the target
is generated by the robot.

number of maximum-range readings, which can lead to high missclassification
rates. To increase the classification rate in these cases, wegenerate a short virtual
trajectory to the desired goal location. We then simulate laser range observations
at different poses along the virtual trajectory using the partially know map. These
poses are generated selecting cells in the occupancy grid which are as far away
as possible from the unknown locations in the current map. The reason for this
selection is that cells having more information about its surroundings will have
a lower error in its semantic classification, since their simulated range scans will
contain fewer maximum-readings.

To generate the different positions along the trajectory we apply the euclidian
distance transformation[Meijsteret al., 2000] with respect to unknown and occu-
pied cells in the local area of the frontier. We select the pose in the free space within
that local area containing the highest distance to unknown areas. Then an A* plan-
ner is used to generate the virtual trajectory to the target location. An illustrating
example is depicted in Figure 6.1.

Once we have the virtual trajectory, we follow the approach presented in Chap-
ter 5. We apply a hidden Markov model (HMM) and maintain a posterior P(yt)
about the typeyt of the place the virtual sensor is currently at as

P(yt) = αP(zt | yt)
∑

yt−1

P(yt | yt−1, ut−1)P(yt−1). (6.1)

The different components of this model are calculated in the same wayas explained
in Chapter 5. Using Equation (6.1), we classify the target locationP(ytarget) using
the classification of the positions leading to it.

6.3 Target Assignment using Semantic Place Labeling

We now present the algorithm used to assign target locationsto each robot of the
team during the exploration. As indicated above, the main idea is to give priority
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to target locations that are located at corridors, as they lead to a higher number of
unknown areas. The algorithm used for target assignment is shown in Figure 6.2.

In a first step, the algorithm calculates the set of frontier cells. This is done us-
ing the method explained in Section 6.2. For each roboti in the team, the algorithm
then calculates the costVi

t of reaching each frontier cellt. This cost is based on the
distance the robot has to travel to reach the cell. Additionally, the algorithm esti-
mates the semantic labelLt of the target locationt using the HMM-based approach
presented in Section 6.2.

Using the labelLt of cell t and the numbern of robots in a team, an initial utility
function Uinit (Lt, n) is assigned to each target locationt. At this point the seman-
tic information about places is considered in the algorithm. The target locations
classified as corridors get an initial utilityUinit which isγ times higher than other
locations of the current indoor environment. After severalexperiments we select a
value of 5 forγ. This value led to the best results in different runs of the algorithm.

An iterative process is then carried out in which the best combination of robot
i and targett is selected. This selection is done maximizing the utility function
Ut at each step. As several robots can be assigned the same frontier cell, each
cell is discounted each time it is assigned to a robot. In thisway, only one robot
is assigned to each frontier cell. Additionally, target locations which can poten-
tially be observed by other robots already assigned are discounted. This is done by
introducing a utility functionU(t) given by

U(tn | t1, . . . , tn−1) = Utn −
n−1
∑

i=1

Pvis(tn, ti) , (6.2)

wherePvis(tn, ti) describes the probability that the frontiertn can be observed by a
robot moving toti . In our approach, this probability density is approximatedby a
linear function.

The algorithm of Figure 6.2 furthermore reduces the interfence of robots dur-
ing the exploration taking into account the visibility constraints, which are included
in the utility function. Moreover, the inclusion of semantic information about the
target locations improves the distribution of robots, giving preference to corridor
places when selecting goal position for exploring unknown areas. As a result, the
time needed to explore an indoor environment using a team of robots is signifi-
cantly reduced.

However, the exploration time reduction is not significant when using teams
with a small number of robots. This fact can be explained by considering the single-
robot exploration scenario. In this case, it makes no sense to focus on exploring the
corridors first, since the robot has to cover the overall environment with its sensor.
In our experiments, the exploration time doesn’t decrease if the team has less than
five robots.
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• Determine the set of frontier cells.

• Compute for each roboti the costVi
t for reaching each frontier cellt.

• Estimate for each frontier cellt the semantic labelingLt.

• Set the utilityUt of all frontier cellst to Uinit (Lt, n) according to their seman-
tic labelingLt and the sizen of the team.

• While there is one robot left without a target point

1. Determine a roboti and a frontier cellt which satisfy

(i, t) = argmax
(i′,t′)

(

Ut′ − Vi′
t′

)

.

2. Reduce the utility of each target pointt′ in the visibility area according
to

Ut′ ← Ut′ − Pvis(t, t
′).

Figure 6.2: Algorithm for the assignation of target locations to the different robots
in a team.
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6.4 Localization Using Place Recognition

In this section we show how to include the semantic information about places in
the popular Monte Carlo localization approach introduced by Dellaertet al.[1999].
This localization method applies a recursive Bayesian scheme to maintain a pos-
terior about the location of the robotxt given the mapm of the environment, the
odometry informationu0:t−1, and the observationsz1:t

p(xt | m, z1:t, u0:t−1) = η · p(zt | m, xt) · p(xt | m) · (6.3)

·
∫

x′
p(xt | x′, ut−1) · p(x′ | m, z1:t−1, u0:t−2) dx′.

In our implementation,m is a occupancy grid map, in which each cell addi-
tional stores the the semantic label corresponding to its place. The set of possible
places to be recognized are corridor, doorway, office, kitchen, seminar room, and
laboratory. This set of places corresponds to the one applied in Chapter 5.

As observationsz1:t, we use the output of the classifier the robot uses for place
labeling. This classifier is the same as the one introduced inSection 5.2, and applies
a probabilistic decision list in which each element is a binary AB-based
classifier. The quantityp(zt | m, xt) is then determine asp(zt | yt), whereyt is
the class assigned toxt in m. To estimatep(zt | yt), we generated statistics about
the output of the sequential multiclass classifier given therobot was at a place
corresponding toyt. Additionally, we weight the particles inversely proportional to
the occupancy probability atxt in m.

6.5 Experimental Results

The approaches presented in this chapter were implemented using real robots as
well as simulations. The goal of the experiments is to show that the semantic
information about places can improved both, multi-robot exploration in indoor en-
vironments, and localization of single robots.

6.5.1 Improving the Exploration Time Using Semantic Information

The first experiments were designed to show how the semantic information about
places can improve the distributions of the robots in a team during the explo-
rationtasks. Due to the big numbers of robots used, we evaluated our technique
only in simulation experiments.

To prevent a loss of performance compared to approaches which do not con-
sider semantic place information for small robot teams, we trigger the influence
of the semantic place information depending on the size of the team. We linearly
decrease the influenceγ for teams smaller than 10 robots. The linear interpolation
of the influence of the semantic labels is encoded in the utility functionUinit (Lt, n),
wheren denotes the number of robots in the algorithm of Figure 6.2.
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In a first experiment we used the map of the Fort Sam Huston hospital (Fig-
ure 6.3, top), which contains several corridors together with rooms adjacent to
them. In the experiment we apply our method for coordinatingseveral robots us-
ing semantic information about places, and compared it to the case in which no
place information is used. The bottom image of Figure 6.3 shows the results when
using different robot teams. The number of robots varies from 5 to 50 in each team.
For each team size, we repeated the experiments 50 times. In all the experiments
the robots started from the same initial position. As the plot shows, the time needed
to explore the complete environment is significantly reduced at the confidence level
of 0.05 when using semantic place information.

The reason for this time reduction is the increment of targetlocations when
using our approach. As the robots concentrate on exploring the corridor first, more
target locations appear coming from the adjacent rooms. Figure 6.4 depicts the
effect on the number of frontier cells when using place labeling. As the image
shows, a bigger number of target locations appears during the different decision
steps of the target assignment algorithm.

A similar experiment was carried out using the map of the Intel Research Lab
(top image of Figure 6.5). Again we observed a significant reduction in the explo-
ration time as shown in the bottom image of Figure 6.5.

Additionally, our assignation method reduces the interferences between the
path of the robots during the exploration. This reduction was of up to 20% in
our experiments.

6.5.2 Influence of Noise in Place Labeling

So far we have assumed that the semantic classification of thetarget locations had
no errors. In real situations,however, errors usually appear during the labeling pro-
cess (see experimental results in Chapter 3 and 5). It is therefore interesting to ana-
lyze how the classification errors affect the performance of our method. For this,
we carried out an experiment in which we randomly misclassified different per-
centages of target locations, and measure the exploration time according to them.
Figure 6.6 shows the resulting performance using different team sizes. When the
error in the classification exceeds 15% the improvement using semantic informa-
tion is not significant anymore.

6.5.3 Localization Using Place Recognition

The last experiment is designed to illustrate how semantic information about places
can be used to improve the localization of a mobile robot in its environment. In
this experiment, we used an ActivMedia Pioneer II robot. Note that the laser data
is only fed into the semantic classifier and not used for metric localization.

Figure 6.7 illustrates the evolution of two particle sets over time. In the first
row, the semantic information was available whereas in the second row only the
odometry information was used. Both filters were initialized with a uniform dis-
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Figure 6.3: The top image shows the map of the Fort Sam Huston hospital. The
bottom image depicts the performance when semantic information used in com-
parison to the case where no label information is used.
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Figure 6.5: The top image shows the map of the Intel Research Lab. The bottom
image depicts the exploration time with and without using semantic information.
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Figure 6.6: Exploration performance with different classification errors.

tribution with 10, 000 particles. The robot initially was located in the secondleft
office, north of the corridor. Therefore, particles located in office received higher
importance weights compared to the other samples. Whereas the approach utilizing
semantic information converges quickly to the correct solution, the particle filter
that relies only on the odometry informationp(xt | m) finally diverges.

6.6 Related Work

Different aspects of multi-robot exploration have been studiedin the past. For
example, Singh and Fujimura[1993] present a method for heterogeneous robot
teams. In this approach, if a robot is too big to pass through anarrow passage, it
informs other robots to do this task. Howardet al. [2002] introduce an incremental
deployment approach that explicitly deals with situationsin which the path of one
robot is blocked by another.

Mataríc and Sukhatme[2001] present different strategies for allocating tasks
in a robot teams and analyze their performance in different experiments. The work
by Parker[2003] studies how a team of heterogeneous robots can jointly solve
certain task that can not be accomplished by a robot individually. The Hungarian
method to compute the assignments of frontier cells to robots is introduced by Ko
et al. [2003]. In contrast to our work, Koet al. [2003] mainly focuses on finding a
common frame of reference in case the start locations of the robots are not known.

The coordination technique presented is this chapter is an extention of the work
by Burgardet al. [2005]. We also discount the utility of target locations if they are
visible from a goal location already assigned to a robot. In contrast to[Burgardet
al., 2005], our approach estimates and incorporates background knowledge about
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Figure 6.7: Global localization using semantic information and odometry (first row) compared to an approach using only the odometry
information (second row). The images in one same column represent the corresponding filter at the same time. The arrow indicates the
ground truth position. As the results indicate, semantic information can be used to speed up global localization.
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environmental structure into the goal point assignment procedure.
The semantic labels used to improve multi-robot coordination can be seen as

background knowledge about spacial structures. Foxet al.[2003] presented a tech-
nique which aims to learn background knowledge in typical indoor environments
and later on use that knowledge for map building. They apply their approach to de-
cide whether the robot is seeing a previously built portion of a map, or is exploring
new terrain.

Localization is a typical problem in mobile robotics, and different approaches
have been applied to solve this problem. The grid-based grid-based Monte Carlo
localization was introduced by Simmons and Koenig[1995]. This approach ap-
proximates the posterior of the robot pose using a histogramover the possible
discrete poses. Several authors have successfully appliedgrid-based Monte Carlo
localization in their work, as for example Burgardet al. [2000a], Hertzberg and
Kirchner [1996], and Simmonset al. [2000]. Multi-hypothesis extended Kalman
filters is another approach for localization used in different works, as for instance
in [Jensfelt and Kristensen, 2001], [Roumeliotis and Bekey, 2000], and[Reuter,
2000]. Finally, particle filter approaches were introduced by Dellaertet al. [1999]
and Foxet al. [1999]. In this chapter we will use the last approach, also known as
Monte Carlo localization, including the semantic classification of places.

For related work about the method for semantic labeling of places, we refer the
reader to Sections 3.7 and 5.6.

6.7 Conclusions

In this chapter, we have shown how the semantic information helps to improve
other robotic tasks. In particular, we proposed a novel technique that takes into ac-
count semantic information about places in the context of coordinated multi-robot
exploration. The main idea is that mobile robots can use the intrinsic information of
human-made environments to improve their actions. This improvement is obtained
by selecting the best target locations according to their semantic classification. The
semantic labeling of the target locations is done using an AdaBoost-based classi-
fier. Additionally, a hidden Markov model is apply to improvethe classification in
a virtual trajectory to the target position.

Alternatively we have seen how the semantic information about places can be
used to localize the robot in an indoor environment using theMonte Carlo local-
ization approach. In this case, the observation model of therobot corresponds to
the semantic classification of its position.

Both methods demonstrated that the semantic information can be useful in dif-
ferent tasks using autonomous mobile robots.



Chapter 7

Semantic Information in Sensor
Data1

7.1 Introduction

So far, we have seen how to augment the maps in the environments with seman-
tic information. This additional information was obtainedby classifying the laser
range data obtained by a mobile robot into some of the classesthat represent the
different places in the environment.

Here, we present a different approach. Instead of classifying the pose of the
robot according to the corresponding range observation, weclassify the observa-
tion itself by assigning a semantic label to each of its measurements. The main
idea is to classify each laser beam into the class of object ithits. For example, if
a beam hits a person, then we assign the labelpersonto it. In this way, the data
provided by the range sensor contains additionally semantic information about the
objects in the environment.

In this chapter we consider the binary case in which two possible labels are
assigned to the different range measurements:personor non-person. The choice
of these labels is given by the fact that the world is a dynamicenvironment in
which different agents, such as people, cars, animals and others, moveconstantly.
In the specific case of indoor environments, like offices or houses, we can consider
that people are the most common moving agents. It is thus interesting to design
methods for the detection of people by mobile robots.

The application of laser sensors for people detection has been popular in the
past, as they provide a large field of view and, opposed to vision, are mainly in-
dependent from ambient conditions. However, laser range data contain little infor-
mation about people, especially because they typically consist of two-dimensional
range information. Figure 7.1 shows an example scan from a cluttered office envi-
ronment. While this scan was recorded, several people walked through the office.
The scan suggests that in cluttered environments, people detection in 2D is difficult

1This chapter originated from a joint work with Kai O. Arras.
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Figure 7.1: Example scan from a typical office. It seems very difficult to detect
which beams are hitting people.

Figure 7.2: Typical range readings from legs of people. As can be seen, the ap-
pearance can change drastically, also because the legs cannot always be separated.
Accordingly, the proper classification of such pattern is difficult.

even for humans. However, at a closer look, range measurements that correspond
to humans have certain geometrical properties such as size,circularity, convexity
or compactness (see Figure 7.2).

The key idea presented in this chapter is to divide the range observations into
segments, and then extract several scalar features from them that encode their ge-
ometrical properties. Finally, we apply a supervised learning algorithm based on
AB to select the best features while at the same time creating a classifier for
the laser beams.

The rest of the chapter is organized as follows. Section 7.2 describes the
method to classify the beams in a scan. In Section 7.3, the setof geometrical
features is described. Experimental results are shown in Section 7.4. We discuss
related work in Section 7.5. Finally, we conclude in Section7.6.
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7.2 Classification of Segments Using Boosting

The key idea of this work is to classify the beams corresponding to a laser scan into
ones hitting a person or not. For this purpose we segment the beams into subsets
using a segmentation algorithm. We then extract some geometrical features from
these subsets and apply the generalized AB algorithm to select the features
that best classify the beams into measurements corresponding to people.

As explained in Section 2.3, the generalized AB algorithm is a super-
vised learning algorithm designed to find a binary classifierthat discriminates be-
tween positive and negative examples. AB boosts the classification perfor-
mance of a simple learning algorithm by combining a collection of weak classifiers
to a stronger classifier. The final strong classifier takes theform of a weighted com-
bination of weak classifiers followed by a threshold. Large weights are assigned to
good classification functions whereas poor functions have small weights.

To classify the different segments of a laser observation, we create a weak
classifier for each of the geometrical featuresf extracted from them. The weak
hypotheses have the form

h j(x) =

{

+1 if p j f j(x) < p jθ j

−1 otherwise,
(7.1)

whereθ j is a threshold andp j is either−1 or+1 and thus representing the direction
of the inequality. This form is similar to the one used in Section 3.2. Also here the
algorithm determines for each weak classifierh j(x) the optimal values forθ j and
p j, such that the number of misclassified training examples is minimized

7.3 Feature Extraction

In this section we explain how the geometrical features are extracted from the laser
observations. We assume that the robot is equipped with a range sensor that de-
livers observationsz = {b1, ..., bL} that consist of a set of beams. Each beamb j

corresponds to a tuple (φ j , ρ j), whereφ j is the angle of the beam relative to the
robot andρ j is the length of the beam.

The beams in the observation scanzare split into subsets using a jump distance
condition: If two adjacent beams are farther away than a threshold distance, a new
subset is initialized. As we will see in the experiments, this simple method results
in good segmentations for the detection of people. For an additional list of segmen-
tation algorithms we refer the reader to the work by Premebida and Nunes[2005].

The output of the partitioning procedure is an ordered sequenceP = {S1, ...,SM}
of segments such that

⋃

Si = z. The elements of each segmentS = {x1, x2, ..., xn}
are represented by Cartesian coordinatesx = (x, y), where x = ρ cos(φ) and
y = ρ sin(φ), and (φ, ρ) are the polar coordinates of the corresponding beam.

The final training set for the AB algorithm is then given by a set of
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segments together with their corresponding labels

E = {(Si , l i) | l i ∈ {+1,−1}} ,

wherel i = +1 indicates that the segmentSi represents a person andl i = −1 indi-
cates that the segmentSi is not a person.

Once the laser observation is divided into the different segments, we can pro-
ceed to extract the geometrical features from them. We definea feature f as a
function f : S → R that takes a segmentS as an argument and returns a real value.
Here,S is the set of all possible segments. For each segment we determine the
following fourteen features:

1. Number of points in the segment.

2. Standard deviation of the beams length.

3. Mean average deviation from median.

4. Jump distance from preceeding segment.

5. Jump distance to succeeding segment.

6. Euclidian distance between the first and last point of a segment.

7. Linearity of the segment.

8. Circularity of the segment.

9. Radius of the circle fit in the segment.

10. Boundary length.

11. Boundary regularity.

12. Mean curvature.

13. Mean angular difference.

14. Mean speed between two consecutive scans.

This collection of features constitutes a profile of each segment (see Figure 7.3).
Since certain features are not defined for less than three points (e.g., circularity, ra-
dius) only segments withn > 2 points are taken into account. Details for the
calculation of each feature are given in Appendix B.

Some works[Fodet al., 2002; Cuiet al., 2005; Topp and Christensen, 2005]
report the use of additional conditions on the distance between blobs, typically to
associate two legs to the same person. We deliberately do notconsider such con-
ditions. The association of single legs to persons, especially when several people
stand close together, is a complex data association problem. In our opinion, this
problem can more robustly be solved by integrating multipleobservations over
time rather than directly on the level of the feature detector.
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mean speed = −0.026042

jump dist end = −0.45
width = 0.56931
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boundary regularity = 0.061545
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Figure 7.3: Laser segment with its feature profile. The highlighted points corre-
spond to the segment and the crosses depicts other readings in the scan. The circle
and line are fitted to the segment for thelinearity andcircularity features.
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Detected Label
True Label Person No Person Total examples
Person 239(99.58%) 1 (0.42%) 240
No Person 27 (1.03%) 2589(98.97%) 2616

Table 7.1: Confusion matrix for the corridor environment.

7.4 Experimental Results

The approach presented above has been implemented using a 180o SICK laser
range finder. The goal of the experiments is to demonstrate that our simple features
can be boosted to a robust classifier for the semantic classification of the beams
corresponding to a laser scan. Each beam is semantically labeled as person or
non-person.

Throughout the experiments, the sensor was kept stationaryand mounted 30 cm
above the floor. The corresponding scans where segmented andthe geometrical
features were calculated for each segment according to Section 7.3. The complete
set of labeled segments was then divided randomly into a training and a test set,
each containing approximately 50% of the segments. The training sets were em-
ployed for learning a strong classifier using the method presented in Section 7.2,
whereas the test set was used for the evaluations. The segments in both sets were
labeled manually with the help of videos recorded during theexperiment.

One important parameter of the AB algorithm is the number of weak
classifiersT used to form the final strong classifier. We need a fast people detector
as we want the classifier to work in real time. After several experiments, we found
that a value ofT = 10 weak classifiers was the best trade-off between the error rate
and the speed of the classifier.

7.4.1 Corridor and Office Environments

In the first experiment we analyze the performance of our method when used in a
corridor. We recorded a total of 540 scans in the corridor of the building 79 at the
University of Freiburg. This corridor is approximately 20 meters long. The scans
were recorded while a person was both moving and standing still (Figure 7.4 left).
Each scan was divided into segments and for each segment the features #1 to #13
were calculated. The total number of segments extracted was5734. After dividing
the segments into a training and a test set, we trained our AB classifier. The
results from the test set are shown in Table 7.1. Only 1 from 240 segments (0.42%)
corresponding to the person was misclassified (false negatives), whereas 27 from
2616 segments (1.03%) not corresponding to the person were classified as people
(false positives).

In a second experiment, we placed the laser in an office that contained tables,
chairs, boxes, round shaped trash bins, and other furniture, creating a cluttered en-
vironment (Figure 7.4 right). An example scan taken in this environment can be
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Figure 7.4: The corridor (left) and office (right) environments in which the experi-
ments were carried out.

Detected Label
True Label Person No Person Total examples
Person 497(97.45%) 13 (2.55%) 510
No Person 171( 2.73%) 6073(96.26%) 6244

Table 7.2: Confusion matrix for the office environment

shown in Figure 7.2. In this case two people were in the room during the experi-
ment. Like in the previous experiment, the people were moving and occasionally
standing still. A total of 791 scans were recorded from whichwe extracted 13838
segments. The segments were divided into a training and a test set and a strong
classifier was learned. Although the office was cluttered with objects and furniture
that strongly resemble features of legs, we still obtained an overall classification
rate of 97.25%. The confusion matrix is shown in Table 7.2.

In a third experiment we created a common set of segments containing all
the segments from both the corridor and the office environment. Again, the set
was divided into a training and a test set. Table 7.3 shows theconfusion matrix.
Although the error rates slightly increase with respect to Tables 7.1 and 7.2, they
still remain under 4%, which in our opinion is a fairly good level. This result
demonstrates that a common classifier can be learned using both environments
while still obtaining good classification rates.

Detected Label
True Label Person No Person Total
Person 722(96.27%) 28 (3.73%) 750
No Person 225(2.54%) 8649(99.88%) 8860

Table 7.3: Confusion matrix for both corridor and office environments simultane-
ously.
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Detected Label
True Label Person No Person Total
Person 217(90.42%) 23 (9.58%) 240
No Person 112(4.28%) 2504(95.72%) 2616

Table 7.4: Results obtained in the corridor environment using the classifier learned
in the office

7.4.2 Transferring the Classifiers to New Environments

In the following experiment we analyze wether a classifier learned in a particular
environment can be used to successfully classify the beam observations in a new
environment.

For this purpose we trained our AB-based classifier using the training
set corresponding to the office environment in the previous section. We then clas-
sified the test set from the corridor scenario. Table 7.4 shows the results of this
classification. As expected, the errors increase compared to the situation in which
the training and the test data were from the same environment. However, the clas-
sification rates remain above 90%, which indicates that our algorithm yields good
generalizations and can also be employed for people detection in new environ-
ments.

7.4.3 Comparison With a Heuristic Approach

To analyze how much can be gained by our learning approach, wecompared the
classification results of our AB-based classifier with the results obtained
using a manually designed classifier. This classifier employs features that are typi-
cally found in the literature on laser-based people tracking. In particular, we create
a classifier using the following list of heuristics:

• Jump distance between adjacent beams for local minima extraction (features
#4 and #5). The threshold for both features has been set to 30 cm.

• Segment width (feature #6). In this case, local minima blobsgreater than
5 cm and smaller than 50 cm are considered as people.

• Minimum number of points in the segment (feature #1). A segment with
four or more points is considered as corresponding to a person.

• Motion of beams (feature #14). Two consecutive scans are aligned and
beam-wise subtracted from each other. Segments that contain beams which
moved more than a certain distance are classified as people. This minimal
distance was set to 2 cm, close above sensor noise.

• Standard deviation as a compactness measure of a segment (feature #2). The
threshold was experimentally determined and set to 0.5 meter.
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Heuristic Approach AdaBoost
False Negatives (%) 34.67 3.73
False Positives (%) 9.06 2.54
Overall Error (%) 11.06 2.63

Table 7.5: Comparison with the heuristic approach

Without Motion Feature With Motion Feature
False Negatives (%) 3.73 3.47
False Positives (%) 2.54 3.13
Total Error (%) 2.63 3.15

Table 7.6: Classification errors including the motion feature

To compare the performance of our AB-based method with the previous
set of heuristics, we repeated the experiment of Section 7.4.1, where segments
from the corridor and office were used together as examples. We then classified
the test set using both approaches. The results of the classification are shown in
Table 7.5. As this table indicates, our approach yields muchbetter results than the
heuristic approach.

7.4.4 Experiments Including the Motion Feature

In the previous experiments, only the first thirteen geometrical features were used.
These features were static and did not take into account changes on the observations
during time.

In the experiment of this section, we added the motion feature #14 to the set
of features to be fed to the boosting process. All scans from the corridor and the
office runs were simultaneously used for training and classification (Section 7.4.1).
The results of the classification are shown in Table 7.6. As can be seen, adding the
motion feature results only in a marginal improvement over the classifier without
the motion feature (Table 7.3). Although the motion featurereceives relatively
high weight (it is ranked as the third most informative feature), we think that this
marginal improvement is simply an expression of the fact that people do not always
move.

7.4.5 Best Features for People Detection

As we did in Section 3.6.5, we now look into the set of weak classifiers selected
by AB to find the most important. Since each weak classifier represents a
feature, this is somehow equivalent to choose the best set offeatures. We take into
account the importance of the individual feature weights inthe final strong classi-
fier. Table 7.7 lists the five best features for the classifier trained in the corridor,
office and both environments respectively. Note that sometimesthe same features
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Environment Five Best Features
Corridor 9, 4, 5, 2, 4
Office 9, 13, 3, 4, 5
Both 9, 13, 4, 3, 5

Table 7.7: The best five features for each classifier

occurs more than once in a classifier, differing in their threshold or weight values.
Analyzing the Table 7.7, we can see that the most informativefeature in all

the environments is the the radius of the circle fitted into the segment (feature #9).
This feature is an alternative estimation of the size of eachsegment. The mean an-
gular difference (feature #13) is the second most important feature, quantifying the
convexity of the segment. The following features in importance are the two jump
distances (features #4 and #5). These two features are typically used in the litera-
ture for people detection. Finally, we found the features #2and #3, which measure
the compactness of the segment. Feature #3 seems to be preferred. The reason for
this is likely to be the more robust properties of the mean absolute deviation from
the median over the simple standard deviation.

7.5 Related Work

In the past, many researchers focused on the problem of tracking people in range
scans. One of the most popular approach in this context is to extract legs by the
detecting moving blobs that appear as local minima in the range image[Fodet al.,
2002; Kleinhagenbrocket al., 2002; Scheutzet al., 2004; Schulzet al., 2003a].
To this end, two types of features have been quite popular: motion and geometry
features. Motion in range data is typically identified by subtracting two subsequent
scans. If the robot is moving itself, the scans have first to bealigned, e.g., using
scan matching. The drawback of motion features is that onlymovingpeople can
be found. Topp and Christensen[2005] extend the method of Schulzet al. [2003a]
by the ability to track also people standing still, which, for instance, is useful for
interaction. They report on good results in typical scenarios but also on problems
in cluttered environments. They also conclude that either improved motion models
or more advanced pattern detection of people are necessary.

Cui et al. [2005] pursue a multi-sensor approach to people tracking using mul-
tiple laser scanners at foot height and a monocular camera. After registration of the
laser data, they extract moving blobs of 15 cm diameter as feet candidates. Two
feet candidates at a distance of less than 50 cm are treated asa step candidate.

Geometric features have also been used by Xavieret al. [2005]. With a jump
distance condition, they split the range image into clusters and apply a set of geo-
metric rules to each cluster to distinguish between lines, circles and legs. A leg is
defined as a circle with an additional diameter condition.

In all approaches mentioned above, neither the selection offeatures nor their
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thresholds are learned or determined other than by manual design and hand-tuning.
This motivates the application of the learning technique presented in this chapter.

Finally, Haehnelet al.[2003] have considered the problem of identifying beams
in range scans that are reflected by dynamic objects. They consider the individual
beams independently and apply EM to determine, whether or not a beam has been
reflected by a dynamic object such as a person. Our method, in contrast, considers
groups of beams and classifies the entire groups according totheir properties.

Parts of the approach presented in this chapter have been used in recent works
on people detection and/or tracking. Zivkovic and Krose[2007] apply our method
to detect people in 2D laser range data. The detection of people is also done using
vision. Both methods are combined to create a robust people detector. In their
work, Premebidaet al. [2007] use some of the geometrical features presented in
this chapter to the detection and tracking of objects in laser readings.

7.6 Conclusions

This chapter addressed the problem of adding semantic information about people
in sensor readings. Our approach applies the AB algorithm to learn a robust
classifier from simple features, and it identifies groups of beams that correspond to
legs of people. The method has been implemented and applied in cluttered office
environments. In practical experiments carried out in different environments we
obtained encouraging detection rates of over 90%.

From the features selected by AB we can conclude that the shape of
people in range data is best recognized by a radius feature, aconvexity feature, a
local minimum feature and a robust compactness feature.

Although in this chapter we concentrate only on the detection of people, we
think that the approach here presented can be easily extended to add semantic in-
formation from other objects in the environment.
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Chapter 8

Conceptual Spatial
Representation of Indoor
Environments1

8.1 Introduction

In this chapter we will show how the semantic classification of places is used as
part of a more complex representation system in a mobile robot. In particular, we
introduce our integrated system for conceptual spatial representations of indoor
environments for service robots.

Recently, there has been an increasing interest in robots whose aim is to assist
people in human-like environments, such as domestic or elderly care robots. In
such situations, the robots will no longer be operated by trained personnel but
instead have to interact with people with little or no formaltraining in robotics.
Communication and interaction between robots and humans become key issues for
these systems.

One of the most intuitive and powerful ways for humans to communicate is
spoken language. It is therefore interesting to design robots that are able to speak
with people and understand their words and expressions. Forthis, the robot needs
to perceive the world similar to a human. However, when comparing the way
robots typically perceive and represent the world with the findings from cognitive
psychology about how humans do it, it is evident that there isa large discrep-
ancy. Bridging the gap between human and robot spatial representations is thus of
paramount importance.

In this chapter we present an integrated approach for creating conceptual rep-
resentations of human-made environments using mobile robots. The concepts rep-
resent spatial and functional properties of typical indoorenvironments. Our model
is composed of layers containing maps at different levels of abstraction as shown

1This chapter originated from a joint work with Hendrik Zender, Patric Jensfelt, and Geert-Jan
M. Kruijff
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in Figure 8.1. The lower layers contain a metric map, a navigation map and a topo-
logical map, each of which plays a role in navigation and self-localization of the
robot. On the topmost level of abstraction, the conceptual map provides a richer
semantic view of the spatial organization. The complete model permits the robot
to do spatial categorization rather than only instantiation. Additionally, the multi-
layered representation is created in a semi-supervised mapacquisition process, in
which a tutor communicates with the robot using spoken language.

The rest of the is organized as follows. In Section 8.2, we describe the multi-
layered conceptual spatial representation. The map acquisition process is outlined
in Section 8.3. In Sections 8.4, we present implementation details of the complete
system. In Section 8.5, a demo is presented in which we show the capabilities of
the service robot. We discuss related work in Section 8.6. Finally, we conclude in
Section 8.7.

8.2 Multi-layered Conceptual Mapping

The aim of our multi-layered conceptual mapping is to generate spatial represen-
tations that enable a mobile robot to create a conceptual model of human-made
environments similar to the way humans do. These concepts correspond to spatial
and functional properties of typical indoor environments.Following findings in
cognitive psychology[McNamara, 1986], we assume that topological areas are the
basic spatial units suitable for situated interaction between humans and robots. We
also proceed from the assumption that the way people refer toa place is determined
by the functions people ascribe to that place.

Considering these ideas, our final representation model is divided into layers,
each representing a different level of abstraction. Starting from sensory input (laser
scanner and odometry), a metric map and a navigation map representing traveled
routes are constructed. On the basis of detected doorways, atopological partition-
ing of the navigation map is maintained. The previous layersplay a crucial role for
the robot control systems. The conceptual map provides a conceptual abstraction
of the lower layers. In the conceptual layer, spatial knowledge, innate conceptual
knowledge and knowledge about entities in the world stemming from other modal-
ities, such as vision and dialogue, are combined to allow forsymbolic reasoning
and situated dialogue. Figure 8.1 depicts the four layers ofthe conceptual spatial
representation.

8.2.1 Metric Map

The first layer of our model (Figure 8.1, bottom) contains a metric representation of
the environment in an absolute frame of reference. The geometric primitives of the
metric map consist of lines extracted from laser range scans. Such lines typically
correspond to walls and other flat structures in the environment. The complete met-
ric map is created by a mobile robot using simultaneous localization and mapping
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Figure 8.1: An example of a layered spatial representation for an indoor environ-
ment.
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Figure 8.2: The metric map is represented by lines. The navigation map is visually
represented by the stars. Different colors represent different areas separated by
doors, which are marked by bigger red stars.

(SLAM) techniques. In particular, we apply the same framework as by Folkessonet
al. [2005], which uses general representations for features that address symmetries
and constraints in the feature coordinates . Furthermore, the representation allows
for the features to be added to the map with partial initialization. The number of
dimensions for a feature can grow with time as more information is acquired. The
basis for integrating the feature observations is the extended Kalman filter (EKF)
[Thrunet al., 2005]. An example metric map created using this method is shown
in Figure 8.2.

8.2.2 Navigation Map

The second layer contains the navigation map represented bya graph. This repre-
sentation is based on the notion of a roadmap of virtual free-space markers[Latombe,
1991; Newmanet al., 2002]. As the robot navigates through the environment,
a marker (navigation node) is dropped whenever the robot hastraveled a certain
distance from the closest existing marker. The graph servesfor planning and au-
tonomous navigation in the known part of the environment.

We distinguish between two kinds of navigation nodes: placenodes and door-
way nodes. Doorway nodes indicate the transition between different places and
represent possible doors. They are detected and added whenever the robot passes
through a narrow opening. Later, the status (open/closed) of a known door can
be monitored using the laser scanner. Additionally, doorway nodes are assigned
information about the door opening such as width and orientation.

Each place node is classified into one of two semantic labels,namely C
or R, following the approach presented in Chapter 3. This methodfor semantic
classification assigns a label to the pose which correspondsto the place node we
want to classify. To increase the robustness of the method, we additionally classify
each place node using the majority vote of the classificationof the poses close to
it. As explained before, a node is added to the navigation mapwhen the distance to
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the previous node is greater than a threshold. We use this fact to store the classifi-
cation of the lastN poses of the robot between two place nodes. We then compute
the majority vote of these lastN poses and assign the final classification to the
corresponding destination node.

8.2.3 Topological Map

The topological map divides the set of nodes in the navigation graph into differ-
ent areas. An area consists of a set of interconnected nodes (Figure 8.2). In this
view, the exact shape and boundaries of an area are irrelevant. The set of nodes
is partitioned on the basis of the door detection mechanism explained in the pre-
vious section. This approach complies with previous studies [McNamara, 1986;
Hirtle and Jonides, 1985], which state that humans segment space into regions that
correspond to more or less clearly defined spatial areas.

Note that this method for topological map extraction is an alternative to the
one presented in Chapter 4. Here, the approach is based mainly on the detection of
doorways as the boundaries between different regions. Then the nodes in the dif-
ferent regions are labeled according to its semantic classification. This procedure
is more appropriate for an online creation of the topological map. In contrast, the
method introduced in Chapter 4 is an offline approach which uses simulated range
data for the classification of the free poses in the map.

8.2.4 Conceptual Map

The conceptual map provides the link between the low-level maps and the commu-
nication system used for situated human-robot dialogue. Itis also in this layer that
knowledge about the environment stemming from other modalities, such as vision
and dialogue, is anchored to the metric and topological maps.

Based on the work by Zender[2006], our system is endowed with a common-
sense OWL ontology[Smithet al., 2004] of an indoor environment. The complete
ontology is shown in Figure 8.3. This ontology describes taxonomies (is-a re-
lations) of room types and typical objects found therein throughhas-arelations.
These conceptual taxonomies have been handcrafted and cannot be changed on-
line. However, instances of the concepts are added to the ontology during run-
time. Through fusion ofacquiredandassertedknowledge (as will be explained in
Section 8.3), and through the use of theinnate conceptualknowledge, a reasoner
[Haarslev and Mölle, 2003] can infer information about the world that is neither
given verbally nor actively perceived. In this way, linguistic references to spatial
areas can be generated.

Acquired Knowledge

While the robot moves around constructing the metric and topological maps, our
system derives higher-level knowledge from the information in these layers. Each
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Figure 8.3: Illustration of a part of the commonsense ontology of an indoor office
environment. Solid arrows denote the taxonomicalis-a relation.
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topological area, for instance, is represented in the conceptual map as an ontolog-
ical instance of the typeArea. Furthermore, as soon as reliable information about
the semantic classification of an area is available, this is reflected in the concep-
tual map by assigning the area’s instance a more specific typeof eitherRoom or
Corridor. Information about recognized objects stemming from the vision sub-
system is also represented in the conceptual map. Whenever anew object in the
environment is recognized, a new instance of the object’s type, e.g.Couch, is added
to the ontology. Moreover, the object’s instance and the instance of the area where
the object is located are related via thehasObject relation. This process is shown
in Fig. 8.1.

Asserted Knowledge

During a guided tour with the robot[Elin A. Topp et al., 2006], the user typically
names areas and certain objects that he or she believes to be relevant for the robot.
Typical assertions in a guided tour include “You are in the corridor," or “This is
the charging station." Any such assertion is stored in the conceptual map, either by
specifying the type of the current area or by creating a new object instance of the
asserted type and linking it to the area instance with thehasObject relation.

Innate Conceptual Knowledge

We have handcrafted an ontology (Fig. 8.3) that models conceptual commonsense
knowledge about an indoor office environment. On the top level of the conceptual
taxonomy, there are the two base conceptsArea andObject. Area can be further
partitioned intoRoom or Corridor. The basic-level subconcepts ofRoom are char-
acterized by the instances ofObject that are found there, as represented by the
hasObject relation.

Inferred Knowledge

Based on the knowledge representation in the ontology, our system uses a description-
logics based reasoning software[Haarslev and Mölle, 2003] that allows us to move
beyond a pure labeling of areas. Combining and evaluating acquired and asserted
knowledge within the context of the innate conceptual ontology, the reasoner can
infer more specific categories for known areas. For example,combining the ac-
quired information that a given topological area is classified as a room and contains
a couch, together with the innate conceptual knowledge given in our commonsense
ontology, it can be inferred that this area can be categorized as being an instance of
LivingRoom. Conversely, if an area is classified as a corridor and the user shows
the robot a charging station in that area, no further inference can be drawn. The
most specific category the area instantiates will still beCorridor.

Our method allows for multiple possible classification of any area because the
main purpose of the reasoning mechanisms in our system is to facilitate human-
robot interaction. The way people refer to the same room can differ from situation
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to situation and from speaker to speaker, as reported by ElinA. Toppet al. [2006].
For example, what one speaker prefers to call the kitchen might be referred to as
the recreation room by another person. Since our aim is to be able to resolve all
such possible referring expressions, our method supports ambiguous classifications
of areas.

8.3 Interactive Map Acquisition

The multi-layered representation is created using the combination of a user-driven
supervised map acquisition process with autonomous exploration discovery by the
robot. This process is based on the notion ofHuman-Augmented Mapping, as in-
troduced by Elin A. Toppet al. [2006]. We additionally use a linguistic framework
that actively supports the map acquisition process and is used for situated dialogue
about the environment. More details about the dialog capabilities of the system are
given in[Kruijff et al., 2007].

The map can be acquired during a so-called guided tour scenario, in which
the user shows the robot around and continuously teaches therobot new places
and objects. During such a guided tour, the user can command the robot to follow
him or instruct it to perform navigation tasks. Our system does not require an initial
complete guided tour. It is also possible to incrementally teach the robot new places
and objects at any time the user wishes. With every new piece of information,
the robot’s internal representations become more complete. Still, the robot can
always perform actions and conduct meaningful dialogue about the aspects of its
environment that are already known to it.

Whenever the user gives an assertion about areas in the environment or objects
found therein, the robot updates the conceptual map with theasserted information.
The concurrent constructions of the metrical map and the topological abstraction
level propagate the information in a bottom-up manner. Together with the laser-
based area classification, these pieces of information leadto an update of the con-
ceptual map with acquired knowledge.

Following the approach by Kruijff et al. [2006], the robot can also initiate a
clarification dialogue if it detects an inconsistency in itsspatial representation, il-
lustrating the mixed-initiative capabilities of the dialogue system.

8.4 System Integration

Figure 8.4 sketches the connections between the different modalities implemented
in the CoSy explorer. The robot acquires information about the environment using
different sensors, namely a laser range finder and a camera. This information is
used for object recognition, place classification, and people tracking. All these
perception components are also part of the navigation subsystem, which uses the
sensors for SLAM and motion planning.
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Figure 8.4: The information processing in the integrated CoSy Explorer system.
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Figure 8.5: Two example objects used in the CoSy Explorer scenario. The left
image shows a couch and the right image depicts a bookcase.

The information coming from the sensors is then used to create a multi-layered
conceptual and spatial representation of the man-made environment the robot is
acting in. Some of the information needed at the conceptual level to complete
this representation is given by the user through spoken dialogues. In this case, the
communication between the user and the robot supports mixed-initiative: either the
user explains some concepts to the robot, or it is the robot that poses questions to
the user.

The complete system was implemented and integrated in an ActivMedia Peo-
pleBot mobile platform (robot in Figure 8.4). The robot is equipped with a SICK
laser range finder, which is used for the metric map creation,people following,
and for the semantic classification of places. The place classification is based on
a 360o field of view. However our robot has only one laser at the frontcovering
a restricted 180o field of view. To solve this problem we follow the approach de-
scribed in Section 3.5 and maintain a local map around the robot which permits us
to simulate the rest of the beams covering the rear part of therobot. Additionally,
a camera is used only for object detection. The detection systems uses SIFT fea-
tures for finding typical objects like a television set, a couch or a bookcase. We
recognize instances of objects and not categories[Lowe, 2004]. The objects must
be shown previously to the robot and learned by it. Examples of objects used for
recognition are shown in Figure 8.5.

The communication with people was completely done using spoken language
(Figure 8.4). The user can talk to the robot using a bluetoothheadset and the robot
replies using a set of speakers mounted on the mobile platform.

As an additional tool, we use an online viewer for the metric and navigation
maps. The output of this program is composed of the lines extracted by our SLAM
implementation extended to 3D planes to facilitate the visualization. The viewer
shows the different nodes and edges used to construct the navigation map. Nodes
corresponding to doorways are drawn bigger and with red color and with an as-
sociated doorframe as shown in Figure 8.6. Finally, the robot and the user are
constantly shown in the positions where they are localized.The localization of
the robot is calculated using SLAM[Folkessonet al., 2005], while the pose of
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the person is estimated using people tracking methods basedonly on laser read-
ings[Schulzet al., 2003b].

The robot, being equipped with an onboard computer (850 MHz)connected to
two built-in loudspeakers, runs the Player software[Gerkeyet al., 2003] for control
and access of the hardware, and the Festival speech synthesis software[Clarket al.,
2004]. The rest of the system runs on five laptops (1.8 GHz) interconnected using
a wireless network. The first laptop is placed aboard the robot platform. It is con-
nected to the onboard computer via an Ethernet crossover cable and to the rest of
the system using its wireless adapter. This laptop runs the software for navigation,
SLAM and people tracking. A second laptop runs the Windows operating system
and is used for the real time speech recognition[Nuance, 1999]. It is also placed on
the robot platform in order to ensure a reliable bluetooth connection to the head-
set that recorded the user’s voice commands. The recognizedspeech strings are
sent to a third laptop, which runs the real-time dialogue processing and conceptual
mapping subsystems. The fourth computer constantly classifies the current pose
of the robot into a semantic class based on laser data. The last computer handles
the viewer tool for debugging purposes. The communication between the different
processes is established in a mixed environment using TCP/IP sockets and an OAA
framework[Cheyer and Martin, 2001]. Fewer computers could have been used, but
the setup was convenient as it allowed each subsystem developer to have his own
computer.

8.5 Demo

In order to show all the functionalities explained in the previous sections, we car-
ried out a demo at the 7th floor of the CAS building at the Royal Institute of Tech-
nology in Stockholm. In this demo the robot, together with a user, goes through
different situations (or episodes) along the environment. The complete demo was
carried out non-stop, i.e. we did not stop the robot or restart the system at any
moment. The duration of the complete experiment was of approximately 6 min-
utes. Each of the episodes is explained in detail in the next sections and a video
is available at the CoSy project website[CoSy, 2004] under the explorer scenario.
The demo was thought of as a test, and for this reason we forcedsome artificial
situations to simulate possible real ones (e.g. the false doorway in Section 8.5.2).
A similar experiment was carried out in which the robot interacts constantly with
the user and the environment for more than 30 minutes during adifferent demo in
the CoSy project[CoSy, 2004]. In this case, the robot was presented to an audience
while explaining its actions. Some of the episodes were repeated to clarify some
questions. The robot again run with no interruptions or system problems. This led
us to think that our implementation is quite robust and maybecan serve as basis
for a long term service robot.

The idea of the demo is to show how the robot learns its environment while
interacting with a tutor. However, some previous knowledgeis needed during this
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Figure 8.6: Snapshots of the online viewer using during the experiment. The stars
indicate the nodes in the navigation map. Small and blue for corridor, small and
yellow for room, big and red for doorways and medium and greenfor the actual
position of the robot. Additionally, lines are extended to 3D planes and simulated
doorways are drawn for facilitating the visualization. Theperson is drawn in the
position detected by the people following software. In the top image the robot
enters room after detecting a doorway. In the bottom image the complete map of
the room is created using lines.
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Corridor Room

Figure 8.7: Trajectory followed by the robot to train the classifier for distinguishing
between corridor and room. The different places are depicted with distinct colors.

process. First, the robot needs an ontology representing the general knowledge
about the environment. For this purpose, we use the ontologydepicted in Fig-
ure 8.3. Furthermore, the classification of places is based on previous general
knowledge about the geometry of rooms and corridors, which is encoded in a clas-
sifier based on laser readings as explained in Section 8.2.2.The classifier is trained
using examples of corridors and rooms from real environments as the one shown
in Figure 8.7. These two kinds of knowledge are independent of the environment
used for testing, in the sense that the robot does not need to be physically present
in the test environment to acquire the information. Finally, the robot has to recog-
nize different objects, such as couches or TV sets, using vision (see Figure 8.5 for
some examples). Because we do instance recognition rather than categorization,
the objects we want to recognize must be presented to the robot before running
the experiment. For this purpose, we position the robot in front of these objects,
acquire a training image and label it with the correspondingterm, which is added
to a small database of objects and also included in the language systems for its
posterior use.

We follow explain the different episodes contained in the complete demo.

8.5.1 Episode 1: Waking Up

The demo starts in the corridor, where the robot is positioned close to the charging
station. The user activates the robot and tells it that it is located at the charging
station (Figure 8.8). The user then asks the robot to follow him. The robot drops
markers (navigation nodes), which are classified as corridor. Then the person fol-
lowed by the robot enters a room through a doorway. The door isrecognized and
the corresponding node is set. From this point the next nodeswill be classified as
a new area and correctly labeled as room.
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Figure 8.8: The user wakes up the robot and the demos starts.

8.5.2 Episode 2: Clarification Dialogues

In this episode we want to show the utility of the clarification dialogues. As ex-
plained in Section 8.2.2, our door detection is simply basedon detecting when the
robot passes through a narrow opening. However, this alone will still lead to some
false doors in cluttered rooms. Assuming that there are few false negatives in the
detection of doors, we get great improvements by enforcing that it is not possible to
change room without passing through a door. For example, while moving around
in a room the robot may detect a narrow passage and falsely assume that a door
was passed, putting a door label on that particular node. Therobot continues to
move around in the room and eventually reaches the nodes frombefore adding the
false door. These nodes will then have different room labels, that is, the room has
changed without passing a door. If this happens, an inconsistency is found and a
clarification dialogue with the user is triggered.

To test the former situation we put a bucket close to a table inthe room creat-
ing an illusion of a doorway when using only the laser as sensor. The robot passes
through this false doorway and comes back to a previously visited node. At this
point the robot infers that there is an inconsistency in the map and initializes a clar-
ification dialogue asking if there was a door previously. Theuser denies this fact
and the map is updated accordingly. A more detailed explanation of the complete
process of clarification dialogues for a similar situation is presented by Kruijff et
al. [2006].
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Figure 8.9: The user asks the robot: “Where is the charging station?".

8.5.3 Episode 3: Inferring New Concepts

In this episode we test how the robot infers new categorizations of places when
discovering new objects. The goal is to use our SIFT-based object detector together
with the laser-based place classification to detect simple objects and places. Then,
using the inference on the office ontology as explained in Section 8.2.4, the robot
is able to come up with more specific concepts.

While staying in the room, the robot is asked for the current place and it an-
swers with the indefinite description “a room", which is inferred from the naviga-
tion nodes in the area. A majority vote among the nodes in the area is used in case
the node classification is not unanimous. Then the robot is asked to look around.
This command activates the vision-based object detection capabilities of the robot.
The robot moves and detects a couch, and then a television set. After that, the user
asks the robot for the name of the place. Because of the inference over the detected
objects and places, the robot categorizes the place as aLivingroom. Note that
previous to the detection of objects the same place was categorized as aRoom. As
a further test of the robot’s classification it is asked wherethe charging station is
located and correctly answers “it is in a corridor” (Figure 8.9).

8.5.4 Episode 4: Going to Objects

Finally, we show how the navigation map is used by the robot tocome back to
previously visited places.

After the door opening situation, the robot is asked to go to the television. The
robot then navigates to the node where the television was observe (Figure 8.10)
This functionality permits the user to command the robot to places without the
need of giving concrete coordinates. It is also more powerful in the sense that the
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Figure 8.10: Following the order “go to the television", therobots approaches the
navigation node from where it saw the television the last time.

user may not know the concrete name of the place, but he can remember it as ‘the
room with a television". After that, the robot is commanded to go to the charging
station. Again the robot follows the navigation map until itpositions itself on the
station, thus finishing the experiment.

8.6 Related Work

Several approaches on mobile robotics extend metric maps ofindoor environments
with semantic information. The work by Diosiet al. [2005] creates a metric map
through a guided tour. The map is then segmented according tothe labels given by
the instructor. Friedmanet al. [2007] useVoronoi Random Fieldsfor extracting the
topologies.

Research in spatial representations has yielded different multi-layered environ-
ment models. Vasudevanet al. [2006] suggest a hierarchical probabilistic repre-
sentation of space based on objects. The work by Galindoet al. [2005] presents
an approach containing two parallel hierarchies, spatial and conceptual, connected
through anchoring. Inference about places is based on objects found in them. Fur-
thermore, theHybrid Spatial Semantic Hierarchy(HSSH) is introduced by Bee-
sonet al. [2007]. This representation allows a mobile robot to describe the world
using different representations each with its own ontology. Comparedto these ap-
proaches our implementation uses human augmented mapping for collecting infor-
mation. The communication with the robot is made entirely using natural language
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and dialogues. Moreover our conceptual representation comes from the fusion of
acquired, asserted, and both inferred and innate knowledge.

There are more cognitively inspired approaches to robot navigation for con-
veying route descriptions from a technically naive user to amobile robot. These
approaches need not necessarily rely on an exact global self-localization, but rather
require the execution of a sequence of strictly local, well-defined behaviors in order
to iteratively reach a target position. Kuipers[2000] presents theSpatial Semantic
Hierarchy (SSH). Alternatively, theRoute Graphmodel is introduced by Krieg-
Brückneret al. [1998]. Both theories propose a cognitively inspired multi-layered
representation of themap in the head, which is at the same time suitable for robot
navigation. Their central layer of abstraction is the topological map. Our approach
differs in that it provides an abstraction layer that can be used for reference resolu-
tion of topological entities.

A number of systems have been implemented that permit a robotto interact
with humans in their environment. Rhino Burgardet al. [2000b] and Robox Sieg-
wartet al. [2003] are robots that work as tour-guides in museums. Both robots rely
on an accurate metric representation of the environment anduse limited dialogue
to communicate with people. The robot BIRON Spexardet al. [2006] is endowed
with a system that integrates spoken dialogue and visual localization capabilities
on a robotic platform similar to ours. This system differs from ours in the degree to
which conceptual spatial knowledge and linguistic meaningare grounded in, and
contribute to, situational awareness.

8.7 Conclusions

We presented an integrated approach for creating conceptual representations of
human-made environments where the concepts represent spatial and functional
properties of typical office indoor environments. Our representation is based on
multiple maps at different levels of abstraction. The complete system was inte-
grated and tested in a service robot which includes a linguistic framework with
capabilites for situated dialogue and map acquisition. Theexperiments show that
our system is able to provide a high level of human-robot communication and cer-
tain degree of social behavior.
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Chapter 9

Conclusions

The work presented in this thesis presented different approaches for adding seman-
tic information to the representations of indoor environments. We concentrated on
extending the information on the maps created by a mobile robot with labels that
represent different places in the environment. Each of these places has a different
functionality, such as corridors, offices or kitchens.

Throughout this dissertation we have seen how the semantic information about
places can improve the capabilities of mobile robots in different domains including
human-robot interaction, localization, and exploration.

We first presented a technique based on supervised learning that enables a mo-
bile robot to recognize the different places in an indoor environment. To carry out
this classification the robot must first take observations and then extract some fea-
tures from them. These features will be used later to recognize the different places.
As main observations we have used the range measurements of laser finders, from
which several features were extracted that encoded their geometrical properties.

The learning method used for classifying the different places was based on the
AB algorithm. The input for the algorithm were the features extracted from
the observations, and as output we obtained a strong classifier which included the
more informative features for each place.

The geometrical features are quite good candidates for generalization, since
they encode space information. We saw in Chapters 3 to 5 that the strong classifier
created with geometrical features could successfully be transferred among differ-
ent environments. The main reason is that indoor environments usually contain the
same type of places, as for instance, corridors, doorways and rooms. Additionally,
these places share similar structures between the different indoor environments:
corridors are typically elongated, and rooms are usually more compact and clut-
tered. These common characteristics permit the robot to learn a classifier in one
environment and recognize the same places in different ones.

Furthermore, we used vision sensors to increase the number of places to clas-
sify. The main problem with vision observations was to select the features that
maintained a good generalization in the classifier. We optedfor counting the num-
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ber of specific objects that appear in a panoramic image takenby the robot. The
selection of these features was motivated by the fact that typical objects appear at
different places with different probabilities. For example, the probability of finding
a computer monitor in an office is larger than finding one in a kitchen. Again these
features are usually very common in several indoor environments.

The previous approach for semantic classification was used to classify the pose
of a mobile robot using the laser and image-based features. However, this method
did not take into account the classification of neighboring poses. To include this
information, we extended the approach with some probabilistic techniques. We
first smoothed the classification of all poses in an environment using probabilis-
tic relaxation and instance-based associative Markov networks. Both approaches
improved the final classification using neighboring information, which allowed the
robot to extract compact regions of the environment and create a topological map.

Mobile robots are dynamic agents that move along different trajectories. When
operating in indoor environments, the robots usually have amoderate velocity and
a relatively continuous movement. That means, that observations obtained by a
mobile robot at nearby poses are typically very similar. Furthermore, certain tran-
sitions between classes in a trajectory are rather unlikely. For example, to go from
the kitchen to the office the robot sholud traverse a doorway first. This transitional
information was encoded in a hidden Markov model and successfully applied to
smooth the classification of the poses of the mobile robot along a trajectory. Some
nice examples results using this approach were presented inChapter 5.

As we stated above, the semantic information about places can improve other
typical robotics tasks. The main idea is that mobile robots can use the intrinsic
information of human-made environments to improve their actions. In particular,
we showed how the information about places could improved the performance of
a team of mobile robots during exploration. The results of the experiments in
Chapter 6 demonstrated that places as corridors are better exploration targets as
they lead to other rooms.

Another typical problem is the localization of mobile robots. In this problem
the robot must determine its pose relative to a given map. Recognizing the type of
place the robot is located at can be seen as a high level localization. If the robot
is in an office, then other places can be discarded, and the robot can concentrate
on selecting the poses that belong only to the offices. This idea was presented in
Chapter 6 together with experiments that corroborated its usefulness.

The semantic information can also represent other kind of objects in the envi-
ronment and not only places. In Chapter 7, we presented an approach to include
the semantic labels directly to the beams of a laser range finder. In this way much
richer information is available from the sensor.

Since one of the main goals of the semantic labeling is to share terms, such
as corridor or office, with humans, it seems necessary to develop robotic systems
that can communicate these concepts to humans. In Chapter 8,we introduced an
integrated system for conceptual representations of indoor environments. This sys-
tem included a linguistic framework with capabilites for situated dialogue and map
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acquisition. The different episodes during the demo demonstrated the interaction
capabilities of this system, and how a high level conceptualrepresentation could be
create based on language communication and semantic information about places.

We think that the work presented in this thesis is one of the first covering so
many different aspects relating semantic information about places using mobile
robots. As we described in the related literature of severalchapters, different pos-
terior works have applied and extended some of the ideas herepresented. This
indicates that a lot of work can still be done.

It would be interesting, for example, to move from the supervised approach
presented in this work to other methods with less supervision. One possibility
could be to use semi-supervised techniques, in which the robot can initially create
an first classification of the environment autonomously. This classification can be
corrected later on by the user. In this way, the user does not need to indicate the
label of each place the robot is located at. A second possibility could be to leave
the robot create a totally unsupervised classification of the places.

In any case, it seems that information coming from the user isimportant, since
someone has to decide how to name the different places. This last issue bring us to
the problem of personalization: people can describe the same place with different
terms. For example, what for a person is a living room, can be asitting room for
another. It could be interesting to study approaches able tocope with this flexibility.

The work presented in this thesis concentrated in indoor environments. How-
ever, in the last years, outdoor robots have received an increasing interest. Some
initial works try to classify the different outdoors environments, but the complexity
here is quite high. One of the main problems is that range observations give lit-
tle information about places in outdoor environments. For this reason, approaches
are moving to vision to do this classification. Semantic information can refer not
only to places and objects, but also to situations. People crossing a road, or cars
overtaking, are examples of situations which can be labeledwith semantic terms.

To conclude, we think that the semantic labeling is a research area which can
have a high impact in the future of mobile robotics.
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Appendix A

Simple Features for Place
Classification

In this appendix we give the mathematical formulation of thesimple features used
for place classification. We also include the ones from my previous work in[Mo-
zos, 2004] so that the reader can have the complete set of definitions.

A.1 Simple Features Extracted from Laser Beams

We usez = {b0, . . . , bM−1} to define the set of beams taken as one observation.
Each beambi is represented by a tuple (αi , di), whereαi is the angle of the beam
relative to the robot anddi is the length of the beam.

A.1.1 Average Difference Between the Length of Two Consecutive Beams

The average difference between the length of two consecutive beamsfaverage is
defined as

faverage=
1
M

M−1
∑

i=0

∣

∣

∣di − d[(i+1) mod M]

∣

∣

∣ . (A.1)

A.1.2 Standard Deviation of the Difference Between the Length of
Two Consecutive Beams

The standard deviation of the difference between the length of consecutive beams
fstd is defined as

fstd =

√

√

√

1
M − 1

M−1
∑

i=0

(∣

∣

∣di − d[(i+1) mod M]

∣

∣

∣ − faverage

)2
, (A.2)

where faverageis the feature defined in Equation (A.1).
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A.1.3 Average Difference Between the Length of Consecutive Beams
Considering Max-Range

The value max-range is a thresholdθ indicating the maximum lengthdi for a beam.
Using thisθ, we define the function lengthθ(bi ) as follows:

lengthθ(bi) =

{

di if di ≤ θ
θ otherwise,

(A.3)

The feature representing the average difference between the length of two consec-
utive beams using max-rangefaverage,θ is then defined as

faverage,θ =
1
M

M−1
∑

i=0

∣

∣

∣lengthθ(bi) − lengthθ(b[(i+1) mod M])
∣

∣

∣ . (A.4)

A.1.4 Standard Deviation of the Difference Between the Length of
Two Consecutive Beams Considering Max-Range

The standard deviation of the difference between the length of two consecutive
using max-rangefstd,θ is defined as

fstd,θ =

√

√

√

1
M − 1

M−1
∑

i=0

(∣

∣

∣lengthθ(bi) − lengthθ(b[(i+1) mod M])
∣

∣

∣ − faverage,θ

)2
, (A.5)

where faverage,θ is the feature defined in A.1.3.

A.1.5 The Average Beam Length

The average beam lengthfd is defined as

fd =
1
M

M−1
∑

i=0

di . (A.6)

A.1.6 The Standard Deviation of the Beam Length

The standard deviationfσ of the beam length is defined as

fσ =

√

√

√

1
M − 1

M−1
∑

i=0

(

di − d
)2
, (A.7)

where fd is the feature defined in Equation (A.6).
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Gap

Figure A.1: Example of a gap in a laser scan.

A.1.7 Number of Gaps

Two consecutive beams build a gap if their length difference is greater than a given
thresholdθ. An example of a gap is shown in Figure A.1. Formally, we definea a
gap with thresholdθ as

gapθ(bi , b j) =

{

1 if
∣

∣

∣di − d j

∣

∣

∣ > θ

0 otherwise.
(A.8)

The featurefgaps,θ representing the total number of gaps is calculated as

fgaps,θ =

M−1
∑

i=0

gapθ(bi , b[(i+1) mod M]) . (A.9)

A.1.8 Number of Beams Lying on Lines Extracted from the Range

This feature is calculated using the method by Sack and Burgard [Sack and Bur-
gard, 2004].

A.1.9 Euclidean Distance Between the Two Points Corresponding to
Two Consecutive Global Minima

This feature was designed to help in the classification of doors. If we plot the
length of the beams of an observationz, we obtain a graph like the one shown in
Figure A.2(b). We can look in this graph for two global minimap1 = (x1, y1), p2 =

(x2, y2) which can be the representation of a doorframe (Figure A.2(a)). The Eu-
clidean distance betweenp1 andp2 is then calculated as

fdistance−minima =

√

(x1 − x2)2 + (y1 − y2)2 . (A.10)
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Doorframe
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(b)

Figure A.2: Representation of a set of beams collected wherethe robot were in a
door. In Figure A.2(a) the arrows indicate the two minima which can indicate a
doorframe. Figure A.2(b) is a plot of the length of the beams.The two marksX
indicate the same two minima (p1 andp2 in the text).
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A.1.10 The Angular Distance Between the Two Points Corresponding
to Two Consecutive Global Minima

The two points corresponding to the global minimap1, p2 calculated in Section A.1.9
correspond to the end of two beams, i.e.,b1 andb2. The angular distance between
these two beams is used as a feature, in the form:

fα−minima = |α1 − α2| . (A.11)

A.1.11 Average of the Relation Between Two Consecutive Beams

The average relation between the length of two consecutive beams faverage−rel is
defined as

faverage−rel =
1
M

M−1
∑

i=0

∣

∣

∣

∣

∣

∣

di

d[(i+1) mod M]

∣

∣

∣

∣

∣

∣

. (A.12)

A.1.12 Standard Deviation of the Relation Between the Length of Two
Consecutive Beams

The standard deviation of the difference between the length of consecutive beams
fstd−rel is defined as

fstd−rel =

√

√

√

1
M − 1

M−1
∑

i=0

(
∣

∣

∣

∣

∣

∣

di

d[(i+1) mod M]

∣

∣

∣

∣

∣

∣

− faverage−rel

)2

, (A.13)

where faverage−rel is the feature defined in Equation (A.12).

A.1.13 Average of Normalized Beam Length

The average normalized beam lengthfaverage−norm is defined as

faverage−norm =
1
M

M−1
∑

i=0

∣

∣

∣

∣

∣

di

dmax

∣

∣

∣

∣

∣

, (A.14)

wheredmax corresponds to

dmax= maxdi . (A.15)

A.1.14 Standard Deviation of Normalized Beam Length

The standard deviation of the normalized beam lengthfstd−norm is defined as

fstd−norm =
1
M

M−1
∑

i=0

√

(

di

dmax
− faverage−norm

)2

, (A.16)
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where faverage−norm corresponds to the feature defined is Equation (A.14).

A.1.15 Number of Relative Gaps

Two consecutive beams build a relative gap if the relation between their lengths is
greater than a given thresholdθ. Formally, we define a relative gap with threshold
θ as

rgapθ(bi , b j) =















1 if
∣

∣

∣

∣

di
dj

∣

∣

∣

∣
> θ

0 otherwise.
(A.17)

The featurefrgaps,θ representing the total number of gaps is calculated as

frgaps,θ =

M−1
∑

i=0

rgapθ(bi , b[(i+1) mod M]) . (A.18)

A.1.16 Kurtosis

We define the kurtosisfkurtosisof a scan as

fkurtosis=

∑M
i=0

(

di − fd
)4

M · f 4
σ

− 3 , (A.19)

where fd and fσ are the features defined in Equations (A.6) and (A.7) respectively.

A.2 Simple Features Extracted from a Polygon Approxi-
mation

This set of features is calculated from a polygonal approximation P(z) of the area
covered by the observationz = {b0, . . . , bM−1}. The verticesvi of the closed poly-
gon P(z) correspond to the coordinates of the end-points of each beam bi of z
relative to the robot

P(z) = {v0, . . . , vM−1, vM = v0} , (A.20)

wherevi = (xi , yi) with xi = di cosαi andyi = di sinαi.

A.2.1 Area of P(z)

The area of the polygon approximationP(z) is given by

fArea =
1
2

M−1
∑

i=0

(xiyi+1 − xi+1yi) . (A.21)
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A.2.2 Perimeter ofP(z)

The perimeter of the polygon approximationP(z) is given by

fPerimeter=

M−1
∑

i=0

dist(vi , vi+1) , (A.22)

where

dist(vi , vi+1) =
√

(xi − xi+1)2 + (yi − yi+1)2 . (A.23)

A.2.3 Mean Distance Between the Centroid and the Shape Boundary

The centroidc = (cx, cy) of P(z) is defined as

cx =
1

6 · fArea

M−1
∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi) , (A.24)

cy =
1

6 · fArea

M−1
∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi) . (A.25)

The mean distance between the centroid and the shape boundary of P(z) is calcu-
lated as

fmean−shape=
1
M

M−1
∑

i=0

dist(vi , c), (A.26)

where

dist(vi , c) =
√

(xi − cx)2 + (yi − cy)2 (A.27)

A.2.4 Standard Deviation of the Distances Between the Centroid and
the Shape Boundary

The standard deviation of the distances between the centroid and the shape bound-
ary of P(z) is given by

fstd−shape=
1
M

M−1
∑

i=0

dist(vi , c) − fmean−shape, (A.28)

wherefmean−shapeanddist(vi , c) are defined in Equation (A.26) and Equation (A.27)
respectively.
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A.2.5 Invariant Descriptors Based on the Fourier Transformation

To calculate the Fourier coefficients we transform each vertexvi ∈ �2 of P(z) into
a complex number ˜vi ∈ � in the form[Burkhard, 2004]:

vi = (xi , yi),=⇒ ṽi = xi + yi j, j =
√
−1 . (A.29)

The Fourier coefficients{c−n, . . . , c−1, c0, c1, . . . , cn} of P(z) are then calculated as

c0 =
1

2T

M−1
∑

k=0

(ṽk + ṽk+1) | △ṽk | (A.30)

cn =
T

(2πn)2

M−1
∑

k=0

(△sk+1 − △sk)e
− jπ( 2π

T )tk , (A.31)

with

△ṽi = ṽi+1 − ṽi (A.32)

△si = △ṽi/ |△ṽi | (A.33)

tk =
k−1
∑

i=0

|△ṽi | k > 0, t0 = 0 (A.34)

T = perimeter ofP(z) . (A.35)

The Fourier descriptors{x̃−n, . . . , x̃0, . . . , x̃n}, which are invariant to similarity,
that is, translation, rotation and scale, are calculated as

{

x̃n := |cn|
|c1|e

j(Φn+(1−n)Φ2−(2−n)Φ1)
}

(A.36)

Φn = phase ofcn . (A.37)

A.2.6 Major Axis Ma of the Ellipse that Approximates P(z)

Having the first two Fourier coefficients (c−1, c1) of P(z) (see Section A.2.5), we
can calculate the major axis of an ellipse that approximatesthe polygonP(z) as

fMa = |c1| + |c−1| . (A.38)

A.2.7 Minor Axis Mi of the Ellipse that Approximates P(z)

Having the first two Fourier coefficients (c−1, c1) of P(z) (see Section A.2.5), we
can calculate the minor axis of an ellipse that approximatesthe polygonP(z) as

Mi = ||c1| − |c−1|| . (A.39)
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A.2.8 Invariant Moments of P(z)

The central momentsµpq of P(z) up to three are:

µ10 =

M−1
∑

i=0

M−1
∑

j=0

(xi − x̄)1(y j − ȳ)0 , (A.40)

µ01 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)0(y j − ȳ)1 , (A.41)

µ11 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)1(y j − ȳ)1 , (A.42)

µ20 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)2(y j − ȳ)0 , (A.43)

µ02 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)0(y j − ȳ)2 , (A.44)

µ30 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)3(y j − ȳ)0 , (A.45)

µ03 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)0(y j − ȳ)3 , (A.46)

µ12 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)1(y j − ȳ)2 , (A.47)

µ21 =

M−1
∑

i=1

M−1
∑

j=1

(xi − x̄)2(y j − ȳ)1 , (A.48)

with

x̄ =
1
M

M−1
∑

i=1

xi , (A.49)

and

ȳ =
1
M

M−1
∑

j=1

y j , (A.50)

The normalized central moments ofP(z), denotedηpq, are defined as

ηpq =
µpq

µ
γ

00

, (A.51)
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where
γ =

p+ q
2
+ 1 , (A.52)

for p+ q = 2, 3, . . . .
A set of seven invariant moments with respect translation, rotation and scale

can be derived from the second and third moments as

φ1 = η20+ η02 , (A.53)

φ2 = (η20− η02)
2 + 4η211 , (A.54)

φ3 = (η30− 3η12)
2 + (3η21 − η03)

2 , (A.55)

φ4 = (η30+ η12)
2 + (η21+ η03)

2 , (A.56)

φ5 = (η30− 3η12)(η30 + η12)
[

(η30+ η12)
2 − 3(η21 + η03)

2
]

(A.57)

+(3η21 − η03)(η21+ η03)
[

3(η30− η12)
2 − (η21+ η03)

2
]

,

φ6 = (η20− η02)
[

(η30+ η12)
2 − (η21+ η03)

2
]

(A.58)

+4η11(η30+ η12)(η21+ η03) ,

φ7 = (3η21 − η03)(η30 − η12)
[

(η30− η12)
2 − 3(η21 + η03)

2
]

(A.59)

+(3η12 − η30)(η21+ η03)
[

3(η30+ η12)
2 − (η21+ η03)

2
]

,

A.2.9 Normalized Feature of Compactness ofP(z)

The normalized feature of compactness Mcmp of P(z) is calculated as

Mcmp =
AreaP(z)

µ20+ µ02
, 0 ≤ Mcmp ≤ 1 , (A.60)

whereµ20, µ02 are the central moments of second order calculated in Section A.2.8.
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A.2.10 Normalized Feature of Eccentricity ofP(z)

The normalized feature of eccentricity Mect of P(z) is defined as

Mect =

√

(µ20+ µ02)2 + 4µ2
11

µ20+ µ02
, 0 ≤ Mect ≤ 1 , (A.61)

whereµ20, µ02, µ11 are the central moments of second order calculated in Sec-
tion A.2.8.

A.2.11 Form Factor of P(z)

The form factor of theP(z) is given by:

ff−factor =
4π fArea

√

fPerimeter

, (A.62)

where fArea and fPerimeterare the features defined in Equations (A.21) and (A.22)
respectively.

A.2.12 Circularity of P(z)

The circularity ofP(z) is defined as

fcircularity =
f 2
Perimeter

fArea
. (A.63)

A.2.13 Normalized Circularity of P(z)

The normalized circularity ofP(z) is defined as

fcircularity =
4 · π · fArea

f 2
Perimeter

, (A.64)

where fArea and fPerimeterare the features defined in Equations (A.21) and (A.22)
respectively.

A.2.14 Average Normalized Distance Between the Centroid and the
Shape Boundary

The centroidc = (cx, cy) of P(z) is defined as

cx =
1

6 · fArea

M−1
∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi) , (A.65)

cy =
1

6 · fArea

M−1
∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi) . (A.66)
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The mean of the normalized distance between the centroid andthe shape boundary
of P(z) is calculated as

fmean−norm−shape=
1
M

M−1
∑

i=0

dist(vi , c), (A.67)

where

dist(vi , c) =
dist(vi , c)

argmaxj dist(v j , c)
(A.68)

with

dist(vi , c) =
√

(xi − cx)2 + (yi − cy)2 (A.69)

A.2.15 Standard Deviation of the Normalized Distances Between the
Centroid and the Shape Boundary

The standard deviation of the normalized distances betweenthe centroid and the
shape boundary ofP(z) is given by

fstd−shape=
1
M

M−1
∑

i=0

dist(vi , c) − fmean−norm−shape, (A.70)

where fmean−norm−shape and dist(vi , c) are defined in Equation (A.67) and Equa-
tion (A.68) respectively.



Appendix B

Simple Features for People
Detection

In this appendix we describe the mathematical definition of the features used for
segment classification. We define a segment as a set ofN consecutive beamsS =
{b0, . . . , bN−1}. Each beambi is represented by a tuple (αi , di), whereαi is the angle
of the beam relative to the robot anddi is the length of the beam.

Additionally, each beambi can be represented by its end-pointpi = (xi , yi),
with xi = di cosαi andyi = di sinαi . In this case, we assume that the origin of
coordinates lays on the center of the laser sensor.

B.1 Number of Points in the Segment

This is just the numberN of points that composed the segment the segmentS.

B.2 Standard Deviation

The standard deviationfσ of the segmentS if defined as

fσ =

√

√

√

1
N − 1

N−1
∑

i=0

‖pi − p̄‖2 , (B.1)

wherep̄ denotes the center of gravity of the segment.

B.3 Mean Average Deviation from Median

This feature measures the segment compactness more robustly than the standard
deviation. The median of a distributionf (x) is the value where the cumulative
distribution functionF(x) = 1/2. Given an ordered set ofK scalar random samples
xi the median ˜x is defined as
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x̃ =

{

x(K+1)/2 if K is odd
1
2(xK/2 + xK/2+1) if K is even.

(B.2)

Opposed to the mean, the median is less sensitive to outliers. In our multi-dimensional
case, we calculate ˜p using the vector-of-medians approach by Aloupis[2001], i.e.
p̃ = (x̃, ỹ). The average deviation from the median is then

fς =
1
N

N−1
∑

i=0

‖pi − p̃‖ . (B.3)

B.4 Jump Distance from Preceeding Segment

This feature corresponds to the Euclidian distance betweenthe first point ofSi and
the last point ofSi−1

f jump−prev = ‖pSi
0 − pSi−1

N−1‖ . (B.4)

B.5 Jump Distance to Succeeding Segment

This feature corresponds to the Euclidian distance betweenthe last point ofSi and
the first point ofSi+1

f jump−next = ‖pSi
N−1 − pSi+1

0 ‖ . (B.5)

B.6 Euclidian Distance Between the First and Last Point
of a Segment

This feature measures the Euclidian distance between the first and last point of a
segment as

fwidth = ‖p0 − pN−1‖ . (B.6)

B.7 Linearity

This feature measures the straightness of the segment and corresponds to the resid-
ual sum of squares to a line fitted into the segment in the leastsquares sense. Given
the segment points in polar coordinatespi = (αi , di), fitting a line in the Hessian
(φ, r)-representation that minimizes perpendicular errors from the points onto the
line has a closed form solution. We use the (unweighted) expressions from[Arras,
2003]. Once the line parameters (φ, r) are found, the residual sum of squares is
calculated as



Section B.8. Circularity 131

flinearity =

N−1
∑

i=0

(xicos(φ) + yi sin(φ) − r)2 . (B.7)

B.8 Circularity

To calculate the circularity of a segmentS, we sum up the squared residuals to a
fitted circle. Given a set of points in Cartesian coordinates, a fast way to find the
best circle in the least squares sense is to parameterize theproblem by the vector
of unknowns asx = (xc yc x2

c + x2
c − r2

c)T wherexc, yc andrc denote the circle
center and radius. With this, the overdetermined equation systemA · x = b can be
established,

A =



































−2x1 −2y1 1
−2x2 −2y2 1
...

...
...

−2xn −2yn 1



































b =



































−x2
1 − y2

1
−x2

2 − y2
2

...

−x2
n − y2

n



































, (B.8)

and solved using the pseudo-inverse

x = (ATA)−1AT · b . (B.9)

The residual sum of squares is then

fCircularity =

n
∑

i=1

(rc −
√

(xc − xi)2 + (yc − yi)2)2 . (B.10)

B.9 Radius

This feature represents the radius of the circle fitted to thesegment. It corresponds
to the valuerc in Equation (B.10).

B.10 Boundary Length

The boundary lengthfboundaryof a segmentS is defined as

fboundary=

N−2
∑

i=0

dist(pi , pi+1) . (B.11)

It measures the length of the poly-line corresponding to thesegment. The function
dist(pi , p j) calculates the Euclidean distance between two pints.
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B.11 Boundary Regularity

The boundary regularity indicates the standard deviation of the distances of adja-
cent points in a segment and is defined as

fb−reg =

√

√

√

1
N − 2

N−2
∑

i=0

(

dist(pi , pi+1) − d̄
)2
, (B.12)

whered̄ is the mean distance between consecutive points.

B.12 Mean Curvature

The average curvaturefk̄ =
∑

k̂ j over a segmentS is calculated using the following
curvature approximation. Given a succession of three points pA, pB, andpC, let A
denote the area of the trianglepApBpC anddA, dB, dC the three distances between
the points. Then, an approximation of the discrete curvature of the boundary atpB

is given by

fk̂ =
4A

dAdBdC
. (B.13)

This is an alternative measurement for the radius of the segment, since curvature
and radius are inverse proportional.

B.13 Mean Angular Difference

This feature traverses the boundary and calculates the average of the anglesβ j be-
tween the vectorsp j−1p j andp j p j+1. The corresponding featurefβ j is then defined
as

fβ j = ∠(p j−1p j , p j p j+1) . (B.14)

Care has to be taken that angle differences are properly unwrapped. This features
is a measure of the convexity/concavity of segmentS.

B.14 Mean Speed

Given two scans with their associated timestampsTk,Tk+1, this feature determines
the speedvi for each segment point along its beam as

vi =
dk+1

i − dk
i

Tk+1 − Tk
, (B.15)

wheredk
j anddk+1

j are the range values of beamj at timesk andk + 1. The final
feature fv averages over all beams in the segment
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fv =
N−1
∑

i=0

vi . (B.16)
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Appendix C

Graphical Models

Probabilistic graphical models are graphs in which nodes represent random vari-
ables, and arcs represent conditional dependence between them. Hence, they pro-
vide a compact representation of joint probability distributions[Murphy, 2001].

There are two main kinds of graphical models: directed and undirected. The
first models are represented by graphs whose nodes are connected by directed arcs.
They are also also known as Bayesian networks, belief networks, generative mod-
els or causal models. On the other hand, the arcs in an undirected graphical model
are undirected. Undirected graphical models are also knownas Markov networks
(MN) or Markov random fields (MRFs). It is also possible to have a model with
both directed and undirected arcs, called a chain graph. However, chain graphs are
out of the scope of this appendix.

C.1 Directed Models

An example of a simple directed graphical model is given in Figure C.1(a). Here,
the arc from A to B can be informally interpreted as indicating thatA causes B. A
is also said to be theparentof B. A well known directed graphical model is the
Bayesian network(Figure C.1(b)). This representation has two main characteris-
tics. First, each nodeYi has a conditional probability distributionP(Yi |Parents(Yi ))
that quantifies the effect of the parents on the node. And second, the graph has no
directed cycles (a directed acyclic graph or DAG).

In a Bayesian network, a node is independent of its ancestorsgiven its parents,
where the ancestor/parent relationship is with respect to some fixed topological or-
dering of the nodes. In Bayesian networks, the expression for the joint probability
of all nodes can be simplified using the topology of the network and the conditional
independence relationships. As an example, the joint probability of the network of
Figure C.1(b) can be expressed using the chain rule as

P(A, B,C,D) = P(D|A, B,C)P(C|A, B)P(B|A)P(A). (C.1)

By using the conditional independence relationships, we can rewrite it as
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A

B

(a)

A

B C

D

(b)

Figure C.1: Examples of directed graphical models.

Y

Y

1

2

(a)

YY1 2

YY3 4

(b)

Figure C.2: Examples of Markov random fields.

P(A, B,C,D) = P(D|B,C)P(C|A)P(B|A)P(A). (C.2)

This expression indicates thatD is independent of A givenB and C, andC is
independent ofB givenA.

C.2 Undirected Graphical Models

An undirected graphical model, also calledMarkov random field(MRF) orMarkov
network(MN), is a graphical model where no assumption is made about the direc-
tion of the causality between nodes in the graph. Examples ofMRFs are given in
Figure C.2.

We restrict ourselves here to the case in which nodes are represented by discrete
variables. Each discrete variableYi ∈ Y corresponds to a set ofK possible labels
Yi ∈ {1, . . . ,K}. We then define a Markov random field as an undirected graph
G = (V,E) where the set of nodesV represent discrete variables, and the edgesE
refer to the relations between them.
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Y1

(a) 1-clique

YY1 2

(b) 2-clique

YY1 2

Y3

(c) 3-clique

YY1 2

YY3 4

(d) 4-clique

Figure C.3: Possible cliques extracted from the MRF of Figure C.2(b). The 4-
clique in (d) corresponds to the complete original network.

A MRF can be divided into a subset of cliquesC, where each cliquec ∈ C is
associated with a subsetYc ∈ Y. The nodes in a cliqueYc form a fully connected
graph in the MRF. Figure C.3 depicts some example cliques corresponding to the
Markov random field of Figure C.2(b).

Each clique is accompanied by a potentialφc(Yc) which associates a non-
negative value with each assignmentyc to Yc. The Markov random field defines
the probability distribution

Pφ(y) =
1
Z

∏

c∈C
φc(yc) , (C.3)

wherey represents an assignment ofY. Additionally, Z is thepartition function
given by

Z =
∑

y′

∏

c∈C
φc(y

′
c) . (C.4)

We focus now on pairwise Markov random fields. A pairwise Markov random
field is a network where all of the cliques involved are eithera single node, or a
pair of nodes (1-clique or 2-clique). In a pairwise Markov random field with edges
E = {(i j ) | i < j}, the nodes and edges are associated with potentialsφi(Yi) and
φi j (Yi ,Yj) respectively. This network defines the distribution
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Pφ(y) =
1
Z

N
∏

i=1

φi(yi )
∏

(i j )∈E
φi j (yi , y j) , (C.5)

whereN represents the total number of nodes in the network. The partition function
Z is now defined as

Z =
∑

y′

N
∏

i=1

φi(y
′
i )

∏

(i j )∈E
φi j (y

′
i , y
′
j) . (C.6)

Additionally, in a Markov ramdom field, each nodeYi can be assigned a fea-
ture vectorxi ∈ �dn, which describes the properties of the object that the node
represents. Similarly, a feature vectorxi j ∈ �de can be assigned to each edge (i j ).
The feature vectorxi j indicates the properties that describe the relation between the
objects represented by the nodesYi andYj.

The node and edge potentials are functions of the feature vectors xi and xi j .
The simplest model of dependence of the potentials on the features is a log-linear
combination defined as

logφi(k) = wk
n · xi , (C.7)

logφi j (k, l) = wk,l
e · xi j , (C.8)

wherewk
n andwk,l

e are label-specific row vectors of node and edge parameters, with
sizedn andde respectively. This formulation assumes that all of the nodes in the
network share the same set of weights, and the same for the edges.

The representation of an assignmenty is done by a set ofK · N indicators{yk
i },

whereyk
i = I (yi = k), with I being the indicator function which returns 1 if its

argument is true, and 0 otherwise. Remember thatK is the number of possible
labels for each nodeYi , andN represents the total number of nodes in the graph.

We can now define the log conditional probability

log Pw(y|x) =
N

∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(i j )∈E

K
∑

k,l=1

(wk,l
e · xi j )y

k
i y

l
j − logZw(x) . (C.9)

Here the partition functionZw(x) depends on the parametersw and featuresx, but
not on the labelsy.

The main task in a Markov random field consists on finding the assignmenty ∈
Y that maximizes logPw(y|x). This is actually amaximum a posteriori(MAP) as-
signment that can be formulated as an integer linear programas shown by Taskar[2004].
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C.3 Associative Markov Networks

An important subclass of Markov networks are theassociative Markov networks,
introduced by Taskar[2004]. These networks represent problems in which related
variables tend to have the same label. AMNs have been used, for example, in text
classification domains[Taskar, 2004], or segmentation of 3D scan data[Anguelov
et al., 2005]. In this last case, when the labels represent objects in the 3D scene, it
is clear that 3D-points which are close to each other tend to have the same label, as
they probably pertain to the same object.

A common approach in AMNs in to use ageneralized Potts model[Potts,
1952], which penalizes assignments that do not have the same labelacross the
edge. In this case the potential functions for edges have theform

φi j (k, l) = λi j , λi j ≤ 1, ∀k , l , (C.10)

φi j (k, k) = 1 . (C.11)

Additionally, Taskar[2004] extends the Potter model with the goal of allow-
ing different labels to have different attraction strengths. These new potentials are
defined as

φi j (k, l) = 1, ∀k , l , (C.12)

φi j (k, k) = λk
i j , λ

k
i j ≥ 1 . (C.13)

C.3.1 Training Associative Markov Networks

Training an associative Markov network consists on learning the weightsw given
an already labeled instance (x, ŷ) of the network. Here, ˆy indicates the labeling
given to the nodes, andx represent the features of nodes and edges. The weightsw
are selected in a way that maximize logPw(ŷ|x). This is computational expensive,
as the partition functionZ depends on the weightsw, and it has to be calculated for
each assignment ofw during the search.

An alternative way of finding the weightsw consists on maximizing the margin
between the optimal labeling ˆy and any other possible labelingy , ŷ as

logPw(ŷ|x) − log Pw(y|x) . (C.14)

In this case the partition functionZ cancels out and the maximization can be done
efficiently. This method is calledmaximum marginoptimization. We refer the
reader to[Taskaret al., 2003] for more details in the training process.

C.3.2 Inference with Associative Markov Networks

Once we have learnt the weights for the network, we can apply an inference pro-
cess to label the nodes of a new unlabeled network. This is done by finding the
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assignmenty that maximizes Equation (C.9). Since the partition function Z does
not depend on the labelsy, we can ignore it in the maximization process. Taking
into account some constraints imposed on the variablesyk

i , the inference can be
done solving the linear program

N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(i j )∈E

K
∑

k=1

(wk,k
e · xi j )y

k
i j (C.15)

s.t. yk
i ≥ 0, ∀i, k;

K
∑

k=1

yk
i = 1, ∀i ;

yk
i j ≤ yk

i , yk
i j ≤ yk

j , ∀i, j ∈ E, k .

More details about inference in associative Markov networks can be found in
[Taskar, 2004].
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Laetitia Mayor, Mathieu Meisser, Roland Philippsen, RalphPiguet, Guy Ramel,
Gregoire Terrien, and Nicola Tomatis. Robox at expo.02: A large scale installa-
tion of personal robots.Robotics and Autonomous Systems, 42:203–222, 2003.

[Simmons and Koenig, 1995] Reid Simmons and Sven Koenig. Probabilistic
robot navigation in partially observable environments. InProceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages 1080–1087, 1995.

[Simmonset al., 2000] Reid Simmons, Joaquin Lopez Fernandez, Richard Good-
win, Sven Koenig, and Joseph O’Sullivan. Lessons learned from xavier.Robo-
tics and Automation Magazine, pages 733 – 39, 2000.



Bibliography 155

[Singh and Fujimura, 1993] Karansher Singh and Kikuo Fujimura. Map making
by cooperating mobile robots. InProceedings of the IEEE International Con-
ference on Robotics and Automation, pages 254–259, Atlanta, GA, USA, 1993.

[Smithet al., 2004] Michael K. Smith, Chris Welty, and Deborah L. McGuinness.
OWL web ontology language guide, 2004.

[Sousaet al., 2007] Pedro Sousa, Rui Araujo, and Urbano Nunes. Real-time la-
beling of places using support vector machines. InProceedings of the IEEE
International symposium on industrial electronics, Vigo, Spain, June 2007.

[Spexardet al., 2006] Thorsten Spexard, Shuyin Li, Britta Wrede, Jannik Fritsch,
Gerhard Sagerer, Olaf Booij, Zoran Zivkovic, Bas Terwijn, and Ben Kröse.
BIRON, where are you? - enabling a robot to learn new places ina real home en-
vironment by integrating spoken dialog and visual localization. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006.

[Tapus and Siegwart, 2005] Adriana Tapus and Roland Siegwart. Incremental
robot mapping with fingerprints of places. InProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2429– 2434,
August 2005.

[Taskaret al., 2003] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-
margin markov networks. InProceedings of the Neural Information Processing
Systems, 2003.

[Taskar, 2004] Ben Taskar. Learning associative markov networks. InProceedings
of the International Conference on Machine Learning, 2004.

[Theodoridis and Koutroumbas, 2006] Sergios Theodoridis and Konstantinos
Koutroumbas.Pattern Recognition. Academic Press, third edition, 2006.

[Thrunet al., 2003] Sebastian Thrun, Dirk Hähnel, David Ferguson, Michael
Montemerlo, Rudolph Triebel, Wolfram Burgard, Christopher Baker, Zachary
Omohundro, Scott Thayer, and William Whittaker. A system for volumetric
robotic mapping of abandoned mines. InProceedings of the IEEE International
Conference on Robotics and Automation, Taipei, Taiwan, 2003.

[Thrunet al., 2005] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.Proba-
bilistic Robotics. MIT Press, 2005.

[Thrun, 1998] Sebastian Thrun. Learning metric-topological maps for indoor mo-
bile robot navigation.Artificial Intelligence, 99(1):21–71, 1998.

[Topp and Christensen, 2005] Elin A. Topp and Henrik I. Christensen. Tracking
for following and passing persons. InProceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Alberta, Canada, 2005.



156 Bibliography

[Topp and Christensen, 2006] Elin A. Topp and Henrik I. Christensen. Topologi-
cal modelling for human augmented mapping. InProceedings of the IEEE/RSJ
Conference on Intelligent Robots and Systems, Beijing, China, October 2006.

[Torralbaet al., 2003] Antonio Torralba, Kevin P. Murphy, William T. Freeman,
and Mark A. Rubin. Context-based vision system for place andobject recog-
nition. In Proceedings of the International Conference on Computer Vision,
2003.

[Treptowet al., 2003] André Treptow, Andreas Masselli, and Andreas Zell. Real-
time object tracking for soccer-robots without color information. InProceedings
of the European Conference on Mobile Robots, 2003.

[Triebelet al., 2007a] Rudolph Triebel, Oscar Martinez Mozos, and Wolfram Bur-
gard. Relational learning in mobile robotics: An application to semantic label-
ing of objects in 2D and 3D environment maps. InAnnual Conference of the
German Classification Society on Data Analysis, Machine Learning, and Appli-
cations, Freiburg, Germany, 2007.

[Triebelet al., 2007b] Rudolph Triebel, Richard Schmidt, Oscar Martinez Mozos,
and Wolfram Burgard. Instace-based amn classification for improved object
recognition in 2d and 3d laser range data. InProceedings of the International
Joint Conference on Artificial Intelligence, pages 2225–2230, Hyderabad, India,
2007.

[Valiant, 1984] Leslie G. Valiant. A theory of the learnable.Communications of
the ACM, 27(11):1134–1142, 1984.

[Vasudevanet al., 2006] Shrihari Vasudevan, Stefan Gächter, Marc Berger, and
Roland Siegwart. Cognitive maps for mobile robots âĂŞ an object based ap-
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