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Abstract—Nowadays, robots often operate in environments
that they share with humans. The ability to act similar to humans
is an important prerequisite for the social acceptance of robots.
In this paper, we consider the problem of navigation in populated
environments. We present a path planning algorithm that enables
robots to move efficiently and smoothly with groups of people
by selecting those individuals that move towards the robot’s
desired goal. Our technique is based on a people tracking system
in combination with an iterative A* planner. The approach
iteratively finds both, a path and a partition of the set of
surrounding people into obstacles and subjects to follow. In the
absence of people, the optimal solution is still found by the A*
planner. The approach has been implemented and tested on a real
mobile robot in populated environments. Experiments illustrate
that the robot is able to move with groups of people resulting in
a more human-like way of navigation among people.

I. INTRODUCTION

Whenever humans navigate in populated environments, they

often move in groups. This walking strategy leads to fewer

detours and avoids, for example, slightly slower walking

people. It can be expected that the ability to adapt to moving

people improves the navigation capabilities of a robot and

leads to a more human-like behavior. This is opposed to most

approaches to autonomous robot navigation that seek to find

the shortest trajectory to the desired goal or minimizes the risk

of collisions with static or dynamic obstacles. None of these

approaches (see next section) aims to guide a robot through a

crowded environments similar to the way humans do.

This paper presents a novel approach to autonomous nav-

igation that allows a robot to move similar to humans. In

populated environments, our approach seeks to move with

groups of people or individuals as long as they move towards

the robot’s goal. Our technique is based on a people tracking

system in combination with an iterative A* planner. In case

the robot encounters an obstacle-free trajectory, the methods

guides the robot on the shortest possible trajectory. Our method

has been implemented and successfully tested on a real robot.

Applications include robots that work in museums, hospitals,

public spaces, trade fairs as well as autonomous wheelchairs.

II. RELATED WORK

Whenever robots are deployed in populated environments,

the ability to perceive people and react according to their

actions improves the service and robustness of a mobile

robot. In the past, several researcher addressed the problem

of detecting and tracking humans over time. Montemerlo and

Thrun [12] proposed the SLAP framework that simultaneously

tracks the poses of people and localizes the robot in the
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environment. Schulz et al. [16] proposed an approach that

is able to robustly track multiple people. To address the

data association problem, they applied joint probabilistic data

association filters in combination with a particle filter.

Given the knowledge about locations of people, the robot

can adapt its behavior and interact with the individuals. For

example, the museum tour guide RHINO [5] gave successful

tours in different museums. In case of crowded spaces it

needed to traverse, the authors used speech synthesis to request

people to let the robot path through. The tour guide robot

Minerva [20] used a similar system while operating in the

Smithsonian museum of American history. During Expo.02,

the robots deployed by Siegwart et al. [17] used a combination

of global planning and local collision avoidance for navigation.

For the same exposition project, Jensen [9] distinguishes be-

tween static, semi-static, and dynamic objects. This allows to

more robustly track the individual objects in the surroundings

of the robot. Even so these three robots operated in highly

populated environments, their path planning approaches did

not adapt to the motion and estimated movements of observed

people.

Bennewitz [3] proposed an approach to learn typical motion

patterns of people and to adapt the motion planning according

to the predicted motions. This allows for more accurate motion

prediction but requires to learn models of the individual peo-

ple. The learning of such patterns is performed by an EM style

algorithm [4]. In contrast to this, our approach operates with-

out explicitely learned models. To integrate knowledge about

people in the path planning process, Foka and Trahanias [7]

presented an approach that uses a partially observable Markov

decision processes (POMDPs) for predicting the motion of

people. In this way, their approach allows a mobile robot to

plan trajectories that are less likely to interfere with people.

The approach of Tadokoro et al. [19] also applies probabilis-

tic techniques to predict the motion of people based on external

sensors. They apply a genetic algorithm for path planning

that seeks to minimize the length of the trajectory and the

risk of collisions. Philippsen et al. [13] uses an extension of

ICP that combines motion detection from a mobile platform

with position estimation. This information is used to estimate

a traversability risk function that unifies dynamic and static

obstacles. The planning system uses this risk function to

generate smooth paths that trade off collision risk versus

detours.

Dealing with dynamic environments is also an important

topic for autonomous or semi-autonomous wheelchairs. The

system of Prassler et al. [14] perform short term motion pre-

diction of dynamic obstacles in order to ensure safe navigation

without collisions using some heuristics.



All techniques presented so far estimated the location and

motion of people in the environment. Based on this knowledge,

these approaches aim to plan short trajectories that minimize

the risk of collision. This results in avoiding regions close

to people and prevents the robot from adapting its motion to

the dynamics or the humans. In contrast to this, our approach

presented in this paper seeks to adapt its motion to the way

humans move. Instead of driving as fast as possible on the

preferably shortest trajectory that is collision free, our robot is

able to move with groups of people and still follows a person

even if it would be possible to overtake. We achieve this by an

iterative planning approach that seeks for people that appear

to move to the same target location than the robot.

III. LASER-BASED PEOPLE TRACKING

A prerequisite for a socially inspired approach to navigation

is the ability of the robot to reliably detect and track people

in its surroundings. This section describes the Kalman filter-

based multi-target tracker that is utilized to detect and track

people. We briefly go through the tracking cycle. For the

details of Kalman filtering and target tracking the reader is

referred to [2].

State prediction. A people track is represented as x =
(x, y, vx, vy) where x and y are the position and vx and vy

the x and y velocity components of the person. With this

state representation, new tracks can be properly initialized with

vx = vy = 0. For motion prediction, a constant velocity model

is employed.

Measurement prediction. As the x- and y-coordinates of a

track are directly observable, the 2×4 measurement matrix H

is formed by the 2×2 identity matrix in x and y and the 2×2
zero matrix in vx and vy .

Observation. In the observation step, people are detected

in the laser range data. The problem can be seen as a

classification problem that consists in finding those laser

beams that correspond to people and to discard other beams.

Typically, hand designed classifiers have been employed for

this task. A popular approach is to extract people by detecting

moving blobs that appear as local minima in the laser range

scans. Neither the selection of features nor their thresholds are

learned or determined other than by manual design and hand-

tuning [10, 6, 15, 16, 21]. This motivates the application of

a supervised learning technique. In particular, our approach

applies AdaBoost to train a strong classifier from simple

features of groups of neighboring beams corresponding to legs

in range data [1]. AdaBoost takes a labeled training set and a

possibly large vocabulary of features that may or may not be

appropriate for the given classification task. The method then

creates a classifier by selecting the most informative features

and finding the optimal thresholds given the training data.

Experiments show that for people detection, the AdaBoost

classifier is superior to a manually designed classifier and is

therefore also used in this work.

Data association. For data association, we employ a nearest

neighbor standard filter that considers tracks separately. Al-

though this is a very simplistic approach to data association,

the performance was sufficient for our purposes. Our current

extension of this tracker integrates data association decisions

Fig. 1. The information flow of the individual components.

over time using multiple hypotheses.

Estimation. Given that both, the state and measurement

prediction models are linear, a (non-extended) Kalman filter

as the optimal estimator under the Gaussian assumption can

be employed.

The tracker operates in the world reference frame, i.e.

the track position and velocities are represented in world

coordinates. Observations acquired in the sensor frame are

transformed into the world frame using the robot’s pose known

from localization. Uncertainties are transferred from local to

global coordinates using first-order error propagation.

In practice, the tracker cycle frequency is much higher

than the rate with which new localization updates arrive.

We therefore use odometry to estimate the robot’s pose as

it delivers faster and smoother pose updates. Although this

causes the pose and hence the transformed track states to drift,

this is only internal to the tracker. Each time when a new

localization update is available, the filtered track states are

finally transformed into the (drift-free) world reference frame

and passed to the planner which also operates in that frame.

IV. PLANNING AND PEOPLE SELECTION

This section explain how the detected people are incorpo-

rated into our planning approach. Figure 1 shows the infor-

mation flow between the individual modules. Our approach

iterates the A* planner and the people selection technique.

A. Iterative Planning

To decide whether to follow a person and to find the best

person to follow, we are looking for people who seem to have

similar short-term goals than the robot itself. To determine the

people to follow, we iteratively plan a path and select people

according to the previously planned path.

For modeling the environment, we use an occupancy grid

map which contains only static obstacles and can be obtained

with standard mapping techniques [8]. Additionally, we main-

tain a temporary local map containing the observed (dynamic)

obstacles based on the latest n laser observations (n = 20).

The basic path planning is performed by the A* algorithm

on the combination of the global (static) and local occupancy

grid map. Thus we plan in the 2-dimensional (x, y)-Space

for reason of efficiency. As a fast computable heuristic we

use Dijkstra’s algorithm on the static map, which is once

computed when the goal is set. This leads to fast re-planning



capabilities while we guarantee a directed search especially

through complicated room- and corridor-combinations [18].

To avoid collisions caused by driving too close to obstacles,

we convolve the grid with a Gaussian kernel to give higher

costs to cells close to obstacles. This allows the robot to keep

a reasonable distance to obstacles but at the same time enables

it to navigate through narrow passages.

Since we do not learn prediction of a person’s movements

like Foka and Trahanias [7] or Bennewitz [3], we predict

only the short-term movements of people into our navigation

system. Based on the estimated short-term movements, our

planner needs to determine if a person is suitable to act as

a leader which refers to the fact that the robot follows this

person. The robot should select only those people as a potential

leader, who move towards its own goal location. To achieve

this, we apply an iterative A* planning approach, which is

described in the following.

In the initial planning step, we ignore all people and

consider only the static obstacles in the environment. Thus,

the A* planner reports the best action of the robot given the

static objects. The robot then seeks for people that interfere

with the planned trajectory. In case there are no people close

to the planned path, there is no need for the robot to adapt

its trajectory. As a result, in the absence of people, the robot

generates the optimal trajectory to the target location.

However, in highly populated environments such as mu-

seums or trade fairs people are likely to interfere with the

planned path of the robot. In this case, it identifies which

person is suitable to become a leader. This is done based on

the position and motion direction of the person with respect

to the planned trajectory. In its world model, the robot then

marks the person as a potential leader or as an obstacle it

has to avoid during planning. Then the robot executes the A*

algorithm depending on the modified world model, in which

the grid cells occupied by people, who are not considered as

obstacles, are marked as free. These steps are executed in an

iterative fashion until the approach converges to an admissible

solution. Here, we call a path admissible if and only if it was

planned without considering exactly those people as obstacles,

who are suitable to follow based on this path. Obviously, each

admissible path is a stable solution of our iterative planning

approach. An algorithmic description of our work is depicted

in Algorithm 1.

The decision if a person is a potential leader, the robot

considers the short-term prediction from the people track in

combination with the latest trajectory computed by A*. In

detail, we allow a maximum deviation from the plan by 1 m

to the right or left hand side as well as a maximum angular

deviation of 30 deg.

Since our navigation system frequently re-plans its path

to adapt to the changes in the environments, the robot only

follows people as long as they move in the same direction than

the path guiding the robot to its target location. As as result,

the robot moves with people only as long as it is convenient

with respect to its own goal.

Figure 2 illustrates an example of our iterative planning

in which four people are in the vicinity of the robot and

are considered in the planning process. After four iterations,

Algorithm 1 Iterative path planning with people

Let hi ⊆ P the set of people not considered as obstacles in

planning step i and fi ⊆ P the set of people who are suitable

to follow based on the path planned in step i.

Input: People P = {P1, . . . , Pn}
Output: Path p and the set of people, who are suitable to

follow

i = 0
h0 = P

loop

Plan path pi with hi

Compute potential leaders fi based on path pi

if fi = hi then

return 〈pi, fi〉
end if

if fi = hj for any j < i then

return “no path found”

end if

hi+1 = fi

i = i + 1
end loop

the approach converged to a solution and it is reported as a

result of our planning algorithm. After identifying the person

or group of people the robot is supposed to follow, one can

apply a standard local navigation approach such as potential

field, nearness diagram navigation [11], or dynamic window

approach [5, 20] that guides the robot to a position which

is lying slightly behind the person to follow. We obtained

comparably good results using the potential field method for

that.

Note that it can happen that our approach does not converge

since it generates an intermediate solution that was already

generated in a previous iteration smaller i− 1, where i refers

to the current iteration.

In the case in which no admissible path is found, we

compute the path which considers all people as obstacles

and report this as the final solution. This path is indeed not

admissible according to our definition, but it is collision free

and thus can be executed by the robot.

B. Blocking

Another feature we added to our navigation approach is the

ability to actively approach people who are standing around

and thus blocking significant regions in the environment (see

Figure 3 for an illustration). Those people often cause the robot

to accept detours to reach its goals (if there exists an obstacle

free path at all). In practical situations, however, people often

move away from narrow passages such as doorways as soon

as the robot approaches them. We address this issue by trying

to shoo away such people. We compute a path ignoring the

person. If this path is significantly shorter than the originally

planned path, our system tries to shoo away the person and in

this way free the path. To shoo someone away, we approach

the person, accelerate shortly in front of them before braking



Fig. 2. Example of our iterative algorithm to plan a path and select people
to follow. Each odd row depicts the result of the A* planner and each even
row the result of the person selection technique. Bold red (dark gray) circles
indicate people classified as obstacles while green ones indicate potential
leaders.

Fig. 3. A person blocks a significantly shorter path causing a detour for the
robot. Alternatively, the robot can try to shoo this person away and to move
on the shorter path.

again. In most cases, this behavior causes people to intuitively

free the path.

V. EXPERIMENTS

In this section, we present the experiments carried out to

evaluate our approach. We used simulated as well as real

world experiments carried out with an ActivMedia Robotics

Pioneer 2 robot in populated office environments. The robot

was equipped with a SICK LMS laser range finder to perceive

its surroundings. The experiments are designed to illustrate

how our robot follows people in its surroundings when the

environment is crowded.

In the first experiment, the robot moves through a corridor

that is empty in the beginning. While the robot is driving,

two people walked through as shown in Figure 4. The robot

reliably selects people who are suited as a leader and does not

consider them as obstacles as conventional approaches would

do. It chooses a person to follow as long as someone walks

along the corridor towards its goal.

In the second experiment, we test our approach with up

to six people walking in a corridor, entering and leaving

rooms, or just standing around. The robot is supposed to drive

to the other end of the corridor and to return. The people

acted naturally as they do in office buildings, railway stations,

hospitals, or museums. Figure 5 shows snapshots of this

experiment. As before, the robot always selects appropriate

people to follow and does not plan trajectories around them

which would be a non-humanlike behavior.

The complexity of our planning system corresponds to the

one of A* multiplied by the number of iterations. Since the

robot can only observe people in its local surrounding, the

number of tracked people and therefore the number of itera-

tions is strictly limited. During the experiment, the planning

operation required between two and eight iterations and took

up to 250 ms on a standard laptop computer. Even with a

high number of people in the surrounding of the robot, our

system reliably tracked the humans and made use of nearly

all possibilities to follow a person.

While testing our system with six subjects, we logged

the number of steps needed by our iterative path planning

algorithm. We removed all situations in which the robot was

able to plan a path directly without following a person. Table I
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Fig. 4. The robot moved through the corridor and while moving, people
entered the corridor blocking its path. Green (light gray) circles indicate people
the robot considered to follow and the green line shows its decision. As can
be seen, the robot safely navigates through the corridor following people
whenever it appears to be appropriate.

TABLE I

NUMBER OF REQUIRED ITERATION STEPS WHILE PLANNING PATHS

SURROUNDED BY UP TO 6 PEOPLE.

# iteration frequency relative frequency

2 316 81.4%

3 39 10.1%

4 9 2.3%

5 4 1.0%

not terminated 20 5.2%

summarizes the required planning steps. The majority planning

operations needed exactly two steps. In around 5% of the

cases, our iterative planning approach could not find a solution.

This was the case when no plan existed or of the iterative

algorithm did not produce an admissible solution.

Additionally we tested to shoo away path blocking people

in simulation. We modified our simulator to let a person

randomly go away if the robot approaches her or not. Figure 6

shows an example of both cases.

Fig. 5. Experiments with multiple and differently moving people. The robot
always selected people that move in the corrected direction – that is in unison
with the robot’s target location.



robotperson
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(a)

person does not move

(b)

Fig. 6. The robot tries to shoo away a person that is blocking a narrow
passage. In situation (a) the person frees the passage so that the robot can
move through whereas in (b) the robot has to choose the detour to reach its
target location.

VI. CONCLUSIONS

In this paper, we presented a novel navigation approach

that generates human-like motion behavior for mobile robots

in highly populated environments. The approach detects and

tracks people in the surroundings of the robot and integrates

this knowledge into the planning process. Compared to related

work, we do not plan a path around people but try to identify

and follow individuals or groups of people that appear to

move towards the same goal. This is achieved by an iterative

planning and person selection approach based on the A*

algorithm that decides which subjects the robot should follow.

Our robot furthermore considers actions to shoo people away

that block narrow passages towards the desired goal or to avoid

significant detours. The approach has been implemented and

tested on a real robot in populated environments. The robot

shows the ability to move with people in a similar way humans

do. Such a technique is advantageous in highly populated

environments such as museums, trade fairs, hospitals or public

spaces.
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