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Abstract—In recent years, autonomous miniature airships
have gained increased interest in the robotics community. This
is due to their ability to move safely and hover for extended
periods of time. The major constraints of miniature airships
come from their limited payload which introduces substantial
constraints on their perceptional capabilities. In this paper,
we consider the problem of localizing a miniature blimp with
lightweight ultrasound sensors. Since the opening angle of
the sound cone emitted by a sonar sensor depends on the
diameter of the membrane, small-size sonar devices introduce
the problem of high uncertainty about which object has been
perceived. We present a novel sensor model for ultrasound
sensors with large opening angles that allows an autonomous
blimp to robustly localize itself in a known environment using
Monte Carlo localization. As we demonstrate in experiments
with a real blimp, our novel sensor model outperforms a
popular sensor model that has in the past been shown to work
reliably on wheeled platforms.

I. INTRODUCTION

Recently, autonomous blimp robots have become a grow-

ing research field because such robots can safely navigate

in their environment and fulfill a variety of tasks. This

includes environmental monitoring, surveillance, and search

and rescue. Many applications, however, require that the

airships are able to reliably localize themselves or to build

accurate maps of the environment. For example, in rescue

scenarios the exact knowledge of the position of the vehicle

allows to provide precise estimates about the position of

victims. At the same time, the airships need to be small-sized

to be deployable in a wide range of applications including

indoor settings. The smaller a blimp gets, however, the

higher the constraints become on the weight and size of the

sensors the robot can carry and at the same time on the

computational capabilities of the platform. Although there

are lightweight cameras, the corresponding feature extraction

algorithms typically are computationally too expensive to be

executed on the resource-limited CPU of a blimp. Therefore,

alternative sensor technologies such as ultrasound sensors

appear to be an appropriate sensor for solving the localization

task.

In this paper, we consider the problem of localizing a

small-size blimp in indoor environments. Our blimp [20],

which is depicted in Fig. 1, has an effective payload of

100 grams and is equipped with four ultrasound sensors as

well as an IMU for navigation. Particle filter techniques have

been proven to be a robust means for robot localization [6].
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Fig. 1. The robotic blimp [20] used throughout this paper. It is equipped
with 4 small, lightweight Devantech SRF10 sonar sensors.

However, a crucial aspect is the design of the so-called

probabilistic observation model p(z | x,m) which defines

the likelihood of a measurement z given the pose x of the

vehicle in the environment m. This sensor model needs to

be specified properly to provide accurate state estimates and

to avoid the divergence of the filter. In this context, the

miniature Devantech SRF10 ultrasound sensors our blimp

is equipped with pose a challenging problem. Their wide

opening angle introduces a high uncertainty which needs to

be correctly modeled by the sensor model.

We present a novel sensor model for ultrasound sensors

with wide opening angles that has several desirable fea-

tures compared to previously developed models. It better

reflects the physical properties of ultrasound sensors and it

is especially suited to deal with the wide opening angles

of small-scale ultrasound sensors. We evaluate our model

on a miniature blimp system in an indoor navigation task.

In practical experiments we demonstrate that our model

outperforms an alternative and popular sonar sensor model.

This paper is organized as follows. After discussing related

work in the following section, we briefly describe Monte

Carlo Localization in Section III. We will then discuss

probabilistic sensor models and introduce our approach in

Section IV. Finally, in Section V, we will evaluate our sensor

model and compare it to alternative models.

II. RELATED WORK

In the past, several authors have considered autonomous

aerial blimps. For example, Kantor et al. [12], Hada et

al. [10], and Hygounenc et al. [11] developed airships

with several kilograms of payload and utilized them for

surveillance, data collection, or rescue mission coordination

tasks. The relatively high payload of these systems allows



the blimp to carry more powerful sensors and also facilitates

more extensive on-board computations.

Additionally, there has been work on navigation with

small-scale blimps that utilize cameras for localization or

even SLAM. Whereas cameras provide rich information,

the processing of the images typically cannot be carried

out on the embedded computers installed on such miniature

airships [1], [14], [23]. Kirchner and Furukawa [13] present

a localization system for indoor UAVs, which utilizes an

infrared emitter on the vehicle and three external infrared

sensors to localize the robot via triangulation. Whereas this

approach does not have high computational demands, it

requires external devices that perceive the infrared signals.

Before laser scanners became available for installation

on mobile robots, ultrasound sensors were popular sensors

for estimating the distance to objects in the environment

of a robot. Typically, robots were equipped with arrays of

Polaroid ultrasound sensors which had, compared to the

sensors installed on our blimp, a relatively small opening

angle. In the literature, several approaches for modeling the

behavior of such ultrasound sensors can be found.

Some approaches utilize ray-casting operations to estimate

the distance to be measured according to a given map. One of

the first such approaches to model ultrasound sensors in the

context of localization and mapping is the pioneering work

by Moravec and Elfes [18], [19]. The sensor model approach

described there is somewhat similar to ours. However, it has

originally been designed for two-dimensional occupancy grid

maps only and also does not specifically model the intensity

decrease of the sound cone while it propagates. A corre-

sponding model has been utilized by Burgard et al. [4] and

has been shown to allow a mobile robot to robustly localize

itself using Markov Localization, a grid-based variant of

recursive Bayes filters. Thrun [26] proposed an approach to

occupancy grid mapping that considers multiple objects in

the sound cone. However, this approach utilizes a simplified

sensor model. Fox et al. [8] presented a sensor model for

range measurements that has been designed especially for

robots operating in dynamic environments. It also does not

explicitly model the intensity changes on the surface of the

sound cone.

Additionally, several authors have presented so-called

endpoint or correlation models which are more efficient

but ignore the area intercepted by the sound cones [15],

[25]. Schroeter et al. [21] directly learn the likelihood

function from data collected with a mobile robot, which

is an approach similar to the one described by Thrun et

al. [27]. Compared to these approaches, our technique seeks

to physically model the sensor and explicitly takes into

account the potential reflections of objects.

Physical models have also been considered by Leonard

and Durrant-Whyte [16]. Their approach assumes certain

types of geometric objects such as planes, cylinders, corners,

and edges in the context of a landmark-based SLAM algo-

rithm. Tardos et al. [24] utilize a similar approach to extract

lines and corners to robustly build large-scale maps based on

ultrasound data. Compared to these techniques, our approach

does not rely on the assumption that the environment consists

of certain types of geometric objects. Rather, it can be

applied to arbitrary indoor environments. Additionally these

approaches assume relatively accurate odometry, which is

typically not available in the context of aerial blimps.

III. MONTE CARLO LOCALIZATION

Throughout this paper, we consider the problem of esti-

mating the pose x of a robot relative to a given map m using

a particle filter. The key idea of this approach is to maintain

a probability density p(xt | z1:t, u1:t) of the pose xt of the

robot at time t given all observations z1:t and control inputs

u1:t up to time t. This probability is calculated recursively

using the Bayesian filtering scheme

p(xt | z1:t, u1:t)

= η · p(zt | xt)

∫

p(xt | ut, xt−1) · p(xt−1) dxt−1 . (1)

Here, η is a normalizer that ensures that p(xt | z1:t, u1:t)
sums up to 1 over all xt. The term p(xt | ut, xt−1) is the

motion model and p(zt | xt) the sensor model, respectively.

For the implementation of the described filtering scheme,

we use a sample based approach which is commonly known

as Monte Carlo localization [6]. Monte Carlo localization

is a variant of particle filtering [7] where a set M of

weighted particles represents the current belief. Each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from (1) is performed according

to the following three alternating steps:

1) In the prediction step, we draw for each particle a new

particle according to the motion model p(xt | ut, xt−1)
given the action ut.

2) In the correction step, we integrate a new observation

zt by assigning a new weight wi to each particle

according to the sensor model p(zt | xt).
3) In the resampling step, we draw a new generation of

particles from M (with replacement) such that each

sample in M is selected with a probability that is

proportional to its weight.

IV. PROBABILISTIC MODELS FOR SONAR SENSORS

The probabilistic sensor model p(z | x) plays a crucial

role in the correction step of the particle filter and its

proper design is essential for accurate state estimates to avoid

the divergence of the filter. It defines the likelihood of a

measurement z given the state x of the system including the

information about the environment. In case of sonar sensors

the measurement z consist of a single distance r. In the

following, we first briefly discuss a popular sensor model. We

will then introduce our novel sensor model which explicitly

models the characteristics of small-size sonar sensors with

large opening angles.

A. The Ray-casting Model

Thrun et al. [27] and Choset et al. [5] describe an approach

to model the measurement likelihood for sonar or laser range

finders, which in the past has successfully been applied to
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Fig. 2. The intensity pattern of the Devantech SRF10 miniature sonar
sensor compared to the one of the popular Polaroid 6500 sensor. Units are
decibel normalized to the maximum intensity.

robustly localize wheeled platforms equipped with standard

Polaroid ultrasound sensors with an opening angle of 15

degrees [9]. Their approach models p(z | d(x)) based on the

distance d(x) to the closest object along the acoustical or

optical axis of the sensor. To determine this likelihood, they

perform a ray-casting operation in the map to determine d(x)
and calculate p(z | d(x)) based on a mixture of four different

distributions to capture the noise and error characteristics

of range sensors. The major component of this model is

a Gaussian N (d(x), σ2) that characterizes the distribution

of measurements in situations in which the closest object

along the acoustical or optical axis of the sensor is detected.

Additionally, this model includes an exponential distribution

λe−λ z to properly model measurements reflected by objects

not contained in the map. Furthermore, it utilizes a uni-

form distribution to model random measurements caused,

for example, by sensor failures. Finally, maximum range

measurements are modeled using a constant probability.

These four different distributions are mixed in a weighted

average to model p(z | d(x)). While this model allows for a

highly accurate localization given typical ultrasound sensors

or laser range finders, it yields suboptimal results for small

sonar sensors having a large opening angle. The reason is

that for wide opening angles it is no longer sufficient to

calculate the measurement likelihood solely based on the

distance to the closest object along the acoustical or optical

axis of the sensor. In this paper, we especially cope with this

problem and propose a model that explicitly considers the

opening angle θ = 1.22 λ
D

which depends on the wavelength

λ of the signal and the diameter D of the membrane (see

Brown [3]). Accordingly, the closest object in the entire cone

is considered, which better reflects the wide opening angle.

B. The Cone Model

In contrast to other approaches, we seek to model the

observation likelihood by systematically considering the un-

derlying physics of ultrasound sensors. The measurement

starts with the generation and transmission of a periodic

ultrasound signal. The signal propagates spherically with an

intensity pattern which depends on the size of the sender

(Fig. 2). For very small transmitters with a diameter in the

same order of magnitude as the wavelength, the signal is

hardly focused. Thus, it can be considered as a growing

hemisphere, which has lower intensity at its boundary area.

Usually, the transmitted signal is reflected by objects in

the environment and is observed by the receiving sensor.
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Fig. 3. Two examples for sonar measurements using different amplification
factors (g1 < g2 < g3). The sensor is mounted on a wheeled platform above
the laser range finder. The upper pictures show the experimental setting
with different sized objects in the field of view of the sensor. The laser and
sonar measurements are shown in the corresponding lower pictures. Units
are meters.
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Fig. 4. The spherical coordinate system used for modeling the sensor
behavior. An object is seen by the sensor in distance r, azimuth angle φ,
and zenith angle θ. In this way, the dihedral angle Ω is covered.

Since the received signal typically is much weaker than

the transmitted signal, it gets amplified by a predefined

amplification factor g. If this amplified signal exceeds a fixed

threshold, the measurement procedure is stopped and the

distance r = v·∆t
2 is calculated based on the time of flight

∆t and the velocity of sound v.

Fig. 3 illustrates the effect of detecting different objects

by varying the amplification factor. The two bottom images

show the environment observed by a SICK laser range finder

and the sonar measurements using several amplification

factors. With higher amplification factors, the detection capa-

bility increases. However, the sensor then also tends to detect

objects that are perpendicular to the heading of the sensor.

In our approach, we model this behavior by considering the

detection of objects depending on their size, angle, distance,

and the used amplification factor. In particular, we calculate

a probability distribution of triggering a measurement by

modeling the received signal over the elapsed time ∆t.

To consider the propagation of the signal in the envi-

ronment, we define a spherical coordinate system (Fig. 4).

The emitted signal intensity (power per area) I depends on

the zenith angle θ, which is depicted in Fig. 2. Due to the

symmetry of ultrasonic membranes it does not depend on

the azimuth angle φ. Hence, the whole signal power can be

written as

P0 =

∫

I(θ) dΩ



by integration over the hemisphere in front of the sensor. This

signal power is damped by a factor D(r) and the intensity is

scaled by 1
r2 with increasing distance r since the surface area

of the hemisphere scales with r2. In contrast to Moravec [18],

we explicitly model these two effects physically.

To determine the objects that potentially reflect the prop-

agating signal, we assume that a map of the environment

specifying the obstacles and the free space is given. In

our current implementation we use multi-level surface maps

for this purpose [28]. Alternatively, one could also use the

maximum likelihood estimate obtained from a 3D occupancy

mapping algorithm. We determine the set of relevant objects

by a discrete set of ray-casting operations according to a fixed

angular resolution such that the entire visible hemisphere is

covered. Let Hi be an object, which is seen by the sensor

in distance ri and zenith angle θi and which corresponds to

the dihedral angle Ωi. Then, the incident signal power is

Pi = I(θi) D(ri) Ωi .

A proportion PR,i = ρi Pi of this signal power is reflected

back to the sensor. Thereby, the reflection proportion ρi ∈
[0, 1] depends on the relative angle of incidence of the signal

and the reflection properties of the object. Unfortunately, the

latter properties are hard to obtain and would also further

increase the storage requirements. As diffuse reflection just

occurs on surfaces that have a roughness in the order of

magnitude of the wavelength, typical uncluttered indoor envi-

ronments mainly produce specular reflections. Additionally,

diffuse reflected signals again propagate on a hemisphere,

which causes them to be very weak. Therefore we only

consider specular reflections, whereby the signal power,

which is reflected towards the receiver, can be estimated

according to

pi(PR,i) = α p(PR,i | reflection towards sensor)

+ (1 − α) p(PR,i | reflection to other direction)

≈ α δ(PR,i − Pi) + (1 − α) δ(PR,i) (2)

for some α ∈ [0, 1] using the Dirac delta. As there is typically

no information about correlations between the reflection

properties of objects, we assume them to be independent.

Furthermore, we do not consider multiple reflections or

interference.

At time ∆t the sensor starts to receive the reflected signal

of objects at the distance r = v·∆t
2 . The emitted ultrasound

signal has the length l, which usually is a couple of wave-

lengths. Therefore, at this time the sensor still receives the

reflected signal of objects in distances between r− l
2 and r. In

the following we will denote the set of objects which reflect

a signal that could contribute to trigger the measurement of

distance r by H(r) =
{

Hi : ri ∈ [r − l
2 , r]

}

. Consequently,

the total received power corresponding to the distance r can

be written as the sum over the reflected powers of all objects

of H(r), where each PR,i is distributed according to (2):

PR(r, x) =
∑

Hi∈H(r)

PR,i

Furthermore, the probability distribution of PR(r, x) can

be calculated by the convolution

p(PR(r) | x) =

(

∗
Hi∈H(r)

pi

)

(PR(r) | x) .

By choosing an appropriate and variable resolution during

the calculation of the objects via ray-casting, which results

in an adapted Ωi, we can achieve equal Pi for all objects

Hi ∈ H(r). Thus, this quantity can be simplified to

p(PR(r) | x) =

|H(r)|
∑

j=0

((

|H(r)|
j

)

2|H(r)|
· αj ·

(1 − α)|H(r)|−j · δ (PR(r, x) − j · Pi)

)

.

Here, we exploit the fact that the Dirac delta is the neutral

element of the convolution.

For large values of |H(r)| this binomial distribution can

be approximated by a Gaussian N (µ, σ2). The mean µ =
Pmax α and variance σ2 = Pmax α (1 − α) depend on

Pmax(r, x) =
∑

Hi∈H(r)

Pi .

This yields

p(PR(r) | x) ≈ N
(

α Pmax(r, x), α (1 − α) Pmax(r, x)
)

.

The received signal is amplified by some predefined factor

g and the threshold circuit causes the sensor to measure the

shortest distance, out of which the received and amplified

signal exceeds some fixed threshold PE . Consequently, the

measurement probability

p(ri | x)

= p (g · PR(ri) > PE | x) ·



1 −
∑

j<i

p(rj | x)



 (3)

is the product of the probability that the amplified signal

exceeds the threshold and the probability that the measure-

ment not already has been stopped. Thereby, we discretize

the measured distances into r0, . . . , rM similar to Moravec

et al. [18].

Additionally, dynamic, unmapped objects like people or

other robots could influence the measurements. This effect

can be modeled by a small probability for dynamic objects

β which modifies (3) to

p′(ri | x)

= (p (g · PR(ri) > PE | x) + β) ·



1 −
∑

j<i

p′(rj | x)



 .

Furthermore, the sensor could fail and generate measure-

ments uniformly distributed over the whole measurement

range. This can be modeled by the uniform random mea-

surement probability and leads to the overall likelihood

p′′(ri | x) = (1 − γ) · p′(ri | x) + γ · puniform(ri) .



 0

 2

 4

 6

 8

 10

-18 -16 -14 -12 -10 -8 -6 -4 -2  0  2

y
 [

m
]

x [m]

 0

 2

 4

 6

 8

 10

-18 -16 -14 -12 -10 -8 -6 -4 -2  0  2

y
 [

m
]

x [m]

probability
measurement

probability
measurement

 0  1  2  3  4  5  6
distance [m]

P_max
probability

measurement

 0  1  2  3  4  5  6
distance [m]

P_max
probability

measurement

Fig. 5. Two exemplary sonar measurements at different positions. The map is shown as a horizontal sectional view at a height of 2.00 m (left) and 2.55 m
(right). The picture illustrates a three-dimensional view similar to the field of view of the sonar sensor. The calculated measurement likelihoods and the
measurements are depicted for the standard sensor model (upper plot) and our novel sensor model (lower plot).

V. EXPERIMENTS

The sensor model described above has been implemented

and evaluated using real data acquired with a 1.70 m long

blimp [20] in a large indoor environment. The blimp is

equipped with four Devantech SRF10 sonar sensors (see

Fig. 1) with a measurement range up to 6.0 m. Each sensor

has membrane with a diameter of D ≈ 8.5mm, a wavelength

λ = 8.5 mm, and weighs 3.3 grams. Three sonar sensors are

mounted horizontally at the front, left hand, and right hand

side of the hull. The fourth sensor is integrated into the gon-

dola pointing downwards to measure the height. The blimp is

actuated by two main propellers that pivot together, providing

thrust in the forward/backward and upward/downward direc-

tions. A third propeller is mounted laterally at the rear of the

blimp for yaw rotation. Additionally, our blimp is equipped

with an IMU [22] that weighs 8.8 grams and provides

accurate attitude and heading estimates. Both are used within

the motion model which is a variant of that proposed by

Zuffery et al. [29]. This model is based on the Newton-Euler

equation of motion depending mainly on forces of propellers

and air drag and its parameters were learned on the data of

flying experiments. In our current implementation we use

low-variance resampling [27] and omit the resampling step

until the effective number of particles [17] drops below half

the number of particles.

The indoor environment, in which we carried out the

experiments, provided an area for flying of about 14× 7 m2

with a vertical space of 5 m. The multi-level surface map

representing the environment had a resolution of 0.1 m and

was created from 3D laser scans. In this map we determined

the set of relevant objects for our sensor model by ray-casting

using a fixed angular resolution of 5 degrees.

A. Qualitative Results

To compare our novel sensor model to the ray-casting

model [5], [27], we learned the parameters of both models

from real data by mounting the sonar sensor on a wheeled

robot. We determined the corresponding sensor poses using a

laser-based localization approach and calculated the parame-

ters using the given map and 40,000 sonar measurements.

There were virtually no dynamic objects and very little

wrong measurements while we acquired the data. As a result,

the values for the corresponding parameters β and γ of our

model were lower than 0.01.

Fig. 5 depicts two examples of sonar measurements and

the corresponding measurement likelihood calculations. In

contrast to the ray-casting model, our sensor model specifies

a multi-modal likelihood, which explicitly models different

object sizes and takes into account multiple objects in

different distances. This demonstrates that our model can

deal better with the large opening angle of miniature sonar

sensors.

B. Quantitative Results

In order to evaluate the improvement in terms of the

localization error, we compared the performance of our

novel sensor model to the standard ray-casting model. To

determine the localization error, we placed visual markers at

the floor, which allow us to accurately determine the pose

of the vehicle using the camera integrated in the gondola of

the blimp [2]. As a measure of localization error we used

the Euclidean distance between the weighted average of all

particles and the reference pose.

In an extensive experiment of about 23 minutes of man-

ually operated flight, the blimp collected 13,430 sonar mea-

surements. Fig. 6 shows the path of the blimp as estimated

by the localization system using our novel sensor model.

A small fraction of this run is shown in the video attach-

ment. Since the motion model parameters were only roughly

approximated, the motion model path deviated highly from

the real trajectory. As can be seen from Fig. 7, our novel

sensor model resulted in a significantly smaller localization

error than the standard ray-casting model. Furthermore, we

evaluated the localization success rate which revealed that the

number of particles required to reliably localize the blimp is

substantially smaller using our sensor model.
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VI. CONCLUSIONS

In this paper, we presented a novel sonar sensor model for

probabilistic localization techniques that explicitly considers

the characteristics of small sonar sensors with large opening

angles. In contrast to other models, our approach is based

on the physics of sonar sensors, explicitly takes the propa-

gation of their hardly focused sound signal and its reflection

by objects with different sizes and distances into account,

and specifies a multi-modal likelihood distribution. Practical

experiments with a real miniature blimp demonstrate that

our novel sensor model allows the blimp to robustly lo-

calize itself in a known environment. It also significantly

outperforms the popular ray-casting model in terms of the

localization accuracy and the number of particles needed.

In future work we would like to consider the influence of

multiple reflections of the ultrasound signal and the question

of how to model the corresponding effects in the sensor

model.
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