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Abstract—In recent years, there has been an increasing inter-
est in autonomous navigation for lightweight flying robots. With
regard to self-localization flying robots have several limitations
compared to ground vehicles. Due to their limited payload flying
vehicles possess only limited computational resources and are
restricted to a few and lightweight sensors. Additionally the
kinematics of flying robots is rather complex, which requires
sophisticated motion models that are typically hard to calibrate.
However, as the sensors provide only a limited amount of
information, the motion models need to be highly accurate
to reduce the potential increase of uncertainty caused by the
movements of the vehicle. In this paper, we present a novel
approach to simultaneous localization and estimation of motion
model parameters and their adaptation in the context of a
particle filter. To deal with sudden changes of parameters, our
approach utilizes random sampling augmented by additional
damping to avoid oscillations caused by the delayed detection
of the changes. As we demonstrate in experiments with a real
blimp, our method can deal with very sparse and imprecise
sensor information and outperforms a standard Monte Carlo
localization approach.

I. INTRODUCTION

Recently, the robotics community has shown an increasing

interest in small-sized and low-cost autonomous aerial ve-

hicles such as helicopters, quadrotors, or blimps. Especially

their low power consumption and safe navigation capabilities

make blimps ideally suited for long-term indoor operation

tasks. One of the most fundamental abilities of autonomously

operating robots is to localize themselves in a known en-

vironment. This has been successfully addressed by Bayes

filter techniques in the past [22]. The smaller a flying robot

gets, however, the less sensor information is available due to

their strictly limited number of lightweight and imprecise

sensors. This increases the importance of the prediction

model of the Bayes filter localization which is often also

called the motion model of the robot. Most ground vehicles

are equipped with wheel encoders and can sense their motion

relative to the ground in a fairly accurate way. Motion

models of aerial robots, however, can not rely on direct

measurements of the velocity and in general need to estimate

accelerations due to thrust and air drag. Consequently, the

motion models are based on the complex kinematics of the

vehicle which can be modeled by physical approximations

and depends on numerous parameters. In practice, these

parameters are usually hand-tuned by a human operator or

derived from tedious calibration experiments using expert

knowledge or ground-truth pose estimates.
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Fig. 1. The robotic indoor blimp [19] used throughout this paper. It is
actuated by two main propellers that pivot together and a third laterally
mounted rear propeller. Four small, lightweight wide-angle sonar sensors
provide distance measurements to the environment.

In this paper, we consider the problem of localizing

a small-size blimp in indoor environments using Monte

Carlo localization with very sparse sensor information. Our

blimp [19], which is depicted in Fig. 1, has an effective

payload of 100 grams and is equipped with four miniature

sonar sensors. Due to their huge opening angle the sonar

sensors provide only few information about the orientation

of the blimp. To cope with this lack of sensor information

we improve the proposal distribution by simultaneously

estimating the uncertain parameters of the motion model.

Our approach allows for an online localization and has

a couple of substantial advantages. It does not rely on

previous calibration of motion model parameters and can

adapt to changing parameters during operation. Our method

explicitly includes a damping to prevent an overshooting of

the parameters for situations, in which parameter changes

can only be detected with certain delays. We envision a

wide range of applications of our approach including non-

constant payload of the blimp, deformations of the blimp

due to collisions, or even for ground robots, to deal with,

for example, ground-dependent wheel slippage. Furthermore,

the estimated parameters in combination with the underlying

physical motion model can be used for an online adaption

of motion controllers [18], [25] in autonomous navigation

scenarios.

This paper is organized as follows. After discussing related

work in the following section, we describe Monte Carlo

localization with simultaneous parameter estimation in sec-

tion III and discuss the adaption capabilities to changing

parameters during operation. We will then briefly present

a probabilistic motion model for robotic indoor blimps in



section IV and finally evaluate the improvements of our

localization system with simultaneous parameter estimation

in simulation and experiments with a real blimp.

II. RELATED WORK

In the past, several authors considered the problem of

localizing small flying vehicles. The majority of approaches,

however, employed previously learned motion models. For

example, Ko et al. [11] used the ground-truth estimates of

a motion capture system for tuning of the motion model.

Our previous work [15] relies on vision-based ground-truth

and uses additional IMU sensor information for localization.

Acquiring the ground-truth data involves either expensive

and bulky systems or lacks sufficient precision to infer highly

accurate motion models.

Several approaches have been proposed to improve the

proposal distribution in Monte Carlo localization using in-

formation from sensors other than wheel encoders or control

commands. For example, Thrun et al. [23] sample additional

“dual” particles from the observation likelihood to improve

the robustness of the system and to better recover from

localization failures. Whereas this approach is very effective,

sampling from the observation likelihood is computationally

demanding for range sensors such as sonar or laser range

finders. Consequently, sampling from the observation model

was mainly used for vision-based localization. Grisetti et

al. [6] matched laser range scans to improve proposals

for wheeled robots operating on planar grounds. Later, a

similar approach was applied together with IMU data to

localize miniature quadrotors operating in 6 degrees of

freedom (DOF) [7], [9]. However, it is unclear whether small

lightweight sensors such as three miniature wide-angle sonar

sensors allow for such a scan matching approach.

One of the first systems for Monte Carlo localization with

online calibration of the motion model was developed by Roy

and Thrun [20]. They incrementally update the calibration

parameters for differential drive robots based on a maximum

likelihood position estimate obtained by scan matching.

However, their approach relies on the direct calculation of

parameters out of two consecutive pose estimates which is

not possible for more sophisticated motion models such as

those for blimps. The case of sudden changes of the models

or their parameters due to failures or collisions of wheeled

robots is addressed by Plagemann et al. [16], [17]. They

extend the particle filter localization by motion models of

different complexity and use a parameter sampling similar

to our approach. However, they assume an initially known

model including its parameters and switch online between a

finite number of models.

Beside the Monte Carlo localization, Kalman filters are a

popular technique for mobile robot localization. For example,

Martinelli et al. [14] extend the state vector by additional

parameters for odometry errors. However, motion models

of flying vehicles typically are highly non-linear and our

wide-angle sonar sensors are not suitable to use within a

Kalman filter. In the context of localization of UAVs, Bryson

and Sukkarieh [2] estimate the difference between IMU and

Fig. 2. The extended dynamic Bayes network for localization of a mobile
robot. It characterizes the evolution of controls u, states x, measurements
z, and parameters of the motion model Θ.

motion model prediction in an additional extended Kalman

filter to update the model parameters and the IMU bias. In

contrast to our approach this requires to update the model

parameters directly based on the prediction error similar to

Roy and Thrun [20].

Some approaches utilize the expectation maximization

algorithm to simultaneously localize a robot and adapt its

motion model. For example, Eliazar and Parr [5] iterate

between estimating the path of the robot and optimizing the

parameters of the motion model. However, these approaches

are not intended for online applications and require to quickly

optimize the parameters of the motion model given a trajec-

tory of the robot which is not the case, e.g., for more complex

motion models of flying robots such as blimps. Kaboli et

al. [10] use the Markov Chain Monte Carlo technique to

learn sensor and motion model parameters from raw sensor

and action data by sampling trajectories and parameters,

which typically requires substantial computational resources.

In contrast to these previous approaches, our approach

provides an online estimation and adaptation of previously

unknown parameters of a complex and potentially non-linear

motion model in the context of localization with particle

filters. Furthermore, compared to multiple model tracking

systems our approach can deal better with very slow changes

in the continuous parameter space.

III. MONTE CARLO LOCALIZATION WITH

SIMULTANEOUS PARAMETER ESTIMATION

Throughout this paper, we consider the problem of es-

timating the 6-dimensional pose x = (x, y, z, φ, θ, ψ) of

a robot relative to a given map m using Monte Carlo

localization [3]. The key idea of this approach is to maintain

a probability density p(x1:t | z1:t,u1:t) of the trajectory x1:t

of the robot given all observations z1:t and control inputs

u1:t up to time t.

A. Simultaneous Parameter Estimation

In the presence of unknown (and probably time-varying)

parameters of the motion of the robot, the underlying Bayes

network is extended as depicted in Fig. 2. Here, the ad-

ditional, non-observable parameter nodes are highlighted in

gray. Consequently, the full localization posterior is extended



to p(x1:t,Θ1:t | z1:t,u1:t) which can be factorized to

p(x1:t,Θ1:t | z1:t,u1:t) = η · p(zt | x1:t, z1:t−1,Θ1:t,u1:t)

· p(x1:t,Θ1:t | z1:t−1,u1:t) (1)

using Bayes rule where η is a normalizer. We factorize the

second conditional probability twice and obtain

p(x1:t,Θ1:t | z1:t−1,u1:t)

= p(xt,Θt | x1:t−1,Θ1:t−1, z1:t−1,u1:t)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t)

= p(xt | x1:t−1,Θ1:t, z1:t−1,u1:t)

· p(Θt | x1:t−1,Θ1:t−1, z1:t−1,u1:t)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t) . (2)

Under the Markov assumption, (1) together with (2) can be

simplified to

p(x1:t,Θ1:t | z1:t,u1:t)

= η · p(zt | xt)

· p(xt | xt−1,Θt,ut)

· p(Θt | Θt−1,x1:t−1, z1:t−1)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t−1) . (3)

As in [22], we assume that future controls give no informa-

tion about the current state of the robot.

To implement this recursive filtering scheme, we use a par-

ticle filter [4] where a setM of weighted particles represents

the current belief. Each particle represents a hypothesis of a

robot pose and parameter vector. As the proposal distribution

we use the motion model combined with the model of the

parameter behavior

π(x1:t,Θ1:t | z1:t,u1:t)

= p(xt | xt−1,Θt,ut)

· p(Θt | Θt−1,x1:t−1, z1:t−1)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t−1) , (4)

which results in the importance weight

w
[i]
t =

p(x1:t,Θ1:t | z1:t,u1:t)

π(x1:t,Θ1:t | z1:t,u1:t)

∝ p(zt | xt) w
[i]
t−1 (5)

of the i-th particle at time t.

Assuming the parameters to be constant over time, the

belief update (3) can be performed according to the following

three alternating steps:

1) In the prediction step, we draw for each particle a new

particle according to the parameterized motion model

p(xt | xt−1,Θt,ut) given the action ut.

2) In the correction step, we integrate a new observation

zt by assigning a new weight w[i] to each particle

according to the sensor model p(zt | xt).
3) In the resampling step, we draw a new generation of

particles from M (with replacement) such that each

sample in M is selected with a probability that is

proportional to its weight.

Following Liu and West [12], we reduce the sample de-

generacy/attrition by adding small random disturbances to

the parameter vector of each sample during resampling.

To prevent a loss of information in the parameter vector

sampling we apply kernel smoothing

Θ
[i]
t ∼ N (aΘ

[i]
t−1 + (1− a)Θt−1, h

2Vt−1) , (6)

where Θt−1 and Vt−1 are the mean and the covariance of

the parameter vector over the particle set at time t− 1. The

constant factors a = 3γ−1
2γ

and h2 = 1− a2 only depend on

a discount factor γ, which we set to 0.95.

B. Adaption to Changed Parameters

In certain cases, we cannot assume the physical properties

of the motion of the robot to be constant for the complete

period of operation. For example, wear and tear, changed

payload, collisions, low batteries, or even manual mounting

of banner ads can change the behavior of the robot. Once

the parameter vector has converged within the particle filter,

an adaption to one or more changed parameters would

take a large number of sampling steps or could simply be

impossible.

Fortunately, this problem can be solved in a similar way as

the well-known “kidnapped robot” problem by sampling an

appropriate number of the particles at random positions [22].

We analogously cope with parameter changes by drawing the

parameter vector Θ uniformly from the parameter space for

those random samples. The proportion of random samples is

determined by monitoring the probability of sensor measure-

ments p = 1
N

∑N

i=1 p(zt | x
[i]
t ) averaged over all particles.

We adopt this technique from Gutmann and Fox [8] and

extend the resampling by setting the parameter vector of each

particle to a uniform sample with probability

max

(
0, 1−

pshort

ν plong

)
. (7)

Here, pshort and plong are short-term and long-term averages

of the sensor likelihood updated by

pshort ← pshort + αshort(p− pshort) (8)

plong ← plong + αlong(p− plong) (9)

on each correction step with the exponential decay factors

0 < αlong ≪ αshort ≤ 1. The parameter ν allows to adjust

the level at which random samples are added. Thus, this

approach only adds random samples if the short-term average

of the sensor likelihood is less than ν the long-term average.

However, the sole addition of random parameter samples

does not yield superior results since the adaption to changed

parameters does not start until the pose estimate is slightly

displaced from the ground-truth caused by wrong parameters

and the average observation likelihood is dropped. When

random parameter samples are added, those particles which

quickly correct the displacement will get a higher observation

likelihood. This leads to an overshooting of the estimated

parameter values and causes the parameter values to oscillate



for several time steps (see Fig. 5, left). We address this oscil-

lation problem by defining a lower bound to the covariance

h2V, so that the parameter vectors are sampled according to

Θ
[i]
t ∼ N (aΘ

[i]
t−1 + (1− a)Θt−1,

h2 m̃ax(Vt−1, ρΘt−1 Θ
T

t−1)) (10)

where the m̃ax-operator builds a pointwise maximum over

the diagonal elements of the matrices and takes all other

elements from the first argument. Here, ρ is the relative

covariance bound. This damps the oscillation and allows for

a lower localization error after the change of parameters.

Furthermore, this approach better handles very slow changes

of parameters which are typically not detected through a

suddenly dropped observation likelihood.

Combining these techniques enables an autonomous robot

to simultaneously estimate previously unknown parameters

of the motion model in an online fashion and to adapt to

changed parameters during operation, which is especially

important in case of sparse or imprecise sensor information.

IV. PROBABILISTIC MOTION MODELS FOR MINIATURE

AIRSHIPS

The probabilistic motion model p(xt | ut,xt−1) plays a

crucial role in the prediction step of the particle filter and

its proper design is essential for accurate and efficient state

estimates. An inaccurate motion model would result in a

wide-spread proposal distribution and increases the number

of wasted particles which in turn decreases the efficiency

of the filter. To define an accurate probabilistic model, we

first create a deterministic physical model of our blimp and

afterwards extend this model such that it also considers the

sources of uncertainty.

Miniature airships typically are not equipped with sensors

directly measuring their motion such as wheel encoders

found on most ground vehicles. Instead, their motion has

to be estimated based on forces and torques acting on them.

In the following, we summarize our physical motion model

which is based on [25]. The state of the blimp is defined by

its pose p = (x, y, z, φ, θ, ψ)T consisting of three Cartesian

translation coordinates and three Euler angles. Accordingly,

its velocity is v = (vx, vy, vz, ωx, ωy, ωz)
T . The Newton-

Euler equation of motion

M
dv

dt
=

∑
Fexternal (11)

couples the acceleration of the airship to the external forces

and torques. Thereby, M is the rigid-body inertia matrix and

the external forces are gravity, buoyancy, propelling forces,

air drag forces, and fictitious forces. Except for the air drag

forces, all constituent parts can be determined in a straight-

forward way [25]. In the case of our blimp (see Fig. 1)

the hull cannot be approximated appropriately by a highly

symmetrical ellipsoid. Furthermore, the rear fins have an

additional stabilizing effect.

In general, two different types of air drag forces can be

distinguished: viscous resistance and quadratic drag. Since

our blimp operates at velocities exceeding 1 m
s

having a

Reynolds number Re ≈ 30, 000, we can safely reduce

the drag formula to the quadratic part. Consequently, we

approximate the drag force and torque of the hull in an

uncoupled way as

FD,h = (−Dxvx|vx|,−Dyvy|vy|,−Dzvz|vz|,

−D′

xωx|ωx|,−D
′

yωy|ωy|,−D
′

zωz|ωz|)
T . (12)

Analogously, the drag force of each fin acts parallel to its

normal and scales with its area and the fin drag coefficient

Df. Due to symmetry we can set Dy = Dz , D′

y = D′

z , and

D′

x ≈ 0 so that the motion model depends on a vector of

four unknown parameters Θ = [Dx, Dz, D
′

z, Df]
In our first localization system [15], we used a blimp

motion model with fixed parameters and learned those pa-

rameters from about 8 min recorded data of our blimp based

on the reference trajectory T ∗ which was acquired using the

camera integrated in the gondola of the blimp [21]. To find

the parameter vector Θ̂ which minimizes the incremental

prediction error of the motion model we evaluated 30, 000
uniformly sampled values and started a gradient descent

minimization routine from the ten best random parameter

vectors. As all of them converged to the same Θ̂, we expect

this to be the global minimum. These previously estimated

parameters Θ̂ are not used for our proposed localization with

simultaneous parameter estimation.

The uncertainty of the motion model described above has

basically three sources of uncertainty. Firstly, the applied

physical model is only an approximation, and secondly,

the estimated parameters are not guaranteed to be the true

parameters due to imperfection of the reference trajectory

and the minimization routine. While both of these are

systematic errors, thirdly, there are statistical errors such as

imperfect motor responses, wind, or numerical errors. In our

localization system, we combine all three sources of error

and sample an additive velocity from a multivariate Gaussian

with zero mean. Its covariance was determined based on the

remaining error of the parameter optimization routine.

V. EXPERIMENTAL EVALUATION

The Monte Carlo localization with simultaneous param-

eter estimation described above has been implemented and

evaluated using simulation experiments and data acquired

with a real indoor blimp. In our experiments, we consider

the problem of position tracking, i.e., localization with a

known initial pose. To address the particle depletion problem,

the resampling step is only performed if the number of

effective particles [13] neff =
(∑

i(w
[i])2

)−1
drops below

a threshold κ. In our experiments, this is set to half the

number of particles. As a measure of localization error we

used the Euclidean distance between the weighted average

of all particles and the reference pose.

A. Experiments with a real blimp

We evaluated the improvement of the simultaneous pa-

rameter estimation in terms of localization error using a

1.70 m long blimp [19] in a large indoor environment.

The blimp is actuated by two main propellers that pivot
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Fig. 3. The average RMS localization error and the success rate of the
extended Monte Carlo localization with simultaneous parameter estimation
compared to the standard localization with previously learned parameters of
the motion model. The error bars indicate the 5% confidence intervals over
ten runs.

together and a third laterally mounted rear propeller for yaw

rotation. Four small, lightweight wide-angle sonar sensors

provide distance measurements to the environment, which

are probabilistically modeled as described in our previous

work [15]. The experimental indoor environment has an area

for flying of about 14×7 m2 with a vertical space of 5 m and

was mapped from 3D laser scans using multi-level surface

maps [24]. To determine the localization error, we put visual

markers onto the floor, which allow us to accurately calculate

the pose of the vehicle using the camera integrated in the

gondola of the blimp [1].

In an extensive experiment of about 9 minutes of manually

operated flight the blimp covered a distance of about 180 m.

Since we did not use an IMU and the wide-angle sonar

sensors provide hardly any information about the orientation

of the blimp, the localization relies on an accurate prediction

of the motion model. As can be seen in Fig. 3, the Monte

Carlo localization with simultaneous estimation of initially

unknown parameters benefits from the improved proposal

distribution. It resulted in a significantly lower rotational

localization error compared to the results obtained using the

implementation with previously learned (see section IV) and

fixed parameters of the motion model. The estimate of the

parameter vector typically converged within the first minute

of the experiment. Although the dimensionality of the state

estimation problem was increased by the four parameters, the

localization success rate revealed that the number of particles

required to reliably localize the blimp is substantially smaller

using the simultaneous parameter estimation.

Furthermore, we tested our localization system with si-

multaneous parameter estimation in a global localization

szenario with initially unknown pose and motion model

parameters. We carried out 10 runs with 5,000 particles

each. Whereas the pose estimate typically converged within

the first 10 seconds, it still took 1 minute to determine

the parameters. Based on these experiments we expect that

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 t
ra

n
sl

at
io

n
al

 e
rr

o
r 

[m
]

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.05  0.1  0.15  0.2  0.25  0.3ro
ta

ti
o
n
al

 e
rr

o
r 

[d
eg

] 
 

relative covariance bound

Fig. 4. The average translational and rotational RMS localization error
of a 10 minute localization experiment on simulation data. The error bars
indicate the 5% confidence intervals over ten runs.

our approach can also handle the kidnapped robot problem

given an extension which can distinguish between parameter

changes and kidnappings based on drops of the observation

likelihood.

B. Simulation of Changing Parameters

To evaluate the capability of our localization system to

adapt to changing parameters of the motion model, we

performed a series of experiments on a simulated blimp

using our deterministic motion model. The true poses were

passed as observations to the localization system and their

likelihood were modeled as a Gaussian distribution with high

translational and low rotational precision (σtrans = 0.2 m,

σrot = 15◦).

In an experiment of about 10 minutes of manually operated

flight we evaluated different relative covariance bounds ρ in

our localization system using 5,000 particles. Note that we

experimentally tuned the parameters αshort = 0.2, αlong =
0.01, and ν = 0.8 to obtain best results. Although we

introduced only little noise to the velocity of the blimp during

simulation, the parameter estimation during localization was

a challenging task due to the correlation of the different

parameters (see Fig. 5). Furthermore, estimating all parame-

ters requires a certain spectrum of movements. For example,

during the first seconds of our experiment the blimp was

controlled to move forward only which resulted in a quick

convergence of solely the drag coefficient Dx.

Fig. 4 presents the localization accuracy on the simulated

data during which the parameters of the motion model were

changed as depicted in Fig. 5. Both, the translational and

rotational localization error are significantly lower for a

relative covariance bound of ρ > 0.15 than without a lower

bound (ρ = 0) of the covariance of the parameters.

VI. CONCLUSIONS

In this paper, we presented a novel approach to Monte

Carlo localization of autonomous robots with simultane-

ous estimation of the parameters of the motion model. In

contrast to other approaches, our systems allows an online

localization without prior knowledge of all motion model

parameters and can adapt to changed parameters during

operation. To avoid oscillations after parameter changes on

systems, for which these changes can only be detected with a
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certain delay, our approach includes an appropriate damping

mechanism. In experiments carried out with a real blimp and

in simulation, we demonstrated that our system significantly

outperforms the standard Monte Carlo localization with

previously learned parameters in terms of the localization

accuracy and the number of particles needed.
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