
Autonomous Miniature Blimp Navigation

with Online Motion Planning and Re-planning

Jörg Müller Norman Kohler Wolfram Burgard

Abstract—In recent years, there has been an increasing in-
terest in autonomous navigation for lightweight flying robots in
indoor environments. Miniature airships, which are an instance
of such robots, are especially challenging since they behave
nonlinearly, typically are under-actuated, and also are subject
to drift. These aspects, paired with their high-dimensional state
space, demand efficient planning and control techniques. In this
paper, we present a highly effective approach to autonomous
navigation of miniature blimps in mapped environments which
applies a multi-stage algorithm to accomplish strongly goal-
directed tree-based kinodynamic planning. It performs path-
guided sampling and optimally selects actions leading the robot
towards sampled subgoals. Based on this, our approach can
quickly provide a partial trajectory, which is extended and
refined in the consecutive planning steps. The navigation system
has been implemented and is able to reliably operate a robotic
blimp in a real-world setting. Further experiments demonstrate
that our approach outperforms a standard tree planner.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have become

a growing research field because such robots can navigate

freely in three-dimensional environments. In this domain,

especially airships have a couple of substantial advantages.

Their low power consumption, safe navigation capabilities,

and robustness to collisions allows for applying them in

long-term operation tasks. We envision a wide range of

applications including surveillance, disaster scenarios, com-

munication, and advertising even in the presence of people,

e.g., in public spaces.

However, these favorable properties come at the cost of

some challenges imposed on autonomous navigation for

blimps. The very limited acceleration capabilities together

with the serious under-actuation make it practically infeasible

to neglect second-order dynamics. Due to the nonlinear,

non-holonomic, and drift-prone system, kinodynamic motion

planning has to be performed in the 12-dimensional state

space consisting of the pose and velocity of the robot.

Furthermore, the cost of the shortest path in general does not

follow any metric [15] and the commonly applied decoupling

of trajectory shape and velocities is not applicable.

In this paper, we consider the task of indoor navigation on

a round trip in a mapped environment, e.g., in a continuous

surveillance task. We present an approach to online au-

tonomous navigation including the state estimation, a multi-

stage planner, a mission control module, and a controller.We

This work has partly been supported by the German Research Foundation
(DFG) within the Research Training Group 1103 and by the Gottfried
Wilhelm Leibniz Program of the DFG. All authors are members of the
Department of Computer Science at the University of Freiburg, Germany
muellerj@informatik.uni-freiburg.de

Fig. 1. The robotic indoor blimp [25] operating in the experimental setting
observed by cameras of the motion capture system. The blimp is about 2.1m
long, has a payload of about 150 grams, and is actuated by three propellers.

approximate the planning problem, which in general is

PSPACE-hard [22], by first applying A⋆ search to generate a

collision-free path on a discretized low-dimensional subspace

of the state space. In the second stage, a tree planner

quickly generates a trajectory through path-guided sampling

which is extended and refined in consecutive planning cycles

by re-using the pruned tree. We show the reliability and

performance of our navigation system in extensive exper-

iments in simulation and with a real robotic blimp (see

Fig. 1). Furthermore, we show that our planning approach

outperforms a standard goal-biased RRT planner [12].

This paper is organized as follows. After discussing related

work in the following section, we describe the underlying

models of our approach to autonomous navigation in Sec-

tion III. In Section IV we introduce our multi-stage planner.

We will then briefly present our controller implementation

in Section V and finally demonstrate the capabilities of our

approach in simulation experiments and with a real robotic

blimp.

II. RELATED WORK

In the past, several authors considered the problem of au-

tonomous navigation of blimps. The majority of approaches,

however, concentrated on control of robotic blimps in the

absence of obstacles.

Some authors successfully applied model-free learning to

control a single selected degree of freedom of a real indoor

blimp [13], [24]. In contrast to that, Liu et al. [18] and

Zufferey et al. [29] learned controllers for the full state space

of the blimp. However, both papers report a large number

of iterations when learning a controller specific for a single

trajectory or goal configuration. Several model predictive

approaches have been proposed namely decoupling of com-

ponents [11], extending the classic LQR [8], or nonlinear

control [19]. As opposed to the LQR controller we designed

for our navigation system, the tuning of the control design

parameters of those controllers usually is time-consuming.

During the last decades, motion planning for mobile

robots has been an area of active research [4], [16]

and spawned sampling-based planning techniques such as

rapidly-exploring random trees (RRTs) and probabilistic

roadmaps (PRMs) which proved to be effective means to

solve high-dimensional planning problems. However, con-

trols needed for connecting nearby states cannot be calcu-

lated analytically in nonlinear kinodynamic motion plan-

ning problems [27] and thus PRM and bidirectional RRT

techniques cannot be applied. Instead, sampling-based tree

planners [5] like (standard) RRTs [17] were widely applied

to such problems. Kim and Ostrowski [12] proposed an RRT

with goal biasing for blimp motion planning. However, their

planner was designed for an outdoor blimp in an obstacle-

free environment. Ladd and Kavraki [14] account for under-

actuation and drift of robots most planners are suffering from.

Unlike our approach, they aim to explore the full state space

which is time-consuming even in not very complex scenarios.

The concept of multi-stage planning was popular for

discrete goal-directed online motion planning in real robot

applications [3], [9], [26]. Rickert et al. [23] and Plaku et

al. [20], [21] presented tree planners that quickly explore the

lower-dimensional workspace of the robot through multiple

paths to the goal which are not necessarily collision-free.

In contrast to that, our planner is guided by one collision-

free low-dimensional path which is additionally augmented

by velocity information. This results in a more focused

exploration of the state space and enforces that even partial

trajectories do not tend to a dead end.

In our approach, we apply a novel combination of many

existing techniques in order to build an efficient navigation

system which has several desirable properties. It takes into

account obstacles, is strongly goal-directed and efficient, and

therefore suited for online navigation on a real indoor blimp.

III. STATE, CONTROL, AND ENVIRONMENT MODELS

We model our blimp which is shown in Fig. 1 as a

floating rigid body in a three-dimensional environment. Con-

sequently, its state is described by its pose and velocity in

the 12-dimensional state space X ⊆ SE(3)×R
6. The blimp

is actuated by three propellers. Two of them are mounted

beside the gondola and are pivoted together to provide thrust

along the forward- and the up-axis. The third propeller is

mounted laterally near the bow of the blimp for yaw rotation.

The blimp can be controlled by a three-dimensional vector

u ∈ U = [−1, 1]3 defining the relative forward, upward, and

rotational thrust about the vertical axis.

Fig. 2. The interaction of the modules of our approach to autonomous
navigation. In the simulation experiments, we replaced the state estimation
of the motion capture (MoCap) system and the blimp executing controls by
a simulator module.

In our approach, we physically model the dynamics of the

blimp according to Zufferey et al. [29]. In each time step, we

compute the external (gravity, lift, thrust, and air drag) and

fictitious forces and torques acting on the blimp. We compute

the subsequent state based on the Newton-Euler equation of

motion

M
dv

dt
= Fexternal(x) + Ffictitious(x) (1)

in a numerical integration where v is the velocity part of the

state space and M is the inertia matrix. In a nutshell, the

motion model can be described as a function

xt+1 = f(xt,ut) (2)

of the state xt and the control ut at time t.

The previously mapped environment of the blimp is mod-

eled using the OctoMap framework [28], which provides

a tree-based map structure representing occupancy of 3D

volume elements in a hierarchical fashion. For collision

checking, we compute a distance map and conservatively

approximate the blimp by a set of spheres which are arranged

along its longitudinal axis. Since collision checking in this

way is just a lookup to the distance map at the centers of

the spheres, it can be done very efficiently.

IV. PLANNING ALGORITHM

We specify a certain state g ∈ X as goal which should

be reached within a predefined radius. The interaction of the

planning modules of our approach to autonomous navigation

is shown in Fig. 2. Our planning algorithm works in two

stages. First, we apply A⋆ search [10] to compute an optimal

path assuming a simplified motion model on a discretized 4-

dimensional subspace of the state space. In the second stage,

a sampling-based tree planner searches for a trajectory in the

full 12-dimensional state space efficiently by utilizing the

A⋆ path in order to draw samples in a goal-directed way.

This prevents the tree planner from getting trapped, e.g., in

a maze.

Algorithm 1 Tree-based re-planning with guided sampling

Input: Previous tree T , planning timeout tmax,

augmented path P , current state x, goal g

Output: A (partial) solution trajectory

1: Determine node xstart of T at time tmax

2: Prune everything below xstart from T
3: T .root = 〈xstart,0〉
4: xclosest = xstart

5: while t < tmax do

6: xrnd ← GAUSSIANSAMPLEFROMPATH(P)
7: xnear ← NEARESTNEIGHBOR(T ,xrnd)
8: u⋆ ← OPTIMALACTION(xnear,xrnd)
9: xnew ← f(xnear,u

⋆)
10: if COLLISIONFREE(xnew) then
11: T .insert(〈xnew,u

⋆〉)
12: EXTENDSAMPLINGINTERVAL(P,xnew)
13: xclosest ← UPDATECLOSEST(xclosest,xnew)
14: end if

15: end while

16: return SOLUTIONTRAJECTORY(T ,xclosest)

A. Low-dimensional Optimal Path Generation

The low-dimensional path generation provides a collision-

free path. In this planning step we consider a 4-dimensional

subspace X ′ = R
3 × SO(2) of the state space defined

by the translation and the yaw-rotation of the blimp. This

reduces the full state space by the velocity and the angles

roll and pitch which are not directly controllable. To allow

for path generation by A⋆ search [10], we discretize this

subspace into a grid and guide the search by a Euclidean

distance heuristic. As the blimp can turn approximately on

the spot when moving very slowly, we define the set of

allowed actions as moving one grid cell forward, backward,

upward, downward and rotating to the left and to the right.

We define the resulting path computed on the 4D grid as

P ′ = (x′
1, . . . ,x

′
N) with x′

i ∈ X
′ for all i ∈ [1, N].

B. Path-guided Sampling-based Tree Planning

In a preprocessing step, our tree planner augments each

new 4D path P ′ with a zero roll and pitch angle and

velocity information resulting in the augmented (12D) path

P = (x1, . . . ,xN). The velocities contain the forward,

upward, and yawing velocity and are determined based on the

clearance to obstacles as well as the curvature of the 4D path

and a maximum centripetal acceleration. Here, both, a low

clearance or a high curvature, lead to a reduced velocity. Note

that the augmented path P is not necessarily dynamically

feasible but aims to focus the sampling of the tree planner

to reasonable areas of the huge state space.

Algorithm 1 shows the pseudocode for our RRT-based [17]

tree planning approach with path-guided sampling. In the

first planning cycle, we initialize the tree with the current

state propagated to the time tmax at which the planning

cycle will be finished. In all subsequent planning cycles, we

prepare the tree generated in the previous planning cycle for

�������

��	ABC��

Fig. 3. An example of an extension step of the tree with path-guided
sampling. The augmented A⋆ path P is shown in blue, the current sampling
interval is highlighted in light blue. The node xrnd is sampled from P . xnear

which is the nearest node to xrnd is extended towards xrnd resulting in the
new node xnew. Obstacles are shown in black.

re-use by searching for the node that will be reached at tmax

and pruning (line 1 to 3) similar to Bekris and Kavraki [1].

Fig. 3 shows an example of an extension step of the

tree. GAUSSIANSAMPLEFROMPATH (line 6) utilizes the

augmented path P to draw goal-directed samples from the

state space. First, a position on the path is sampled from

the current sampling interval. Then the sample xrnd is drawn

from a Gaussian with the chosen augmented path element as

mean. This implicitly induces goal-biasing and ensures that

a valid partial trajectory is returned if the time available for

planning runs out before the tree reaches the goal.

Our tree planner selects the NEARESTNEIGHBOR which

will be extended towards the sampled state xrnd based on a

weighted Euclidean metric [12]

ρ(x1,x2) = (x1 − x2)
TD(x1 − x2) (3)

with a diagonal distance matrix D. Since the distance matrix

is diagonal, we can find the nearest state efficiently by

utilizing a kd-tree [7] containing all tree nodes scaled by

the square root of D.

We optimally select the action leading from the nearest

neighbor xnear towards the sampled state xrnd as we will

describe in Section IV-C.

Finally, the sampling interval on P (see Fig. 3) is extended

according to the growth of the tree (line 12) and the node

xclosest which is nearest to the goal is determined by UP-

DATECLOSEST (line 13). This can be done by selecting the

node which is nearest to the end of the sampling interval on

the path. It ensures a good choice even when only a partial

trajectory has been computed and the robot has to veer away

from the goal when navigating through a maze.

C. Optimal Action Selection

We select the optimal action u⋆ leading from a state xt

towards a target state x⋆ with respect to the metric ρ. This

means that we want to select the action

u⋆ = argmin
u

ρ(f(xt,u),x
⋆) (4)

that minimizes the metric distance to the target state x⋆ after

executing one motion step starting from xt.

By linearizing the motion model with respect to the control

around the state xt and the neutral control 0, we obtain

f(xt,u) ≈ f(xt,0) +
∂f

∂u
(xt,0)u . (5)

Plugging Eq. (5) and Eq. (3) into Eq. (4) results in

u⋆ = argmin
u

(Ctu+ yt)
TD(Ctu+ yt) (6)

= argmin
u

uTCT
t DCtu+ uTCT

t D yt

+ yT
t DCtu+ yT

t D yt (7)

= argmin
u

1

2
uTCT

t DCtu+ uTCT
t D yt (8)

with Ct :=
∂f
∂u

(xt,0) and yt := f(xt,0) − x⋆ by omitting

the constant term and exploiting the symmetry of D.

In an unbounded control space this can be solved in closed

form. For robots with bounded controls ulow ≤ u ≤ uhigh

like our blimp this problem can be solved efficiently, e.g.,

using a quadratic programming-based solver [6].

V. CONTROLLER

The trajectory computed by the planning algorithm con-

sists of the full state and control information (x⋆
t ,u

⋆
t) at

discrete time steps t ∈ [1, T]. In order to keep the robot on

this trajectory, we apply finite-horizon discrete-time linear-

quadratic regulation (LQR) control [2].

The LQR controller aims to minimize a cost function

E

[

T
∑

ℓ=t

(

(xℓ − x⋆
ℓ)

TP (xℓ − x⋆
ℓ) + (uℓ − u⋆

ℓ)
TQ(uℓ − u⋆

ℓ)
)

]

(9)

which quadratically penalizes the expected deviation of the

real state and control from those defined by the trajectory.

Linearizing the motion model along the trajectory

At =
∂f

∂x
(x⋆

t ,u
⋆
t) , Bt =

∂f

∂u
(x⋆

t ,u
⋆
t) (10)

so that

(xt+1 − x⋆
t+1) ≈ At(xt − x⋆

t) +Bt(ut − u⋆
t) , (11)

gives the optimal control ut at time t as

(ut − u⋆
t) = Lt(xt − x⋆

t) . (12)

The corresponding feedback matrix Lt is computed recur-

sively for MT = P and ∀ℓ ∈ [t, T − 1] :

Lℓ = −(B
T
ℓ Mℓ+1Bℓ +Q)−1BT

ℓ Mℓ+1Aℓ (13)

Mℓ = P +AT
ℓ Mℓ+1Aℓ +AT

ℓ Mℓ+1BℓLℓ (14)

in linear time with respect to the length of the trajectory.

VI. EXPERIMENTAL EVALUATION

We implemented and evaluated the approach described

above in simulation and with a real robotic blimp operating

in a large indoor environment with two rooms. In our

experiments, we consider the task of continuously navigating

on a round trip specified in advance by an ordered set of

goals shown in Fig. 4.

In the run-up to the experiment, we learned the parameters

of the motion model described in Section III from about 10
minutes of manually operated flight observed by a Vicon

motion capture system.

1

2
3

Fig. 4. The experimental environment consists of two rooms sized 8m×6m
connected by an open door. The round trip navigation task is defined by
three goals, which are set sequentially by the mission control module.

We chose a 0.25m and 45 ◦ resolution for the low-

dimensional A⋆ path generation. For speedup, we precal-

culated the distance map of the environment and the nu-

merically derived Jacobians of the motion model for the

typical range of velocities. In all experiments, we set the

planning timeout tmax to 1 sec. With this setting, the tree-

based planner extended the tree by 150 to 500 nodes in each

period depending on the initial tree size and the number of

collisions.

The mission control module (see Fig. 2) continuously

checks whether the blimp is approaching the current goal. If

the distance to this goal drops below a threshold, it switches

to the next goal and provides it to the planner modules. All

experiments were run on an Intel R© CoreTM 2 Duo processor

running at 2.53 GHz.

A. Simulation

Our simulation module handles control commands and

simulates the motion of the blimp according to the para-

metric motion model learned from real recorded data of the

blimp. Additionally, it provides the simulated position and

velocity as state information. Due to the difference in time

discretization used in the individual modules, the simulation

deviates slightly from the prediction of the planner.

In an extensive experiment the online simulated blimp

traveled for 110min on a round trip and reached each of

the 3 goals 70 times. For that, it calculated 6628 trajectories

including all re-planning steps. The controller executed all

trajectories without any collision. The calculation of the

control feedback matrices for a new trajectory took 1.1msec

on average with a maximum value of 6.8msec. The 4D A⋆

planner took 14.4msec on average with a maximum value

of 81.7msec for calculating a full path.

We compared our planning algorithm to an RRT plan-

ner with goal-biased sampling as proposed by Kim and

Ostrowski [12] for airship navigation. We experimentally

found that drawing 10% of the samples from a Gaussian

around the goal was a good trade-off between exploration

and exploitation. We also ran the goal-biased planner for

 0
 10
 20
 30
 40
 50
 60
 70
 80

N
o

.
o

f
tr

ia
ls

path-guided sampling, goal 1

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o

.
o

f
tr

ia
ls

planning runtime until the tree reached the goal [s]

goal-biased sampling, goal 1

 0
 10
 20
 30
 40
 50
 60
 70
 80

N
o

.
o

f
tr

ia
ls

path-guided sampling, goal 2

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o

.
o

f
tr

ia
ls

planning runtime until the tree reached the goal [s]

goal-biased sampling, goal 2

 0
 10
 20
 30
 40
 50
 60
 70
 80

N
o

.
o

f
tr

ia
ls

path-guided sampling, goal 3

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o

.
o

f
tr

ia
ls

planning runtime until the tree reached the goal [s]

goal-biased sampling, goal 3

Fig. 5. Comparison of the planning times for three different goals of our path-guided and the goal-biased planner.

Goal Path-guided Goal-biased
Mean StdDev Mean StdDev

1 35.2 13.6 35.1 19.1
2 51.4 10.0 62.7 18.2
3 18.4 6.9 22.4 11.7

Table 1. Comparison of travel times of the planned trajectories using
path-guided and goal-biased sampling. All units are seconds.

110min of online operation on the same round trip during

which it failed in 14 of 191 attempts to plan a trajectory

to a goal. In case of failure it created a partial trajectory

during traveling which ran into a dead end and resulted in a

collision. The planning times until the trajectory provided by

the planner reached the goal are compared in Fig. 5. While

our planning algorithm never exceeded 6 seconds, the goal-

biased sampling resulted in a wide-spread distribution which

caused the planner to fail in 14 attempts.

As shown in Table 1, the average travel time for the tra-

jectories planned by our algorithm had a considerably lower

standard deviation as the path-guided sampling appeared to

be more goal-directed. In fact, the travel times resulting from

our planning algorithm proved to be significantly lower in a

paired t-test with a p-value of 0.6%.

B. Real Blimp

We conducted an extensive experiment with our real

robotic blimp showing that the models used for planning

and control are realistic and that our approach is able to

deal with real noise and moderate modeling approximations.

Our blimp [25] is about 2.1m long and has an effective

payload of about 150 grams used for a Gumstix computer

communicating via WiFi with a standard laptop computer.

Additionally, the blimp is equipped with a web-cam, an

IMU, and sonar sensors. The blimp is actuated by two

main propellers that are mounted beside the gondola and

pivot together. The main propellers provide thrust in the

forward/backward and upward/downward directions. A third

propeller is mounted laterally near the bow of the blimp for

yaw rotation (see Fig. 1).

For our experiments we did not use the on-board sensors

to localize the blimp. Instead, we localized the blimp using

a MotionAnalysis motion capture (MoCap) system with

eight digital Raptor-E cameras tracking 4 reflective markers

mounted around the gondola of the blimp (see Fig. 1). Due

to practical reasons we only built up the door frame and the

contour of the door as building up the all obstacles and walls

would prevent from tracking the blimp with a reasonable

number of MoCap cameras. Since the pose estimate provided

by the MoCap system is very accurate (in our setting the

error is typically below 3mm), we additionally applied online

collision checking based on MoCap pose estimates and the

map.

The attached video shows an extract of the experiment

in which the blimp autonomously traveled on the round

trip for about 20minutes and passed 28 goals without any

collision. In this setup, the problem of Inevitable Collision

States (ICS) [1] didn’t arise due to the quick planning

and the comparably low velocity of the goal states. Three

exemplary trajectories are shown in Fig. 6. In our experiment,

the root mean square (RMS) translational deviation from

the trajectory was 0.24m and the RMS deviation in yaw

was 8.6◦. This is due to air motion caused by the air

conditioning system of the adjacent clean rooms and the

moderate approximations of the motion model. The RMS

deviation from zero roll was 0.35◦. Since the velocity profile

on the 4D path guides the sampler to move at low velocities

in the vicinity of obstacles, the blimp passed the door slowly

in the majority of those safety-critical situations.

VII. CONCLUSIONS

In this paper, we presented an approach to autonomous

navigation of a blimp in a known indoor environment

including motion capture state estimation. To efficiently

approximate the high-dimensional nonlinear kinodynamic

motion planning problem, we apply a multi-stage planning

technique. In the first stage a collision-free path is generated

through A⋆ search on a low-dimensional subspace of the

state space. We utilize this path to efficiently generate

kinematically feasible trajectories by goal-directed, path-

guided tree planning in the full 12-dimensional state space.

In contrast to other approaches, it optimally selects actions

towards sampled subgoals and is able to quickly provide

a possibly partial trajectory which is extended in the con-

secutive planning steps. Including a motion capture state

estimate, a mission control module, and an LQR controller,

Fig. 6. Three exemplary trajectories generated by our path-guided planner during the experiment with the real robotic blimp. The goals are shown as a
big red ball with an arrow indicating the desired orientation of the blimp. The four-dimensional A⋆ path is shown as a thick blue line, the tree built by
the tree planner is shown in red, and the chosen branch is marked by a thick yellow line.

our approach successfully controlled a robotic blimp. We

performed extensive experiments in simulation and with a

real robotic blimp. In all experiments, our navigation system

efficiently and reliably operated the blimp and outperformed

a standard goal-biased RRT planner. In future work we would

like to consider autonomous navigation of the blimp with

self-localization using the on-board sensors.

REFERENCES

[1] K.E. Bekris and L.E. Kavraki. Greedy but safe replanning under
kinodynamic constraints. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2007.
[2] D.P. Bertsekas. Dynamic programming and optimal control, volume 1.

Athena Scientific, 2005.
[3] J. Chestnutt and J. Kuffner. A tiered planning strategy for biped

navigation. In Proc. of the IEEE - RAS / RSJ Conference on Humanoid

Robots, 2004.
[4] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E.

Kavarki, and S. Thrun. Principles of Robot Motion Planning. MIT-
Press, 2005.

[5] I.A. Şucan and L.E. Kavraki. On the implementation of single-query
sampling-based motion planners. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010.
[6] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy

to overcome the limitations of explicit MPC. International Journal of
Robust and Nonlinear Control, 18(8):816–830, 2008.

[7] J. H. Freidman, J. L. Bentley, and R. A Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transactions

on Mathematical Software (TOMS), 3(3):209–226, 1977.
[8] H. Fukushima, S. Ryosuke, M. Fumitoshi, Y. Hada, K. Kawabata, and

H. Asama. Model predictive control of an autonomous blimp with
input and output constraints. In Proc. of the International Conference

on Control Applications, pages 2184–2189, 2006.
[9] J. Garimort, A. Hornung, and M. Bennewitz. Humanoid navigation

with dynamic footstep plans. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2011. To appear.
[10] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. In IEEE Transactions

on Systems Science and Cybernetics, pages 100–107, 1968.
[11] E. Hygounenc, I-K. Jung, P. Soueres, and S. Lacroix. The autonomous

blimp project at LAAS/CNRS: Achievements in flight control and
terrain mapping. Int. Journal of Robotics Research, 23(4), 2004.

[12] J. Kim and J.P. Ostrowski. Motion planning a aerial robot using
rapidly-exploring random trees with dynamic constraints. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2003.
[13] J. Ko, D.J. Klein, D. Fox, and D. Hahnel. Gaussian processes and

reinforcement learning for identification and control of an autonomous
blimp. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2007.

[14] A.M. Ladd and L.E. Kavraki. Fast tree-based expoloration of state
space for robots with dynamics. In Algorithmic Foundations of

Robotics VI, pages 297–312. Springer, STAR 17, 2005.
[15] A.M. Ladd and L.E. Kavraki. Motion planning in the presence of drift,

underactuation and discrete systems changes. In Proc. of Robotics:

Science and Systems (RSS), 2005.
[16] S.M. LaValle. Planning Algorithms. Cambridge University Press,

2006.
[17] S.M. LaValle and J.J. Kuffner. Rapidly-exploring random trees:

Progress and prospects. In K.M. Lynch B.R. Donald and D. Rus,
editors, Algorithmic and Computational Robotics: New Directions,
pages 293–308. A K Peters, 2001.

[18] Y. Liu, Z. Pan, D. Stirling, and F. Naghdy. Q-learning for navigation
control of an autonomous blimp. In Proc. of the Australasian Conf. on

Robotics & Automation (ACRA), 2009.
[19] A.B. Moutinho. Modeling and Nonlinear Control for Airships Au-

tonomous Flight. PhD thesis, 2007.
[20] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Discrete search leading

continuous exploration for kinodynamic motion planning. In Proc.

of Robotics: Science and Systems (RSS), 2007.
[21] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Impact of workspace

decompositions on discrete search leading continuous exploration
(DSLX) motion planning. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2008.
[22] J.H. Reif. Complexity of the mover’s problem and generalizations. In

Proc. of the Symposium on Foundations of Computer Science, 1979.
[23] M. Rickert, O. Brock, and A. Knoll. Balancing exploration and

exploitation in motion planning. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2008.
[24] A. Rottmann, C. Plagemann, P Hilgers, and W. Burgard. Autonomous

blimp control using model-free reinforcement learning in a continuous
state and action space. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2007.
[25] A. Rottmann, M. Sippel, T. Ziterell, W. Burgard, L. Reindl, and

C. Scholl. Towards an experimental autonomous blimp platform. In
Proc. of the European Conf. on Mobile Robots (ECMR), 2007.

[26] C. Stachniss and W. Burgard. An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dynamic
environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), pages 508–513, Lausanne, Switzerland, 2002.
[27] K.I. Tsianos, I.A. Şucan, and L.E. Kavraki. Sampling-based robot

motion planning: Towards realistic applications. Computer Science

Review, 1(1), 2007.
[28] K.M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-

gard. OctoMap: A probabilistic, flexible, and compact 3d map
representation for robotic systems. In Proc. of the ICRA 2010

Workshop on Best Practice in 3D Perception and Modeling for Mobile

Manipulation, 2010.
[29] J.C. Zufferey, A. Guanella, A. Beyeler, and D. Floreano. Flying over

the reality gap: From simulated to real indoor airships. Autonomous

Robots, 21(3), 2006.

