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Abstract—Recently, autonomous miniature airships have be-
come a growing research field. Whereas airships are attractive
as they can move freely in the three-dimensional space, their
high-dimensional state space and the restriction to small and
lightweight sensors are demanding constraints with respect
to self-localization. Furthermore, their complex second-order
kinematics makes the estimation of their pose and velocity
through dead reckoning odometry difficult and imprecise. In
this paper, we consider the problem of estimating the velocity
of a miniature blimp with lightweight air flow sensors. We
present a probabilistic sensor model that accurately models
the uncertainty of the flow sensors and thus allows for robust
state estimation using a particle filter. In experiments carried
out with a real airship we demonstrate that our method
precisely estimates the velocity of the blimp and outperforms
the standard velocity estimates of the motion model as applied
in many existent autonomous blimp navigation systems.

I. INTRODUCTION

In recent years, autonomous navigation for miniature fly-

ing vehicles has become a growing research field. Equipped

with sensors and communication devices these robots can

fulfill various tasks such as surveillance and exploration. For

these tasks, miniature airships, in particular, have desirable

properties. Their low power consumption combined with

their slow and safe flight behavior make them suitable for in-

door operation even in the presence of people. To fulfill their

tasks autonomously and in a reliable and practical way, they

require precise self-localization. Usually, this is challenging

as these platforms are restricted to lightweight and small

on-board sensors. In many navigation systems for miniature

blimps, a small number of lightweight sensors like sonars

or micro electromechanical systems (MEMS) based inertial

measurement units (IMUs) were employed [18], [25]. In con-

trast to camera images, their low-dimensional measurement

output can be processed even with limited computational

resources. Probabilistic localization systems based on such

sensors typically also rely on dead reckoning odometry for

velocity estimation. In the context of autonomous blimps,

however, the precision of the motion prediction suffers from

large errors, even when adaptive motion models [17] are

used.

In this paper, we consider the problem of estimating the

state of a miniature blimp in indoor environments through

probabilistic state estimation with a particle filter. To measure

the air speed, our blimp [19], which is shown in Fig. 1,

is equipped with two MEMS-based thermal air flow micro-

sensors. These smart sensors enable the velocity of media
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Fig. 1. The robotic indoor blimp [19] is 2.1m long and has a payload of
about 150 grams. It is actuated by three propellers and is equipped with two
thermal air flow sensors from Sensirion AG, Stäfa, Switzerland, mounted
on a pole on the top of the hull.

sweeping over them to be determined through the detection

of on-chip thermal differences. We present and compare two

regression techniques for approximating the characteristics

of the flow sensors including their measurement uncertainty

and propose an approach to use the sensor data for ve-

locity estimation in a particle filter. Thereby, our approach

allows for robust state estimation through the modeling

of all underlying uncertainties. Furthermore, other sensors

like an IMU or sonars can seamlessly be integrated into

our approach. In practical experiments we demonstrate that

our approach to velocity estimation outperforms the dead

reckoning motion models applied in many autonomous blimp

navigation systems [10], [13], [27].

This paper is organized as follows. After discussing related

work in the following section, we briefly describe Monte

Carlo state estimation in Section III and present the applied

airship motion model in Section IV. We then introduce our

approach to probabilistic modeling of flow sensors in Sec-

tion V. Finally, in Section VI we demonstrate the capabilities

of our approach in experiments with a real robotic blimp.

II. RELATED WORK

A popular application of airspeed sensors on UAVs is

the combination with GPS for wind estimation [2]. In this

context, approaches to calibrate the scaling of an airspeed

sensor have also been developed [1].

Furthermore, several authors considered state estimation

or control of robots based on flow sensors. For example, Fei

et al. [9] and Tokutake et al. [22] utilize thermal flow sensors

on the wings of small unmanned aircrafts for the detection

of flight parameters including the airspeed. Kruusmaa et

al. [14] determine the optimal position of pressure sensors



on an artificial trout to estimate the velocity using a quadratic

regression model. For attitude estimation, Euston et al. [8]

fuse IMU and airspeed measurements of a UAV.

Many researchers use optical flow on image sensors, like

the low cost devices employed in optical mice, for improved

dead reckoning odometry on ground robots [12]. Dille et

al. [7] additionally apply an online re-calibration of the local

linear regression calibration for an optical flow sensor. Like-

wise, Conroy et al. [3] determine the maximum likelihood

velocity of a quadrotor using an omni-cam based optical

flow sensor. Similar techniques have been applied on micro

aerial vehicles such as the palm-sized glider designed by

Woods et al. [24] inspired by flying insects. Here, the authors

utilize an embedded low resolution optical flow sensor for

target detection and obstacle avoidance. In addition to an

optical flow sensor, some authors employ airspeed sensors

for flight stabilization [11] or even ground speed and wind

estimation [20].

However, all approaches for state estimation or control

of robots based on flow sensors mentioned above apply

maximum likelihood state estimation or control based on

the calibrated output of one or multiple identical sensors.

In contrast, we explicitly model the uncertainty of the

measurements and of the motion of the robot for probabilistic

state estimation. Thus, our approach can seamlessly integrate

arbitrary sensors and takes into account the control signals

sent to the actuators of the robot.

III. RECURSIVE MONTE CARLO STATE ESTIMATION

In this paper we consider the problem of estimating the

state x of a robot using Monte Carlo localization [5]. The

key idea of this approach is to maintain a probability density

p(xt | z1:t,u1:t) of the state xt at time t conditioned on all

sensor data z1:t and control commands u1:t up to time t.

This probability density is calculated recursively using the

recursive Bayesian filtering scheme [21]

p(xt | z1:t,u1:t) = ηt p(zt | xt)
∫

p(xt | ut,xt−1) p(xt−1 | u1:t−1, z1:t−1) dxt−1 , (1)

where ηt is a normalizing constant ensuring that
∫

p(xt | z1:t,u1:t) dxt = 1. In (1), the term p(xt | ut,xt−1)
is the state transition probability and p(zt | xt) is the

measurement probability specified by the motion model and

the sensor model, respectively.

In Monte Carlo localization, we approximate the current

belief p(xt | z1:t,u1:t) by a set M = {(x[i], w[i])}i∈[1,N ] of

N particles, each of which corresponds to a state hypoth-

esis x[i] weighted by the so-called importance weight w[i].

Furthermore, we perform the recursive belief update given

in (1) according to the following three steps:

1) In the prediction step, we propagate each particle by

drawing a successor state based on the motion model

p(x
[i]
t | ut,x

[i]
t−1) given the control command ut.

2) In the correction step, we integrate a new measurement

zt by assigning a new weight w[i] ∝ p(zt | x[i]
t ) to

each particle according to the sensor model.

3) In the resampling step, we draw a new generation of

particles from M (with replacement) such that each

sample in M is selected with a probability that is

proportional to its weight.

IV. MINIATURE AIRSHIP MOTION MODEL

The probabilistic motion model p(xt | ut,xt−1) is the

core component of the prediction step of the Monte Carlo

state estimation. We first derive a deterministic model by

considering the underlying physics of the motion of minia-

ture airships. In particular, our model is based on the work of

Zufferey et al. [27] and adapted to our type of airship [17].

In a second step, we extend the deterministic model by a

statistical identification of the sources of uncertainty.

We define the state of the blimp as

x = [pT ,qT ,vT ,ωT ]T (2)

consisting of the position p = [x, y, z]T , the orientation

q = [q0, q1, q2, q3]
T represented by a unit quaternion [6],

the translational velocity v = [vx, vy, vz]
T , and the angular

velocity ω = [ωx, ωy, ωz]
T . Additionally, we define the

translational acceleration a = [ax, ay, az]
T = v̇ and the

angular acceleration α = [αx, αy, αz]
T = ω̇. The position

and orientation are expressed in the global frame of refer-

ence Fg (with the z-axis pointing upwards). The velocities,

accelerations, forces, and torques are expressed in the body-

fixed frame of reference Fb. The origin of the body-fixed

frame Fb is the center of buoyancy of the blimp with the

x-axis pointing forward and the z-axis pointing upwards.

The Newton-Euler equation of motion

M

[

a

α

]

= Fexternal(x) + Ffictitious(x) (3)

couples the acceleration to the force and torque F =

[

F

τ

]

.

With respect to Fb, the inertia matrix

M =

[

mI3×3 −mS(rg)
mS(rg) J

]

+diag(k1 mair, k2 mair, k2 mair, 0, k
′ Jair,y, k

′ Jair,z) (4)

=:

[

M11 M12

M21 M22

]

with Mij ∈ R
3×3

is composed of the mass of the airship m and its moment

of inertia J , the skew symmetric matrix operator

S(r) =





0 −r3 r2
r3 0 −r1
−r2 r1 0



 (5)

and the position of the center of gravity rg of the blimp.

The air accompanying the airship is taken into account by

Lamb’s virtual mass coefficients k1, k2, and k′ [15], where

mair and Jair are the mass and the moment of inertia of the air

displaced by the blimp. Here, we exploit rotation symmetry

of the hull of the blimp around its x-axis.



The fictitious forces and torques are caused by Coriolis

and centripetal effects in the moving frame of reference Fb.

They can be efficiently calculated from the inertia matrix as

Ffictitious

=

[

O3×3 S(M11v +M12ω)
S(M11v +M12ω) S(M21v +M22ω)

] [

v

ω

]

, (6)

where O3×3 is the zero block matrix [27]. The external forces

and torques Fexternal = Fbg +FD,h +FD,f +Fr consist of the

buoyancy and gravity Fbg, the drag of the hull FD,h and the

fins FD,f, and the propulsion of the rotors Fr. The buoyancy

and gravity can be calculated jointly as

Fbg =

[

Fb + Fg

rg × Fg

]

(7)

with

[

0
Fb

]

= q̄⊙









0
0
0

mair g









⊙ q and

[

0
Fg

]

= q̄⊙









0
0
0

−mg









⊙ q ,

where ⊙ is the quaternion product and q̄ is the adjoint of

q [6].

In the typical range of operation, our blimp has a Reynolds

number Re ≈ 30, 000, so that we can safely drop the viscous

resistance term and specify the air drag by the quadratic term.

We approximate the drag force and torque of the hull in an

uncoupled way as

FD,h = [−D1vx|vx|,−D2vy|vy|,−D2vz|vz|,
0,−D′ωy|ωy|,−D′ωz|ωz|]T . (8)

Here, D1, D2, and D′ are the drag coefficients and we

exploit rotation symmetry along the x-axis and neglect the

ωx-component which is dominated by the drag of the fins.

Analogously, the drag force of each fin acts at its center

rf parallel to its normal nf and scales with the fin drag

coefficient Df, its area Af, and the velocity component along

the normal:

Ff = −Df Af (nf · (v + ω × rf)) |nf · (v + ω × rf)| nf .

The forces and torques for each fin and rotor are

FD,f =

[

Ff

rf × Ff

]

and Fr =

[

Fr

rr × Fr

]

, (9)

where Fr is the rotor force (depending on the current control

signal) and rr is the rotor position.

Finally, we solve the second-order differential equation (3)

through numerical integration assuming constant acceleration

during each time step.

We determine those parameters, which are hard to identify

individually, from data recorded during operation of the real

airship by minimizing the difference

∆ = M−1 (Fexternal(x) + Ffictitious(x))−
[

a⋆

α
⋆

]

(10)

between the accelerations estimated by the motion model

and the ground truth accelerations a⋆ and α
⋆. From the

sequence of differences ∆ we can estimate the covariance of

the accelerations calculated by the learned model. This co-

variance implicitly defines the probabilistic model needed in

the prediction step of the particle filter by error propagation

through the numerical integration.

V. FLOW SENSOR MODEL

There exist various techniques for measuring air velocity.

Whereas cup, windmill, and sonic anemometers are rather

heavy and bulky, hot-wire anemometers and thermal mass

flow meters can be built in MEMS technology and therefore

are suitable even for employment on miniature flying vehi-

cles. Most of these flow sensors have in common that their

one-dimensional measurement value z ∈ R
1 depends on the

air velocity vz along the measurement axis of the sensor.

We model this measurement principle by assuming the

heteroscedastic measurement process

z = h(vz) + ε with ε ∼ N (0, σ(vz)
2) , (11)

where h is a strictly monotonic increasing function. The

noise ε typically depends on the sensor characteristics as

well as the air velocity.

In indoor navigation scenarios, we assume the air to be

static (no wind) and the sensor to be placed at a sufficient

distance from the hull so that the influence of the surrounding

air accompanying the blimp [15] can be neglected. Depend-

ing on the translational and rotational velocity of the blimp,

the velocity of the position rz where the sensor is rigidly

mounted is v + ω × rz. Hence, the velocity component of

the sensor along its measurement axis nz is

vz(x) = (v + ω × rz) · nz . (12)

According to (11) the probabilistic measurement model

used for Monte Carlo state estimation is defined by the

Gaussian distribution

p(z | x) = N (h(vz(x)), σ(vz(x))
2) . (13)

For the implementation of the model described above, we

need a function approximating h : R → R and σ : R → R

from a set of training data {(xi, yi)}i∈[1,n]. Each training

data point contains the velocity vz of the sensor relative to

the air in x and the measured flow value z in y. According

to our model, all points are assumed to be generated from

yi = h(xi) + εi with εi ∼ N (0, σ(xi)
2). In the following,

we present a non-parametric and a parametric regression

approach. As shown in Fig. 2, both are suitable for our

regression analysis problem.

A. Local Linear Regression

In general, local regression [23] computes a weighted

average of the training function values yi giving a higher

weight to those points near the requested value x. In our

approach we apply the Gaussian kernel

w(x, x′) =
1√
2π l

exp

(

− (x− x′)2

2 l2

)

(14)
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Fig. 2. The local linear regression (top) and the polynomial regression
(bottom) on the tube sensor training data generated from about 20min of
operation. The regression on the measurement noise is represented by the
1σ interval.

with bandwidth l for local weighing. For a compact repre-

sentation we define

W (x) =
1

∑n

i=1 w(x, xi)
diag(w(x, x1), . . . , w(x, xn)) ,

X =

[

1 . . . 1
x1 . . . xn

]

, and Y =
[

y1 . . . yn
]

.

In local linear regression [23], each function value is com-

puted from a linear regression

f(x) = A(x) [1, x]T , (15)

where the coefficient matrix A minimizes the locally

weighted sum of squared errors

(Y −AX)T W (x) (Y −AX) . (16)

In the linear, one-dimensional case it is A = [a0, a1].
Minimizing (16) gives the weighted least squares estimator

Â(x) = Y W (x)XT (XW (x)XT )−1 (17)

and finally the estimated function value f̂(x) = Â(x) [1, x]T .

For our flow sensor model we extend the local linear

regression by an estimate of the covariance σ2. In the training

stage, we calculate εi = yi − f̂(xi) for each training data

point. Based on these values, we estimate σ(x)2 as the local

constant regression [23] on ε2

σ̂(x)2 =

∑n

i=1 w(x, xi) ε
2
i

∑n

i=1 w(x, xi)
. (18)

B. Polynomial Regression

An alternative technique, which is less flexible but usu-

ally more efficient than local regression, is the polynomial

regression. For a compact representation of the polynomial

function

f(x) =

p
∑

d=0

adx
d = Ap [1, x1, . . . , xp]T (19)

of degree p we define the regression parameter Ap =
[a0, . . . , ap] and

Xp =











1 . . . 1
x1
1 . . . x1

n

...
...

x
p
1 . . . xp

n











. (20)

Minimizing the squared sum of estimation errors

(Y −Ap Xp)
T (Y −Ap Xp) (21)

on the training data gives the polynomial least squares

estimator [23]

Âp = Y XT
p (Xp X

T
p )

−1 (22)

and finally the estimate f̂(x) = Âp [1, x1, . . . , xp]T .

Here, we estimate the covariance σ(x)2 by another poly-

nomial regression

σ̂(x)2 = Â′

p [1, x1, . . . , xp]T (23)

on ε2 with εi = yi − f̂(xi) and

Â′

p = [ε21, . . . , ε
2
n]X

T
p (Xp X

T
p )

−1 . (24)

As shown in Fig. 2, both regression techniques are suitable

for our flow sensor model.

VI. EXPERIMENTAL EVALUATION

We evaluated our approach in extensive experiments with

a real robotic blimp in a large indoor environment of about

20× 12m2 with a vertical space of 5m. Our blimp, shown

in Fig. 1, is 2.1m long. The payload of about 150 grams is

used for sensors and a Gumstix computer communicating via

WiFi with a laptop computer.

Additionally, we equipped our blimp with two SDP600

differential pressure sensors1 from Sensirion AG, Stäfa,

Switzerland, operated here as thermal flow sensors. Although

various other suitable miniature flow sensors are avail-

able [4], [26], we chose the Sensirion sensors because they

have several desirable properties. They are fully developed,

have a weight below 1 gram, a very low power consumption,

react quickly to changes in the gas flow, and their integrated

evaluation circuitry can be controlled via the I2C interface

available on the Gumstix computer of the blimp. In our

first experiments we placed the sensors, similarly to Fei et

al. [9] and Tokutake et al. [22], directly onto the hull of the

blimp. However, in these setups the measurements showed

1The data sheet is available at http://www.sensirion.com/en/pdf/product
information/Datasheet SDP600series differential pressure sensor.pdf.
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Fig. 3. The autocorrelation of measurement errors for both flow sensors
with respect to the local linear regression model.

a clear influence of the surrounding air accompanying the

blimp which is hard to model. Even when placing the

sensors on a pole at a distance of 10 cm from the hull, the

velocity estimates provided by our particle filter approach

were worse than those obtained with the plain motion model.

Thus, we finally mounted the flow sensors on a pole at

a distance of 20 cm from the hull (see Fig. 1). Because

the estimation of the forward velocity suffered from large

errors in our previous localization systems [17], [18], we

placed the sensors on top of the blimp with the measurement

axis pointing forward. As we expected to reduce the air

turbulences in the vicinity of the thermal elements of the

sensor in this way, we mounted a short tube onto one of the

sensors. This sensor will be called “tube sensor” throughout

our experiments.

In the run-up to the experiments, we learned the param-

eters of our motion model from about 20min of manually

operated flight observed by a MotionAnalysis motion capture

(MoCap) system with eight Raptor-E cameras. We obtained

precise velocity and acceleration ground truth data from a

quadratic regression on the reference trajectory estimated

by the MoCap. From the same reference trajectory data

(including 24,196 measurements of each sensor at 20Hz)

we trained the flow sensor models as shown in Fig. 2.

In our implementation of the Monte Carlo state estimation

we apply low-variance resampling [21] and skip the resam-

pling step as long as the effective number of particles [16]

is greater than half the number of particles. For the reason

of efficiency, we restricted the considered points in the local

linear regression to those having a significant weight. We

chose the bandwidth l = 0.1 of the Gaussian kernel and the

polynomial degree p = 5.

We evaluated our approach in terms of the state estimation

error in an experiment of about 12min of manual operation

during which we acquired ground truth states from the Mo-

Cap system. Throughout this experiment, the operator carried

out many different maneuvers including strong accelerations

and rotations which also caused rocking movements of the

blimp. We evaluated the quality of the velocity estimation as

the root mean square error (RMSE) of the estimated forward

velocity vx with respect to the actual (“ground truth”) value

v⋆x from the MoCap system.

The Bayesian filtering scheme, on which our state estima-

tion approach is based, relies on the Markov assumption [21]

that the measurement noise of consecutive measurements to
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be conditionally independent. To validate this with respect

to our flow sensor model we evaluated the autocorrelation

of the measurement noise depending on the time lag (see

Fig. 3). Despite of the high level of correlation even at a

one-second time lag, the results of our approach showed its

optimal performance when a flow measurement is integrated

into the belief of the filter every 0.2 seconds (see Fig. 4).

This is caused by the fact that the filter benefits from the

information of more frequent measurements even if there is a

limited correlation which is not modeled. In our experiments,

the tube sensor significantly outperforms the plain sensor and

the local linear regression model seems to be slightly better

than the polynomial regression model, at least for the tube

sensor.

Fig. 5 shows the robustness of our approach to the Monte
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with the tube flow sensor with the local linear regression model compared
to the motion model estimates and the ground truth data.
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Carlo approximation with a limited number of particles. As a

trade-off between precision and runtime, 500 particles seem

to be the best choice. Furthermore, we compared the forward

velocity estimates of our approach with both flow sensor

models to those of the motion model without any sensor

data fusion. As shown in the accompanying video and Fig. 6

and 7, both sensor models significantly outperform the plain

motion model.

VII. CONCLUSIONS

In this paper, we presented an approach to probabilis-

tic velocity estimation for miniature indoor airships using

thermal air flow sensors. In contrast to other approaches,

we explicitly consider the measurement uncertainties of the

thermal flow sensors and probabilistically fuse their measure-

ments with the prediction calculated by the airship motion

model in a particle filter. Additionally, our approach allows to

seamlessly integrate other sensors such as sonars or an IMU

for localization. We compared two regression methods for

sensor calibration including uncertainties. Both proved to be

suitable for probabilistic velocity estimation. In experiments

with a real blimp operating in a large indoor environment,

we demonstrated that our approach precisely estimates the

velocity of the blimp and outperforms the velocity estimates

of a standard motion model for miniature airships. In future

work we would like to extend our model to two-dimensional

flow sensors [4] and exploit the capabilities of our approach

for autonomous navigation and closed-loop control of the

blimp in combination with additional sensor technologies.
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