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Zusammenfassung

Eingebettete Systeme sind heutzutage ein wesentlicher Bestandteil unserer Technik in
Industrie und Alltag. Zum Beispiel Geräte der Unterhaltungselektronik, moderne Tech-
nik zur Automatisierung von Gebäuden, Fahrerassistenzsysteme im Automobilbereich
und natürlich Roboter sind üblicherweise mit Sensoren und eingebetteten Systemen aus-
gestattet, um intelligent mit Menschen oder ihrer Umgebung zu interagieren oder Situa-
tionen zu erkennen und entsprechend zu reagieren. Im Rahmen dieser Anforderungen
entstehen jedoch einige Herausforderungen. Viele eingebettete Systeme werden in mobi-
len Anwendungen genutzt und werden daher möglichst miniaturisiert entwickelt, um sie
möglichst flexibel einsetzen zu können. Außerdem besteht in den meisten Anwendungs-
bereichen ein enormer Kostendruck, der die verwendete Hardware stark einschränkt.
Folglich müssen eingebettete Systeme energieeffizient sein, haben oft nur begrenzte Re-
chenleistung und sind in der Regel nur mit kostengünstigen und schwachen Aktuatoren
sowie mit kleinen und meist entsprechend unpräzisen Sensoren ausgestattet.

In der Robotik als großem Anwendungsbereich von eingebetteten Systemen gilt die
Fähigkeit autonom zu navigieren als eine der Grundvoraussetzungen, um den Men-
schen in Industrie und Alltag flexibel unterstützen zu können. Zum Beispiel müssen
Staubsauger- und Transportroboter in der Lage sein, in ihrer Umgebung systematisch
und zuverlässig zu navigieren. Eine solche Navigation erfordert eine genaue Lokalisie-
rung, auf deren Basis der Roboter in der Planung geeignete Aktionen auswählen und
somit zu seinem Ziel navigieren und seine Aufgabe erfüllen kann.

Bei der Lokalisierung bestimmt der Roboter die eigene Position und Orientierung in
einer gegebenen Umgebungskarte. Dabei macht er üblicherweise eine Vorhersage seiner
Bewegung auf Basis der ausgeführten Kontrollkommandos und nimmt seine Umgebung
über einen oder mehrere Sensoren wahr. Da Sensoren unterschiedlicher Art zum Ein-
satz kommen können, müssen die gegebenenfalls heterogenen Daten fusioniert werden,
um eine genaue Zustandsschätzung zu ermöglichen. Für die Lokalisierung stellen die
schwachen Aktuatoren und ungenauen Sensoren, die in kleinen, kostengünstigen Syste-
men üblicherweise verwendet werden, eine große Herausforderung dar. Um eine genaue
und zuverlässige Lokalisierung zu ermöglichen, muss die größtmögliche Menge an In-
formation aus den vorhandenen fehlerbehafteten Daten extrahiert werden. Eine hierfür
geeignete Technik ist die probabilistische Sensordatenfusion, die in der Regel jedoch ei-
ne hohe Rechenleistung erfordert, da sie die gesamte Wahrscheinlichkeitsverteilung über
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dem Zustandsraum des Systems schätzt. Obwohl es hierfür effiziente Approximationen
wie zum Beispiel den Kalman Filter gibt, basieren diese jedoch auf Annahmen, die nicht
immer erfüllt sind.

Bei der Planung berechnet der Roboter einen Pfad von seiner in der Lokalisierung
geschätzten Pose zu dem vorgegebenen Ziel. Insbesondere wenn hierbei schnelle Be-
wegungen erforderlich sind oder kleine, kostengünstige Systeme mit schwachen Aktua-
toren nahe an die Grenzen ihrer Kraft kommen und damit nicht in jeder Situation jede
Aktion ausführen können, muss in der Planung die Kinematik und Dynamik des Sys-
tems berücksichtigt werden. In diesem sogenannten kinodynamischen Planungsproblem
muss der betrachtete Zustandsraum um die Geschwindigkeiten des Systems erweitert
werden. Folglich ist die häufig angewandte Dimensionsreduktion durch die Entkopp-
lung der Planung der Trajektorienform von der Planung des Geschwindigkeitsprofils im
Allgemeinen unmöglich.

In dieser Arbeit zeigen wir am Beispiel der autonomen Navigation für Miniaturluft-
schiffe, wie man mit den Herausforderungen von kleinen, kostengünstigen eingebetteten
Systemen, nämlich begrenzter Rechenleistung, schwachen Aktuatoren und ungenauen
Sensoren, umgehen kann. Luftschiffe sind eine beliebte Plattform in der Robotik, da sie
relativ leise und gefahrlos navigieren können und durch ihren geringen Energieverbrauch
auch für Langzeitanwendungen in Frage kommen. Damit decken sie weite Einsatzberei-
che ab, zum Beispiel Umweltbeobachtung, Überwachung, Katastropheneinsätze, Kom-
munikation und Werbung, und können auch ohne Risiko in der Öffentlichkeit in der
Nähe von Personen genutzt werden.

Luftschiffe bringen jedoch einige Herausforderungen für die autonome Navigation
mit sich. Luftschiffe für den Innenbereich müssen klein sein und daher ist ihre Tragkraft
entsprechend ihres Volumens eingeschränkt. Folglich sind die Kapazität der Batterien,
die verfügbare Rechenleistung, die Wahrnehmungsfähigkeiten der eingesetzten Senso-
ren und die Leistung der Rotoren in der Regel stark begrenzt. Insbesondere stehen meist
nur ungenaue und oft nicht eindeutige Messdaten einer geringen Anzahl leichter und
kleiner Sensoren zur Verfügung. Außerdem dominiert der Luftwiderstand die Dynamik
von Luftschiffen, so dass deren Bewegung nicht leicht vorhergesagt werden kann. Des
Weiteren sind Luftschiffe meistens träge und untermotorisiert, so dass kinodynamische
Bewegungsplanung für ein nichtlineares System in einem hochdimesionalen Zustands-
raum erforderlich ist.

In dieser Arbeit stellen wir das Design und die Realisierung eines Miniaturluftschiffs
für die autonome Navigation vor. Unser Luftschiff ist mit verschiedenen miniaturisier-
ten Sensoren, nämlich Sonarsensoren, Luftstromsensoren und einer inertialen Messein-
heit (IMU), ausgestattet. Im Gegensatz zu Kameras liefern diese Sensoren niederdi-
mensionale Messwerte, die keine komplexe Merkmalsextraktion erfordern und damit
auch auf Prozessoren mit geringer Rechenleistung verarbeitet werden können. Unser
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Luftschiff ist in Leichtbauweise konstruiert, kann durch sein modulares Konzept flexi-
bel an die Anwendung angepasst werden und ist ein hervorragendes Beispiel für kos-
tengünstiges, leichtes und energiesparendes Design in der Robotik.

Diese Arbeit leistet einen Beitrag im Bereich der autonomen Navigation für mobi-
le Roboter im Kontext von ressourcenbeschränkten eingebetteten Systemen, indem wir
genaue und effiziente Techniken für die Lokalisierung und Planung entwickeln. Unse-
re Ansätze zur probabilistischen Zustandsschätzung im Partikelfilter maximieren die aus
fehlerbehafteten Sensordaten und aus ungenau ausgeführten Kontrollsignalen extrahierte
Information und liefern effiziente Approximationen, die eine Online-Zustandsschätzung
und -Planung bei einer hohen Approximationsgüte ermöglichen.

Wir stellen ein neues probabilistisches Sensormodell für Sonarsensoren vor. Im Ge-
gensatz zu anderen Modellen berücksichtigt unser Ansatz explizit die Eigenschaften von
sehr kleinen Sonarsensoren mit großem Öffnungswinkel. Unser Modell basiert dabei auf
dem physikalischen Messprozess und berücksichtigt die Mehrdeutigkeit von Messun-
gen, die durch die Reflexion des Ultraschallsignals an Objekten verschiedener Größe in
unterschiedlichen Distanzen entsteht. Wir entwickeln ein neues probabilistisches Sen-
sormodell für Luftstromsensoren, das sowohl für die Berechnung der Odometrie als
auch für die probabilistische Zustandsschätzung geeignet ist. Im Gegensatz zu ande-
ren Ansätzen modellieren wir die Unsicherheit des Messprozesses von Luftstromsen-
soren explizit und berücksichtigen die heterogene Verteilung des Messrauschens. Au-
ßerdem stellen wir ein effektives probabilistisches Modell zur Integration von Orien-
tierungsschätzungen einer IMU in die probabilistische Zustandsschätzung vor. Im Ver-
gleich zu einem Standardmodell ermöglicht unser Modell eine signifikant genauere Lo-
kalisierung.

Je weniger Sensordaten zur Lokalisierung zur Verfügung stehen, desto wichtiger ist
die genaue Vorhersage der Bewegung im Bewegungsmodell. Daher stellen wir einen
Ansatz vor, der eine höhere Lokalisierungsgenauigkeit ermöglicht, indem anfänglich
unbekannte oder variable Parameter des Bewegungsmodells gleichzeitig mit der Pose
geschätzt werden. Unser Verfahren verhindert dabei Oszillationen der Parameterschät-
zung auch dann, wenn die Änderung eines oder mehrerer Parameter verzögert erkannt
wird.

Für die autonome Navigation ist bei der Lokalisierung besonders wichtig, dass die
Pose des Roboters online, also mindestens so schnell wie die Mess- und Kontrolldaten
eingehen, berechnet werden kann. Hierfür entwickeln wir ein effizientes odometrieba-
siertes Bewegungsmodell für fliegende Roboter. Unser neues Bewegungsmodell berech-
net die Odometrie linear aus den Messdaten von Luftstromsensoren und der IMU und
erfordert daher wesentlich weniger Rechenleistung als das Standardbewegungsmodell,
das auf physikalischer Simulation der Bewegung des Luftschiffs basiert. Des Weiteren
stellen wir einen Ansatz vor, der die zeitliche Korrelation von Messfehlern in der Vor-
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hersage des Partikelfilters berücksichtigt. Unser odometriebasiertes Bewegungsmodell
verringert die Dimensionalität des Zustandsraums im Partikelfilter und ermöglicht daher
eine genaue und effiziente Online-Lokalisierung für Miniaturluftschiffe.

Neben der Lokalisierung sind die Planung und die Regelung wichtige Bestandteile der
autonomen Navigation mobiler Roboter. Für Miniaturluftschiffe ist dies eine besondere
Herausforderung, da deren komplexe und nichtlineare Dynamik in Verbindung mit den
schwachen Aktuatoren die Lösung des kinodynamischen Planungsproblems in einem
hochdimensionalen Zustandsraum erfordert. In dieser Arbeit stellen wir einen mehr-
stufigen Algorithmus zur Bewegungsplanung und die Implementierung eines linear-
quadratischen Reglers (LQR) vor und lösen damit das hochdimensionale kinodynami-
sche Planungsproblem auf effiziente Weise. Unser Planungsalgorithmus basiert auf ei-
ner pfadgestützten, zielgerichteten Wahl von randomisierten Teilzielen und berechnet
schnell kinematisch korrekte Teiltrajektorien, die in den folgenden Planungszyklen er-
weitert werden.

Alle in dieser Arbeit vorgestellten Ansätze wurden implementiert, gründlich getestet
und umfassend evaluiert. Die Ergebnisse der Experimente zeigen, dass unser Lokali-
sierungsverfahren in der Lage ist, Miniaturluftschiffe online und genau in komplexen
Innenräumen zu lokalisieren, und dass unser System zur Bewegungsplanung und Rege-
lung die effiziente und zuverlässige Steuerung von Miniaturluftschiffen in realistischen
Szenarien ermöglicht. Des Weiteren zeigen wir, dass die in dieser Arbeit vorgestellten
Techniken besser als vergleichbare aktuelle Methoden zur autonomen Navigation sind.

Zusammenfassend stellen wir in dieser Arbeit Ansätze vor, die es einem autonom
agierenden mobilen Roboter erlauben,

• die ungenauen und mehrdeutigen Messungen kleiner Sensoren zur Lokalisierung
zu interpretieren und die aus den Messungen extrahierte Information zu maximie-
ren,

• bei der Zustandsschätzung mit sich ändernden Parametern der Bewegungsdyna-
mik umzugehen,

• das hochdimensionale Problem der Zustandsschätzung effizient zu approximieren
und dabei eine robuste und genaue Online-Lokalisierung zu ermöglichen und

• trotz hoher Trägheit und schwacher Aktuatoren schnell und effektiv geeignete Ak-
tionen zu einem Ziel zu planen.

Wir demonstrieren, dass autonome Roboter in ihrer Umgebung durch die in dieser Ar-
beit vorgestellten Methoden zuverlässig und effektiv navigieren können und wir sind
überzeugt, dass unsere Lösungen relevant für zukünftige kleine, kostengünstige und res-
sourcenbeschränkte Systeme in Industrie und Alltag sind.



Abstract

In recent years, embedded systems have become popular, and, for example, consumer
electronics, transportation, and robotics are hard to imagine without them. As mobile
devices with embedded systems are often supposed to act intelligently, they are usu-
ally equipped with sensors and actuators for interaction with humans or for autonomous
operation. However, cost pressure and miniaturization impose several challenges on
embedded devices. They have to be designed in an energy-efficient way and therefore
have limited computational power, which is often paired with weak actuators and limited
sensing capabilities.

In this thesis, we show how to cope with these challenges using the example of au-
tonomous navigation for miniature indoor airships. Such airships have become popular,
because they can navigate safely through three-dimensional environments and operate in
long-term navigation tasks. We present the design and the implementation of a miniature
indoor blimp and several novel techniques for effective autonomous navigation.

In particular, we introduce techniques for robust online localization of miniature air-
ships in known, complex indoor environments. We present a particle filter implemen-
tation for probabilistic state estimation of airships equipped with lightweight sonar and
air flow sensors as well as an IMU. We introduce probabilistic models dedicated to the
miniature and lightweight sensors applied on our blimp. In contrast to other approaches,
our models explicitly consider the uncertainty of the measurement process and therefore
specify appropriate measurement likelihood functions that enable a robust localization
of the blimp. Furthermore, we show that the simultaneous estimation of motion model
parameters is beneficial to the localization accuracy and enables to adapt to changing pa-
rameters of the system dynamics during operation. We achieve a robust and efficient on-
line localization by introducing an efficient probabilistic odometry motion model based
on the measurements of air flow sensors and an IMU. Particularly, our linear odome-
try model is substantially less computationally demanding than the standard physical
simulation-based motion model and decreases the dimensionality of the state space in
the particle filter.

In addition to our solutions to online self-localization, we introduce an effective ap-
proach to planning and closed-loop control for autonomous navigation. Our method effi-
ciently solves the high-dimensional, kinodynamic planning and control problem, which
is imposed by airships with weak actuators, through a multi-stage planner and an LQR
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controller. In contrast to other approaches, our planning algorithm performs path-guided
sampling and selects optimal actions towards subgoals and therefore can quickly provide
a partial trajectory, which is extended during operation.

We implemented and thoroughly tested our novel methods in extensive experiments
in simulation and with real robots. We validated the properties of our algorithms and
demonstrated the advantages of our approaches compared to state-of-the-art methods.
While the work as a whole aims at the autonomous navigation for miniature airships,
the individual algorithms and techniques presented in this thesis are often applicable to
a variety of problems. Therefore, we believe that the proposed methods are relevant for
future low-cost, small, and resource-constrained embedded systems with applications in
industrial settings and everyday life.
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Chapter 1

Introduction

Nowadays, embedded systems are omnipresent in everyday life. For example, consumer
electronics such as video game consoles or digital cameras, home automation devices,
driver assistance systems in modern cars, and of course robots are equipped with sensors
and embedded computers. Many of these devices are supposed to act intelligently by
perceiving their environment and dynamically reacting to situations or interacting with
humans. However, there are several challenges with respect to these aims. Many embed-
ded systems are used in mobile applications and therefore are designed in a miniaturized
way. Furthermore, usual applications and markets induce a certain cost pressure on such
systems. As a consequence, most embedded devices need to be energy-efficient and
are restricted with respect to computational power. In addition, their actuators are often
weak and imperfect and they typically have limited sensing capabilities so that they have
to rely on imprecise measurements.

In the context of mobile robots, the ability to navigate autonomously is commonly
regarded as a core prerequisite to flexibly provide a wide range of services. For example,
vacuum cleaning robots and autonomous industrial transportation systems are required
to navigate systematically and reliably in their environment. For effective autonomous
navigation, a mobile robot must be able to localize itself and to plan suitable actions to
reach a predefined goal and to accomplish its task.

During self-localization, the robot estimates its pose in a given map of the environ-
ment. In this process, the robot usually predicts its motion given the applied control
commands and perceives its environment through one or multiple sensors. The sensors
can be of various types and their data has to be fused to obtain accurate state estimates
during operation. Especially in the context of small and low-cost systems, imperfect ac-
tuators as well as sparse and imprecise sensor data often impose a challenging problem.
To enable an accurate localization, one has to extract the maximum amount of informa-
tion from the available noisy data. Probabilistic sensor data fusion and state estimation
techniques, e.g. particle filters, have proven to be suitable means for such problems.
However, they are computationally demanding as they require to represent the full prob-
ability density function of the state of the system. Although there are efficient approxi-
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mations like the popular Kalman filter [79], these approximations are usually restricted
to a subset of problems, for example to linear, Gaussian systems.

In the planning task, the robot determines a path from the estimated pose to a prede-
fined goal. In many robotic tasks, fast movements are required or small and low-cost
systems with weak actuators need to operate close to their velocity and acceleration lim-
its. Then, the kinematics and dynamics of the system have to be taken into account
during planning, as the possible actions are restricted in many situations. This requires
to solve the kinodynamic motion planning problem in the high-dimensional state space
including the velocities. Furthermore, the commonly applied reduction of dimension-
ality through the decoupled planning of the trajectory shape and the velocities is not
applicable.

In this thesis, we show how to cope with the challenges imposed by small and low-
cost embedded systems, namely limited computational power, imperfect actuators, and
imprecise sensors, using the example of autonomous navigation for miniature indoor
airships. Indoor airships have become popular in the robotics community because of
their substantial advantages. They can navigate safely and with low noise in three-
dimensional environments and their low power consumption makes them well-suited
for long-term operation tasks. These features facilitate a wide range of applications in-
cluding environmental monitoring, surveillance, disaster scenarios, communication, and
advertising even in the presence of people, e.g. in public spaces.

However, these favorable properties of indoor airships come at the cost of some chal-
lenges with respect to autonomous navigation. Since the payload of small airships is
restricted according to their volume, the available battery power, the computational re-
sources, the sensing capabilities of the employed sensors, and also the rotor power are
limited. Especially the small number of lightweight and tiny sensors, which can be
carried by miniature airships, typically provide only imprecise and often ambiguous
measurements. Additionally, the dynamics of airships are dominated by their air drag,
which is hard to predict efficiently during operation. Furthermore, the limited accelera-
tion capabilities together with the serious under-actuation require kinodynamic motion
planning in a high-dimensional state space.

In this thesis, we present the design of a miniature robotic blimp platform for au-
tonomous indoor navigation. As opposed to zeppelins, which have a rigid framework
supporting the hull, blimps are the kind of airships that keep the form of the hull through
an overpressure of the lifting gas. Our blimp is equipped with tiny sonar sensors and
microelectromechanical system (MEMS)-based air flow sensors and an inertial mea-
surement unit (IMU). In contrast to cameras, these sensors provide a low-dimensional
measurement output, which does not require a complex feature extraction and can be
processed on the resource-limited CPU of a blimp. Our weight-saving design can be
flexibly adapted to the requirements of the navigation task and is an excellent example
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for lightweight, low-cost, and power-saving concepts in robotics.
As a contribution to the general field of autonomous navigation for resource-con-

strained embedded systems, we present techniques to probabilistically fuse measure-
ments obtained from noisy sensor data and controls executed by imprecise actuators.
Our corresponding models maximize the amount of information extracted from the avail-
able data for robust probabilistic state estimation in a particle filter framework. Further-
more, we introduce efficient approximations that enable a mobile robot to solve high-
dimensional state estimation and planning problems online during autonomous naviga-
tion. While the individual algorithms and techniques included in this thesis are appli-
cable to a variety of problems, the work as a whole aims at autonomous navigation for
miniature indoor airships.

1.1 Key Contributions

With this work, we contribute to the field of robotics research by developing solutions
to autonomous navigation in the context of small, low-cost, and resource-constrained
systems. We address the core tasks in autonomous navigation, namely state estimation,
motion planning, and closed-loop control for mobile robots. Using the example of a
robotic blimp, this thesis shows the following contributions:

• We present the design and the implementation of a flexible, low-cost, small, and
weight-saving robotic blimp platform (Chapter 2). Our hardware and software
architecture is designed in a modular way so that it can be easily extended and
adapted to various navigation tasks.

• We introduce probabilistic sensor models for tiny sonar sensors (Chapter 4), minia-
ture air flow sensors (Chapter 5), and IMUs (Chapter 6). In contrast to other
approaches, our sensor models are developed by systematically considering the
physical measurement process and taking into account the measurement uncer-
tainty of tiny, imprecise sensors. This enables a robot to robustly and accurately
localize itself for reliable autonomous navigation.

• We propose the general formulation of probabilistic localization with simultane-
ous estimation of motion model parameters (Chapter 7). Our approach enables to
estimate initially unknown or changing parameters of the system dynamics during
localization. This enables a robot to accurately localize itself even if only sparse
and imprecise sensor information is available. Furthermore, this approach adap-
tively copes with changing parameters of the motion model.

• We introduce a novel odometry motion model for accurate online localization of
flying vehicles (Chapter 8). Our odometry motion model is based on the mea-
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surements of air flow sensors and an IMU and is less computationally demanding
compared to the standard physical simulation-based motion model. We explicitly
model and propagate the uncertainty in the measurements and introduce a general
approach to take into account the temporal correlations of odometry measurement
errors for efficient and accurate online localization.

• We present an approach to online motion planning and closed-loop control for
miniature airships (Chapter 10). Our multi-stage planning algorithm effectively
solves the kinodynamic motion planning problem. It performs path-guided tree
planning in the high-dimensional state space and thus can quickly provide a partial
trajectory, which is extended and refined in the consecutive planning steps during
operation. Furthermore, we present the implementation of a linear quadratic regu-
lator (LQR) for efficient closed-loop control in the high-dimensional state space.

Overall, we introduce probabilistic approaches to accurate and robust self-localization
as well as an approach to kinodynamic motion planning for miniature airships. To cope
with these high-dimensional problems, we propose efficient approximations that have
only small approximation errors and that enable online state estimation and planning in
autonomous navigation. We trained our probabilistic models from collected data of a
real robotic blimp and validated the theoretical results presented throughout this thesis
in numerous extensive experiments in simulation and with real robots.

1.2 Publications

Parts of the thesis have been published in international journals, conference proceedings,
and technical reports, and have been presented at conferences and workshops.

• J. Müller, A. Rottmann, L.M. Reindl, and W. Burgard. A probabilistic sonar sensor
model for robust localization of a small-size blimp in indoor environments using
a particle filter. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2009.

• J. Müller, C. Gonsior, and W. Burgard. Improved Monte Carlo localization of
autonomous robots through simultaneous estimation of motion model parameters.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

• J. Müller, N. Kohler, and W. Burgard. Autonomous miniature blimp naviga-
tion with online motion planning and re-planning. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2011.
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• J. Müller, O. Paul, and W. Burgard. Probabilistic velocity estimation for autono-
mous miniature airships using thermal air flow sensors. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2012.

• J. Müller and W. Burgard. Efficient probabilistic localization for autonomous in-
door airships using sonar, air flow, and IMU sensors. Advanced Robotics, 27(9):
711–724, 2013. doi:10.1080/01691864.2013.779005.

• F. Sittel, J. Müller, and W. Burgard. Computing velocities and accelerations from a
pose time sequence in three-dimensional space. Technical Report 272, University
of Freiburg, Department of Computer Science, 2013.

Parts of Chapter 4 have been published in the diploma thesis

• J. Müller. Techniken für die Navigation autonomer Luftschiffe. Master’s thesis,
University of Freiburg, Department of Computer Science, 2008. In German.

This thesis does not report on the following publications, which were written during the
time as a stipend of the PhD program 1103 “Embedded Microsystems” and as a research
assistant. They are given in chronological order, grouped by their main subject.

• J. Müller, C. Stachniss, K.O. Arras, and W. Burgard. Socially inspired motion
planning for mobile robots in populated environments. In Proc. of the Int. Conf. on
Cognitive Systems (CogSys), 2008.

• M. Beinhofer, J. Müller, and W. Burgard. Near-optimal landmark selection for
mobile robot navigation. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

• M. Beinhofer, J. Müller, and W. Burgard. Landmark placement for accurate mobile
robot navigation. In Proc. of the European Conf. on Mobile Robots (ECMR), 2011.

• M. Beinhofer, J. Müller, and W. Burgard. Effective landmark placement for accu-
rate and reliable mobile robot navigation. Robotics & Autonomous Systems, 2013.
doi:10.1016/j.robot.2012.08.009.

• M. Beinhofer, J. Müller, A. Krause, and W. Burgard. Robust landmark selection
for mobile robot navigation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2013. Submitted.

• A. Spilla, I. Polian, J. Müller, M. Lewis, V. Tomashevich, B. Becker, and W. Bur-
gard. Run-time soft error injection and testing of a microprocessor using FPGAs.
In Proc. of the Workshop Testmethoden und Zuverlässigkeit von Schaltungen und
Systemen (TUZ), 2011.
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• M. Sauer, V. Tomashevich, J. Müller, M. Lewis, A. Spilla, I. Polian, B. Becker, and
W. Burgard. An FPGA-based framework for run-time injection and analysis of soft
errors in microprocessors. In Proc. of the IEEE Int. On-Line Testing Symposium
(IOLTS), 2011.

• A. Riefert, J. Müller, M. Sauer, W. Burgard, and B. Becker. Identification of critical
variables using an FPGA-based fault injection framework. In Proc. of the IEEE
VLSI Test Symposium (VTS), 2013.

• A. Riefert, J. Müller, M. Sauer, W. Burgard, and B. Becker. Identification of
critical variables using an FPGA-based fault injection framework. In Proc. of
the Workshop Testmethoden und Zuverlässigkeit von Schaltungen und Systemen
(TUZ), 2013.

• F. Höflinger, J. Müller, M. Törk, L.M. Reindl, and W. Burgard. A wireless micro
inertial measurement unit (IMU). In Proc. of the IEEE Int. Instrumentation and
Measurement Technology Conf. (I2MTC), 2012.

• F. Höflinger, J. Müller, R. Zhang, W. Burgard, and L.M. Reindl. A wireless mi-
cro inertial measurement unit (IMU). IEEE Transactions on Instrumentation &
Measurement, 2013. Accepted for publication.

• J. Wendeberg, J. Müller, C. Schindelhauer, and W. Burgard. Robust tracking of
a mobile beacon using time differences of arrival with simultaneous calibration
of receiver positions. In Proc. of the Int. Conf. on Indoor Positioning and Indoor
Navigation (IPIN), 2012.

• J. Meyer, M. Kuderer, J. Müller, and W. Burgard. Online marker labeling for
automatic skeleton tracking in optical motion capture. In Proc. of the ICRA Work-
shop on Computational Techniques in Natural Motion Analysis and Reconstruc-
tion, 2013.

1.3 Collaborations

Parts of this thesis haven been developed in collaboration with others. During the design
and the implementation of the robotic blimp platform (Chapter 2), I closely cooper-
ated with Axel Rottmann, Matthias Sippel, and Thorsten Zitterell, who created the basic
version of our first prototype of the robotic blimp. Furthermore, the modular software
framework for robotics (Section 2.2.3) was designed and implemented together with
Boris Lau. The calculation of reference velocities and accelerations (Section 2.5.2) was
developed in collaboration with Florian Sittel during his work as a student research assis-
tant under my supervision. The probabilistic sonar sensor model described in Chapter 4
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was jointly developed with Axel Rottmann and benefited from comments of Leonhard
Reindl. The development of the air flow sensor model introduced in Chapter 5 had a
substantial benefit from fruitful discussions with Oliver Paul.

During my time as a PhD student, I supervised several master and bachelor projects.
The localization with simultaneous parameter estimation was originally focused in the
bachelor thesis of Christoph Gonsior [56] and parts of the insight gained during that
project influenced Chapter 7. Furthermore, the planning for miniature airships was first
addressed by Norman Kohler in his diploma thesis [89]. In contrast to Chapter 10, this
diploma project only addressed the offline planning problem for simulated blimps.



8 Chapter 1. Introduction

1.4 Notation

The following table summarizes the notation used throughout this work.

Notation Meaning

a, b, . . . Scalar values
a,b, . . . (Column) vectors
A,B, . . . Matrices
aT , AT The transpose of a vector and a matrix
|a| The absolute value of a scalar
‖a‖ The L2 norm of a vector, also called Euclidean length
[. . .] A (row) vector composed of the given values
{. . .} A set of the given values
(. . .) A tuple of the given values
x1:t A sequence of the values x1,x2, . . . ,xt
{(xi, yi)}i∈[1,n] A set of tuples, here {(x1, y1), (x2, y2), . . . , (xn, yn)}
p(a) The probability density function of the specific value a
p(a | b) The conditional probability density function of a given b
N (x;µ,Σ) The (multivariate) normal distribution (also called Gaussian) of

the random variable x with the mean µ and the covariance Σ

diag(a) The diagonal matrix with the vector a on the main diagonal
Cov(a1, a2, . . .) The covariance of a random variable estimated from the given

samples a1, a2, . . .

q1,q2, . . . Unit quaternions according to Diebel [37]
q−1 The inverse of the unit quaternion q, which is equal to its ad-

joint q̄ [37]
q1 � q2 The quaternion product of q1 and q2 [37]
q̃(ϕ) The quaternion corresponding to the incremental three-dimen-

sional rotation ϕ = [ϕx, ϕy, ϕz]
T around all three axes [37]

I3×3 The 3× 3 identity matrix
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The following table summarizes the important terms and symbols used throughout this
work.

Symbol Meaning

x The state vector of the robot
z The measurement vector of the robot
u The control vector of the robot
ũ The odometry vector of the robot
Fg The global frame of reference
Fb The body-fixed frame of reference
p,q The position and orientation of the robot (with respect to Fg)
v,ω The translational and rotational velocity of the robot (with respect

to Fb)
a,α The translational and rotational acceleration of the robot (with

respect to Fb)
x? The ground truth state of the robot
xH,uH The desired state and control of the robot
t The (current) time step
M The set of particles in the particle filter (see Section 3.2)
N The number of particles in the particle filter
L The number of air flow sensors our blimp is equipped with
K The number of sonar sensors our blimp is equipped with
g The gravity of Earth (g ≈ 9.81 m

s2 )

The following table summarizes the acronyms used throughout this work.

Acronym Meaning

IMU Inertial measurement unit
MEMS Microelectromechanical system
EKF Extended Kalman filter
UKF Unscented Kalman filter
SIR Sampling importance resampling
IPC Inter process communication
UAV Unmanned aerial vehicle
RRT Rapidly-exploring random tree
PRM Probabilistic road map
LQR Linear quadratic regulator
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1.5 Outline

This thesis is organized as follows. In Chapter 2, we present the design and the im-
plementation of our robotic blimp platform, which is used throughout the experiments
presented in this thesis, and introduce the state and environment models as well as a
physical motion model for miniature airships.

In Part I, which includes Chapter 3 to 8 of this thesis, we present our innovative
approaches to probabilistic online localization for miniature airships. Chapter 3 sum-
marizes the recursive state estimation technique for online self-localization of mobile
robots. We give a description of the particle filter and provide implementation details in
the context of miniature airship localization. The particle filter localization relies on ac-
curate probabilistic models of the motion and of the sensors of the robot. Consequently,
we introduce novel sensor models for the small sensors our blimp is equipped with in
Chapter 4 to 6. In particular, we present our novel sensor model for tiny sonar sensors
with a wide opening angle in Chapter 4, we introduce our sensor model for air flow
sensors in Chapter 5, and we propose a sensor model for the orientation estimates of
an IMU in Chapter 6. For a robust localization in the particle filter, even if only sparse
sensor information is available, we present an approach to simultaneous localization and
estimation of the parameters of the motion model in Chapter 7 and develop a technique
to adapt to changing parameters during operation. In Chapter 8, we introduce an efficient
odometry motion model based on air flow and IMU measurements that enables a robust
and accurate online localization for miniature airships.

In Part II, which includes Chapter 9 and 10 of this thesis, we present our effective
approach to online motion planning and control. Chapter 9 gives a summary of state-
of-the-art motion planning and control algorithms on which our autonomous navigation
system is based. Subsequently, in Chapter 10, we introduce our efficient, path-guided
multi-stage planning approach and present our implementation of the LQR closed-loop
controller for online motion planning and autonomous navigation of miniature airships.

Finally, we recapitulate the contribution of this thesis in Chapter 11 and discuss possi-
ble future research directions in the field of autonomous navigation for miniature airships
and embedded systems.



Chapter 2

The Robotic Blimp

Recently, the robotics community has shown an increasing interest
in small-sized and low-cost unmanned aerial vehicles (UAVs) such
as helicopters, quadrotors, or blimps. Especially their low power-
consumption and safe navigation capabilities make blimps ideally
suited for long-term indoor operation tasks. In this chapter, we
present the design of a robotic blimp for autonomous indoor navi-
gation. The hardware as well as the software system of our blimp
is designed in a modular way so that it can be easily adapted for
various autonomous navigation experiments. Furthermore, we in-
troduce environment models, the formal state and control defini-
tion for miniature blimps, and methods to obtain accurate ground
truth state information. We finally present a motion model for
miniature indoor airships, which physically simulates the motion
based on forces and torques and which enables a probabilistic mo-
tion prediction.

• • • • •

In this chapter, we describe our robotic blimp system for autonomous navigation in
complex indoor environments. During the development of the hardware and the soft-
ware system of our blimp, the design was focused on a modular system that can be
easily adapted to various navigation tasks. Consequently, the robotic blimp platform
enables an autonomous navigation and is suitable to experimentally evaluate the algo-
rithms for state estimation and planning presented throughout this thesis. Furthermore,
we introduce the environment model as well as the state and control model we apply for
autonomous navigation. Additionally, we describe the physical simulation-based control
motion model that is used for simulation experiments and for predicting the motion of
the blimp during localization and planning.
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Figure 2.1: Our first prototype of the robotic blimp. It is equipped with three sonar sensors at the
front, left, and right side of the hull as well as a sonar sensor integrated in the gondola pointing
downwards. The IMU is placed on top of the hull.

2.1 Hardware System

For autonomous navigation and the experimental evaluation of the algorithms introduced
in this thesis, we developed a robotic blimp platform. The basic version of the hardware
and the drivers of the blimp was developed by Rottmann et al. [143] within the PhD
Program “Embedded Microsystems” of the University of Freiburg. During our work on
autonomous navigation for robotic airships, we substantially extended the basic blimp
platform by new sensor concepts, a new lightweight hull, and a completely redesigned
gondola. A more detailed description of the basic blimp system and parts of our exten-
sions can be found in the work of Rottmann [141]. In the following, we describe our
extensions of the robotic blimp platform and present three stages of development, which
were used in the experimental evaluations of our approaches to autonomous navigation.

2.1.1 The First Prototype

Compared to the basic blimp system [141, 143], our first prototype is equipped with
three additional sonar sensors and the IMU is mounted in a more suitable way. Our
first prototype, which is shown in Figure 2.1, was used in the evaluation of the prob-
abilistic sonar model introduced in Chapter 4 and in the evaluation of our approach to
simultaneous localization and parameter estimation (see Chapter 7). It has a length of
approx. 1.8 m and is equipped with four tiny Devantech SRF10 sonar sensors with a mea-
surement range of up to 6 m. Each sensor has a membrane diameter D ≈ 8.5 mm and
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Figure 2.2: Our second prototype of the robotic blimp. It is based on a lightweight hull with a
front rotor for yaw rotations. The prototype is equipped with two air flow sensors, a plain sensor
and one with a short piece of a tube, an IMU, and four retroreflective markers for obtaining
ground truth poses.

a wavelength λ = 8.5 mm. Three of them are mounted on the front, left, and right side
of the hull for horizontal distance measurements. The fourth sonar sensor is integrated
in the gondola pointing downwards for height measurements. The blimp is actuated by
two main propellers that pivot together and provide thrust in the forward/backward and
upward/downward directions. A third propeller is mounted laterally at the rear of the
blimp for yaw rotation. Additionally, our first prototype is equipped with an IMU [156].
As opposed to the basic version of the blimp in which the IMU was integrated in the
gondola, we placed the IMU on top of the hull. This reduces the influence of magnetic
disturbances of the power lines and the motors and avoids that the main rotors, which
are mounted at the gondola, affect the vibration-sensitive MEMS sensors of the IMU.

2.1.2 The Second Prototype

Our second prototype provides a new design of the hull and is equipped with two air
flow sensors as shown in Figure 2.2. It was used in the evaluation of the air flow sensor
model (see Chapter 5) and in the evaluation of our planning and control algorithms (see
Chapter 10). The air flow model training and the autonomous navigation were based
on the accurate state estimates of an optical motion capture system (described in detail
in Section 2.5). The retroreflective motion capture markers are exposed on lightweight
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carbon tubes on the bottom of the blimp to achieve an optimal visibility of the markers
when tracking the blimp with cameras standing on the floor. The hull of our second pro-
totype is custom-built by Effekt-Technik GmbH, Schlaitdorf, Germany. It is longer (ap-
prox. 2.1 m long) and slimmer than the basic one. This changes the navigation properties
towards a more stable forward motion as well as a reduced swinging during operation.
Additionally, the hull is lighter and coated with aluminum so that it is less permeable to
the filling gas helium. As a result of the reinforcement learning controller introduced by
Rottmann [141], we mounted the third rotor at the front, which substantially simplifies
manual as well as autonomous control of the blimp. Furthermore, we equipped our sec-
ond prototype with two SDP600 differential pressure sensors [153] from Sensirion AG,
Stäfa, Switzerland, operated here as thermal flow sensors. We mounted a short piece
of a tube on one of the sensors in order to reduce the turbulences and achieve a higher
measurement quality. As a result of our evaluation in Chapter 5, we mounted these two
air flow sensors on a pole on top of the blimp in a distance of approx. 20 cm to the hull.

2.1.3 The Third Prototype

Our third prototype is the latest stage of development and is shown in Figure 2.3. It facil-
itates a weight-saving design for an ample sensor configuration for efficient and accurate
localization based on on-board sensors. Our third prototype was used in the evaluation
of the IMU sensor model (see Chapter 6) and in the evaluation of the odometry motion
model (see Chapter 8). The completely redesigned gondola (see Figure 2.4) provides a
lightweight frame built of carbon tubes so that all devices and their connectors are easily
accessible during setup, maintenance, and debugging. Furthermore, we achieve a high
modularity in the gondola by applying a Lego R© push-fit system so that components can
be easily added and removed depending on the individual navigation task. The hull of
our third prototype is custom-built by Effekt-Technik GmbH, Schlaitdorf, Germany and
almost transparent to avoid reflections, which can disturb the optical tracking by the mo-
tion capture system. Apart from that, it has exactly the same shape and rotor setup as the
hull of our second prototype. The retroreflective markers for optical tracking are placed
on the top of the blimp, which has two desirable properties. First, it enables an ideal
tracking of the blimp with cameras mounted on the ceiling of a structured or cluttered
indoor environment. Second, it is weight-saving and provides a more rigid design than
the frame of thin carbon tubes so that we can obtain more accurate orientation estimates.
As a sensor setup, we chose five tiny sonar sensors, three air flow sensors and an IMU.
Four of the Devantech SRF10 sonar sensors are mounted at the front, back, left, and right
side of the hull for horizontal distance measurements. The fifth sensor is attached to the
gondola pointing downwards for height measurements. Additionally, we equipped the
blimp with three air flow sensors. As a result of our sensor setup evaluation described in
Chapter 5, we mounted a short piece of a tube on each sensor. Two of these sensors were
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Rear sonar sensorAir flow sensors IMU

Lateral air flow sensorBottom sonar sensor
Front and lateral

sonar sensors

Figure 2.3: Our third prototype of the robotic blimp. It is equipped with four sonar sensors at
the front, back, left, and right side of the hull. The fifth sonar sensor is pointing downwards
and integrated in the new gondola, which provides a lightweight, modular, and easily accessible
frame for the electric devices. The IMU is placed on the top of the hull. Three air flow sensors
are mounted on poles for velocity measurements along all three axes.
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and peripheral interface board
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BatteryGumstix
power button

Motor
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Figure 2.4: The gondola of our third prototype of the robotic blimp provides a lightweight and
accessible frame for the electric devices. The components are mounted using a Lego R© push-fit
system so that the configuration can be easily changed depending on the navigation task.
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Quantity Component Weight (each)

1 Gumstix Verdex pro XL6P COM 7 g
1 Gumstix Ethernet Board with Wi-Fi and microSD-card 18 g
1 Wi-Fi antenna 4 g
1 Gumstix Peripheral Interface Card 20 g
1 Motor/Servo Control Board 7 g
1-2 1-cell LiPo Battery 33 g
5 Devantech SRF10 sonar sensors 3 g
3 Sensirion SDP600 thermal air flow sensors 1 g
1 Custom-made IMU 9 g
4 Custom-made retroreflective markers 3 g

Table 2.1: The main components of our robotic blimp.

mounted on top of the blimp for velocity measurements in the forward and sideward
direction. The third sensor was mounted laterally to measure the vertical velocity. All
air flow sensors were placed on a pole in a distance of approx. 20 cm to the hull. This
distance turned out to be a good trade-off between a low influence of the air accompa-
nying the blimp and good navigation capabilities in narrow passages. For the calibration
of our models, we determined the geometry of the hull and the gondola as well as the
sensor positions in an accurate way using our optical motion capture system. The main
components of our third prototype are listed in Table 2.1.

Figure 2.5 gives an overview of the electric hardware modules of our third proto-
type. Our blimp is operated by a Gumstix Verdex proTMXL6P Computer-on-module
(COM) [62] with a Marvell PXA270 CPU @ 600 MHz implementing the ARMv5 ar-
chitecture, 128 MB memory, and 32 MB non-volatile flash memory. It is extended by
the Gumstix Ethernet board with a Wi-Fi module and a microSD-card slot for additional
non-volatile memory. The custom-made Gumstix Peripheral Interface Card (GPIC) pro-
vides regulated power with 3.3 V, 5 V, and 6 V to the Gumstix and all sensors [143].
Furthermore, it monitors the voltage of the battery and provides convenient connectors
to the UART, USB, and I2C interfaces of the Gumstix. The custom-made Motor/Servo
Control Board [143] is operated via UART by the Gumstix and controls the three rotors
of the blimp as well as the servo pivoting the main rotors attached to the gondola. The
sensors described above are also connected to the GPIC. We minimized the weight of the
I2C cables by adding a custom-made, lightweight voltage converter board to the I2C bus
between the sonars and the air flow sensors. Optionally, a USB camera can be connected
to the GPIC. However, as the computational power of the Gumstix is severely limited,
only a low-resolution camera with on-board JPEG compression turned out to be usable
on the blimp.
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Figure 2.5: The electric hardware modules of our blimp and their connections. The components
purchased from Gumstix Inc. are shown in yellow, the custom-made interface and control boards
are shown in light blue, the pure power supply devices are shown in gray, the sensors are shown
in red, and the actuators are shown in green.
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In addition to the electric components, our second and third prototypes are equipped
with four retroreflective motion capture markers. To obtain 3D ground truth poses, at
least three markers are required as described in Section 2.5. We applied four markers to
obtain a trade-off between a low weight and a redundant marker setup for robust optical
tracking.

Overall, our robotic blimp platform provides a flexible sensor configuration, a light-
weight embedded system with wireless communication capabilities, and a weight-saving
design of the hull and the gondola for autonomous navigation in various applications.

2.2 Software Architecture

The software architecture of our robotic blimp was designed to be flexible and reusable
in diverse navigation tasks. We achieve these design goals through a modular software
framework that provides a generic interface of modules and allows different communi-
cation modes between modules for both, local as well as distributed computations. For
the inter process communication (IPC) in distributed computations, we apply the IPC
framework of Simmons and James [155], as shown in Figure 2.6.

2.2.1 Operating System

Despite the limited computational power and the severe memory constraints of the Gum-
stix, we run a complete Linux operating system on the embedded computer. In particular,
we use the OpenEmbedded [127] build framework for embedded Linux, which provides
a cross-compilation environment and numerous BitBake [12] recipes accounting for the
dependencies between the individual software packages. Based on this framework, we
have built a compact Linux operating system with kernel 2.6.31 providing all required
kernel modules as well as TCP/IP network support via the Wi-Fi module and all impor-
tant Linux system tools such as the OpenSSH server and the common file system tools.
Figure 2.6 gives an overview of the operating system forming the basis of the blimp
software architecture.

2.2.2 Hardware Drivers

The hardware drivers provide a convenient high-level interface to the devices connected
to the Gumstix. Specifically, the hardware drivers of the sensor devices run in a loop,
poll the sensors for new measurement data, and publish available data to the IPC central
server. Correspondingly, the hardware driver of the actuator devices, i.e. the motor/servo
control board, listens to the IPC central server and applies incoming control commands
to the actuators of the blimp. The hardware drivers of our current blimp system are
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Hardware Drivers

Linux Kernel 2.6.31  (OpenEmbedded)

Network Module

IPC
Central Server

IMU Sonars

Air Flow

Camera

Rotors/Servo

Driver
Monitoring

Wi-Fi Module

External IPC Clients

Battery Mon.

I2C ModuleSerial Module USB Module

Figure 2.6: The software architecture of our blimp when it is operated by external IPC clients.
The operating system with the important kernel modules is shown in orange and the custom-
built modules are shown in light blue. The dark blue boxes indicate the individual threads in the
hardware driver executable running on the Gumstix.
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based on the work of Rottmann et al. [141, 143]. We implemented a single hardware
driver binary for an easy software handling during experimental setup and maintenance.
Within the hardware driver binary, the individual drivers are running in separate threads
with an alternating access to the corresponding kernel modules, which is coordinated
via mutual exclusions where needed. As an exception, the sonar and air flow sensors are
implemented in a common thread, because a manual coordination of their measurement
process (consisting of triggering a measurement, waiting, and receiving the result) sig-
nificantly improves the measurement frequency of the air flow sensors. Additionally, all
driver components are continuously monitored. Thus, the measurement frequencies of
all drivers together with the Gumstix temperature and the battery voltage can be graph-
ically presented to the user, e.g. in an external IPC client module on a base station.
The average measurement frequencies are 51 Hz for the air flow sensors, 84 Hz for the
IMU when providing temperature calibrated measurement data of all integrated sensors,
and 8.5 Hz for the sonar sensors. Since the blimp is equipped with three air flow and five
sonar sensors, these sensors are triggered in sequence so that the measurement frequency
of each individual sensor is 17 Hz for air flow and 1.7 Hz for sonar sensors.

2.2.3 Flexible Modular High-level Software Framework

Especially in complex navigation tasks like the tasks presented throughout this thesis, it
is beneficial to develop and test the individual parts of the software system independently.
Furthermore, for distributed computing in online operation, a way of data transport be-
tween different processes or different machines is desirable. Additionally, an easy data
recording in log files and an efficient offline processing of recorded log files is important.

We created a flexible software framework, named Robular, that enables us to develop
all parts of the system as individual modules and to couple them in different ways de-
pending on the navigation task. The key idea of Robular is the specification of a generic
software interface of modules without imposing any constraints on the format of the
data exchanged between the modules. In contrast to many other software frameworks
in robotics, for example CARMEN [113], ROS [135], MOOS [125], and YARP [47],
Robular strictly separates the interface of modules from the data transport. In particu-
lar, Robular specifies inputs and outputs, which are parameterized by the message type.
According to the interface, such inputs and outputs can be integrated into modules and
provide generic connection points to other modules, as each output can be connected to
one or multiple inputs with the corresponding message type. This has the substantial
advantage that also the transport modules are implementing the interface of modules,
which allows to flexibly choose the data transportation mode between modules by sim-
ply connecting them in different ways. Modules can be directly connected to each other
(without serializing data for transportation in between) or arbitrary transport modules can
be plugged between two or more modules to exchange data between different processes.
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Hence, multiple modules can be connected in three different ways: via triggering con-
nections for synchronous processing in a single thread, via non-triggering connections
for asynchronous processing in multiple threads in a single process, and via triggering
connections to an arbitrary transport module. The transport module usually is a logging
module for recording and playback of log files or an inter process communication mod-
ule (we use IPC [155] in our implementation) for asynchronous processing in multiple
processes, optionally on one or multiple machines. All three connection methods can
be arbitrarily mixed and each module can be used with all three methods without any
change in the implementation of the module itself.

This modular software framework allows us to apply a distributed computing ap-
proach in the evaluation of the algorithms for autonomous navigation. In particular,
we utilize three computers, namely the Gumstix our blimp is equipped with, a Linux
laptop computer, and a Windows laptop computer. As shown in Figure 2.6, the Gumstix
provides access to the hardware devices of the blimp. The blimp is controlled by one or
several external IPC client modules running on the Linux laptop computer, whereas the
Windows laptop computer is responsible for operating the motion capture cameras and
providing accurate 3D positions of the reflective markers to the Linux laptop computer
with high frequency.

In addition to the closed-loop control scheme for autonomous navigation described
above, we can replace the real blimp and the motion capture system by the simulator
described in Section 2.6.4 for an uncomplicated evaluation of planning and control algo-
rithms. When evaluating our localization approaches, we applied the distributed comput-
ing scheme described above. We thereby manually controlled the blimp via a joystick
connected to the Linux laptop computer. We recorded all sensor and control data to-
gether with the accurate reference poses from the motion capture system. This data set
is later used as input for multiple offline evaluations of the localization approaches in an
efficient synchronous way.

2.3 Environment Models

The model of the environment, which we call map throughout this thesis, plays a twofold
role in autonomous navigation. First, the map relates the measurements of sensors to the
pose of the robot in the localization task. Second, in the planning and control task, the
map encodes the traversability of the environment.

To relate the measurements of sensors to the state of the robot, the representation of
the environment has to be suitable for the particular sensor device. Accordingly, there
are various types of environment representations. For sensors measuring the distance
to objects in the environment, such as the sonar sensors our blimp is equipped with,
the most popular type of map is the occupancy map. For three-dimensional mapping,
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Figure 2.7: The visualization of our first blimp prototype in an OctoMap with 10 cm resolution.
Each cell of the map is colored depending on its z-coordinate.

an occupancy map represents the environment through discrete volume elements, of-
ten cubes on a regular grid where each element stores whether the represented volume
element is occupied by an object of the environment. Additionally, an occupancy map
provides information about the traversability of the environment as volume elements that
are non-occupied are typically traversable.

In this work, we apply 3D occupancy grid maps to represent the environment. In
the implementation of our first prototype, we employ multi-level surface maps [172],
which are based on a two-dimensional regular grid. Each of the grid cells contains a
list of vertical ranges in which the cell is occupied. For our second and third prototype,
we modeled the environment using the OctoMap framework [180]. This framework
provides a tree-based map structure representing the occupancy of 3D volume elements
in a hierarchical, memory-efficient fashion.

We created the map of an environment by collecting distance measurements using
a laser range finder. In particular, the environment was three-dimensionally scanned
using a wheeled platform with a panning or tilting 2D laser range finder. We obtained
the trajectory of the laser range finder device either by scan matching and optimizing
all collected data [59, 172] or from the optical motion capture system tracking markers
attached to the device. The resulting distance measurements together with the trajectory
of the laser range finder are then fused to the maximum likelihood estimate of the map
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center of lift

center of gravity

Figure 2.8: The body-fixed frame of reference Fb of the blimp and the global frame of reference
Fg. The center of gravity of the blimp is located at the position rg with respect to Fb.

in a 3D occupancy mapping algorithm [71]. A resulting OctoMap with a resolution of
10 cm is shown in Figure 2.7.

2.4 State and Control

For autonomous navigation, we model our blimp as a floating rigid body in a three-
dimensional environment. To describe the state of the blimp relative to its environment,
we define two frames of reference as shown in Figure 2.8:

• The body-fixed frame of reference Fb is located in the center of lift of the blimp.
Its x-axis is pointing forwards, its y-axis is pointing to the left, and its z-axis is
pointing upwards.

• The global frame of reference Fg (with its z-axis pointing upwards) is defined by
the map of the environment.

Throughout this thesis, we express the state of the blimp by its pose, its velocity,
and/or its acceleration, depending on the particular task. We define the pose of the blimp
by the position and the orientation of the body-fixed frameFb relative to the global frame



2.5. Ground Truth States 25

Fg. The position is represented by a three-dimensional vector p = [x, y, z]T and the ori-
entation is represented by a unit quaternion q = [q0, q1, q2, q3]T defining the orientation
in three-dimensional space. A detailed description of three-dimensional orientations and
unit quaternions is provided by Diebel [37]. Thus, the position and the orientation are
defined with respect to the global frame Fg.

The velocity and the acceleration of the blimp are both defined by the motion of Fb

relative to Fg. We express both, the velocity and the acceleration, as a six-dimensional
vector containing a three-dimensional translational and a three-dimensional rotational
part. We express all four components, the translational velocity v = [vx, vy, vz]

T , the ro-
tational velocity ω = [ωx, ωy, ωz]

T , the translational acceleration a = v̇ = [ax, ay, az]
T ,

and the rotational acceleration α = ω̇ = [αx, αy, αz]
T in the body-fixed frame Fb.

The blimp is actuated by three propellers. Two of them are mounted next to the
gondola and are pivoted together to provide thrust along the forward- and the up-axis.
The third propeller is mounted laterally for yaw rotation. The blimp can be controlled
by a three-dimensional vector u ∈ U = [−1, 1]3 defining the relative translational thrust
in the forward direction, the relative translational thrust in the upward direction, and the
relative rotational thrust about the vertical axis – all of them with respect to the body-
fixed frame Fb.

2.5 Ground Truth States

For evaluation and model learning purposes, we define the ground truth state

x? =
[
p?T ,q?T ,v?T ,ω?T , a?T ,α?T

]T
, (2.1)

which includes the pose, the velocity, and the acceleration of the robot.
In our practical experiments, we used two methods to obtain ground truth informa-

tion. In the experiments with our first prototype, we placed visual AR Toolkit Plus [15]
markers on the floor (see Figure 2.9), which allow us to accurately determine the pose of
the vehicle using the camera integrated in the gondola of the blimp [15]. However, this
method only allows us to determine the ground truth pose as long as enough markers are
in the field of view of the camera. Since the partial ground truth trajectories obtained
with this method suffer from high uncertainty, they cannot be used to extract ground
truth velocities and accelerations.

2.5.1 Reference Poses from Optical Motion Capture

In the experiments with our second and third prototype, we attached retroreflective mark-
ers to the blimp (see Figures 2.2 and 2.3). The three-dimensional positions of these
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Figure 2.9: Our first prototype of the blimp in the experimental environment. The reference
poses are obtained using the camera integrated in the gondola pointing downwards and observing
the visual markers placed on the floor.
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markers were accurately tracked by an optical motion capture system of Motion Analy-
sis Corporation with eight to ten digital Raptor-E cameras, each of them having a high
power infrared ring light around the lens. The cameras synchronously take images at up
to 300 Hz and accurately extract the markers, which are seen as bright spots, from their
images. The three-dimensional positions of the markers are obtained through triangula-
tion using the calibration parameters of the camera setup. The calculated positions are
associated to the markers based on their rigid geometry, and the labeled data is provided
via network.

In an initial calibration procedure, we determine the positions m̃1, . . . , m̃` of the `
markers relative to the body-fixed frame Fb by temporarily placing additional markers
on the coordinate axes of Fb.

In each discrete time step, we receive the marker position data m1, . . . ,m` from the
motion capture system in a module of our software framework and estimate the rigid
body pose of the blimp. We identify the pose as the transformation parameters, the
rotation matrix R and the translation vector t, between the marker positions m̃1, . . . , m̃`

and m1, . . . ,m` by minimizing the mean squared error

e2(R, t) =
1

`

∑̀
i=1

‖mi − (Rm̃i + t)‖2 (2.2)

between the marker position in Fb transformed by R and t and the observed marker
positions. To this end, we follow the least squares approach of Umeyama [174]. In a
first step, we calculate the means

µm =
1

`

∑̀
i=1

mi and µm̃ =
1

`

∑̀
i=1

m̃i (2.3)

of both sets of marker positions. We then estimate the joint covariance of both sets of
marker positions as

Σmm̃ =
1

`

∑̀
i=1

(mi − µm) (m̃i − µm̃)T . (2.4)

The optimal rotation matrix with respect to Equation (2.2) is

R = USV T (2.5)

where UDV T is the singular value decomposition of Σm̃m and

S =

{
I3×3 if det(U) det(V ) = 1

diag(1, 1,−1) if det(U) det(V ) = −1 .
(2.6)
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Algorithm 1 MOTIONREGRESSION1D

Input: A sequence of values
(
(x1, t1), . . . , (xn, tn)

)
with corresponding time stamps

and a target time t.
Output: The first derivative v := ẋ(t) and second derivative a := ẍ(t) at the target

time t.

1: // compute various sums
2: (sx, stx, st2x, st, st2 , st3 , st4)← (0, . . . , 0)

3: for i = 1 to n do
4: ti ← ti − t
5: sx ← sx + xi
6: stx ← stx + xi · ti
7: st2x ← st2x + xi · t2i
8: st ← st + ti
9: st2 ← st2 + t2i

10: st3 ← st3 + t3i
11: st4 ← st4 + t4i
12: end for
13: // matrix inversion pre-factor
14: A← n (st3 st3 − st2 st4) + st (st st4 − st2 st3) + st2 (st2 st2 − st st3)
15: // velocity at time t
16: v ← A−1 (sx (st st4 − st2 st3) + stx (st2 st2 − n st4) + st2x (n st3 − st st2))
17: // (constant) acceleration
18: a← 2A−1 (sx (st2 st2 − st st3) + stx (n st3 − st st2) + st2x (st st − n st2))
19: return (v, a)

The optimal translation can be expressed as

t = µm −Rµm̃ , (2.7)

and finally, the ground truth pose is p? = t, and q? is the quaternion obtained from the
rotation matrix R in a straightforward way [37].

2.5.2 Reference Velocities and Accelerations from a Pose Time
Sequence

Due to the high precision of the motion capture system, the obtained sequence of
poses is afflicted with a comparably low noise. Therefore, in an offline post processing
step, we can accurately compute the ground truth velocities and accelerations through
a regression in a shifting window of size ∆t on the sequence of poses. In a nutshell,
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Algorithm 2 MOTIONREGRESSION6D

Input: A sequence of positions and orientations T =
(
(p1,q1, t1), . . . , (pn,qn, tn)

)
with corresponding time stamps and a target time t as well as the orientation qt at
time t.

Output: The translational and rotational velocities v,ω and accelerations a,α in the
body-fixed frame of reference at the target time t.

1: (v,ω, a,α)← (0, . . . ,0)

2: (q̇, q̈)← (0,0) // initialize the quaternion rates with zero in all dimensions
3: // run motion regressions independently in every dimension
4: for all i ∈ {x, y, z} do
5: (vi, ai)← MOTIONREGRESSION1D

((
(pi,1, t1), . . . , (pi,n, tn)

)
, t
)

6: end for
7: for all i = 0 to 3 do
8: (q̇i, q̈i)← MOTIONREGRESSION1D

((
(qi,1, t1), . . . , (qi,n, tn)

)
, t
)

9: end for
10: // transform the derivatives to the body-fixed frame of reference
11: [ 0

v ]← q−1
t � [ 0

v ]� qt
12: [ 0

a ]← q−1
t � [ 0

a ]� qt
13: [ 0

ω ]← 2 q−1
t � q̇

14: [ 0
α ]← 2 q−1

t � q̈

15: // account for fictitious forces
16: a← a− ω × v

17: return (v,ω, a,α)

Algorithm 3 POSETIMESEQUENCEREGRESSION

Input: The pose time sequence (trajectory) T =
(
(p1,q1, t1), . . . , (pn,qn, tn)

)
given

as positions and orientations with corresponding time stamps and the regression
window ∆t.

Output: The sequence of translational and rotational velocities and accelerations(
(v1,ω1, a1,α1), . . . , (vn,ωn, an,αn)

)
corresponding to the input trajectory.

1:
(
(v1,ω1, a1,α1), . . . , (vn,ωn, an,αn)

)
←
(
(0, . . . ,0), . . . , (0, . . . ,0)

)
2: for i = 1 to n do
3: // extract the regression window of ti and apply regression to it
4: T ′ ← {(pj,qj, tj) | tj ∈ [ti −∆t/2, ti + ∆t/2]}
5: (vi,ωi, ai,αi)← MOTIONREGRESSION6D(T ′, ti)

6: end for
7: return

(
(v1,ω1, a1,α1), . . . , (vn,ωn, an,αn)

)
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this regression approach assumes a constant acceleration in the regression window and
computes the velocity and acceleration through regression in each dimension. The re-
sulting translational velocities and accelerations are transformed to the body-fixed frame
Fb according to our definition of v? and a? where we account for fictitious forces in
the non-inertial body-fixed frame Fb. The corresponding rotational velocity ω? and
acceleration α? can be obtained from the quaternion rates resulting from the regres-
sion [37]. While Algorithm 1 and 2 give the pseudo code of auxiliary functions, namely
the one-dimensional and the six-dimensional regression, Algorithm 3 shows the offline
post processing of a recorded trajectory by computing v?i , ω

?
i , a?i , and α?i from the pose

time sequence given by the motion capture system. The derivation of the algorithms and
additional explanations can be found in Sittel et al. [157].

2.6 Physical Simulation-based Control Motion Model

The model of the motion of the robot plays an important role in autonomous navigation.
It relates the chosen control commands to the motion of the robot and is mainly used in
the following four tasks within autonomous navigation:

• In the path planning task, the planning algorithm needs to select suitable control
commands to navigate the robot to its goal state. In this task, the planning al-
gorithm usually considers various sequences of control commands and evaluates
them depending on the predicted motion computed by the motion model.

• In the control tasks for complex robots such as our blimp, the motion model is
often applied as a core component of a model predictive control approach. These
approaches utilize the relation between controls and the motion of the robot to
optimize the control commands in order to minimize the expected future deviation
of the robot from its desired trajectory.

• In the localization task, the motion model is used to predict the motion of the robot
given the applied control commands. In probabilistic localization, as described in
Part I of this thesis, the motion model also needs to specify the uncertainty of the
predicted motion.

• The evaluation of the autonomous navigation system is often extended by simu-
lation experiments in which the motion model is used as a core component of the
simulator of the physical robotic system.

The proper design of the motion model is essential for planning feasible trajectories,
defining suitable closed-loop control laws, and accurately and efficiently estimating the
state of the robot. An inaccurate motion model would result in a high deviation of the
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robot from its desired trajectory in the planning and control task and in a wide-spread
proposal distribution in the particle filter localization task, which increases the number
of wasted particles and therefore decreases the efficiency of the filter.

In the following, we first derive a deterministic model by considering the underlying
physics of the motion of miniature airships. In particular, our model is based on the
work of Zufferey et al. [183] and adapted to our type of airship. We present an approach
to identify the parameters of the physical motion model from data of flight experiments
with accurate ground truth trajectories. In a subsequent step, we extend the deterministic
model by a statistical identification of the sources of uncertainty and define the proba-
bilistic motion model suitable for recursive Bayes filtering. Finally, we give an overview
of the architecture of our simulator for miniature indoor airships.

2.6.1 Deterministic Physical Motion Model

Miniature airships are typically not equipped with sensors directly measuring their mo-
tion such as wheel encoders found on most ground vehicles. Instead, their motion has to
be estimated based on forces and torques acting on them.

In the physical model of airships, the Newton-Euler equation of motion

M

[
a

α

]
= Fexternal(q,v,ω,u) + Ffictitious(v,ω) (2.8)

couples the acceleration to the force and torque F =
[
FT , τ T

]T . Here, u is the vector
containing the applied control commands. Note that all velocities, accelerations, forces,
and torques are defined with respect to the body-fixed frame of reference Fb.

With respect to Fb, the inertia matrix

M =

[
mI3×3 −mS(rg)

mS(rg) J

]
+ diag(k1mair, k2mair, k2mair, 0, k

′ Jair,y, k
′ Jair,z) (2.9)

=:

[
M11 M12

M21 M22

]
with Mij ∈ R3×3

is composed of the mass of the airshipm and its moment of inertia J , the skew symmetric
matrix operator

S(r) =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 (2.10)

and the position of the center of gravity rg of the blimp. The air accompanying the airship
is taken into account by Lamb’s virtual mass coefficients k1, k2, and k′ [98] where mair
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and Jair are the mass and the moment of inertia of the air displaced by the blimp. Here,
we exploit rotation symmetry of the hull of the blimp around the x-axis of Fb.

The fictitious forces and torques are caused by Coriolis and centripetal effects in the
moving frame of reference Fb. They can be efficiently calculated from the inertia matrix
as

Ffictitious(v,ω) =

[
O3×3 S(M11v +M12ω)

S(M11v +M12ω) S(M21v +M22ω)

] [
v

ω

]
(2.11)

where O3×3 is the zero block matrix [183].
The external forces and torques

Fexternal(q,v,ω,u) = Flg(q) + FD,h(v,ω) + FD,f(v,ω) +
3∑
i=1

Fr,i(u) (2.12)

consist of the lift and gravity Flg, the drag of the hull FD,h and the fins FD,f, and the
propulsion of the three rotors Fr,i.

The force and torque of lift and gravity can be calculated jointly as

Flg(q) =

[
Fl(q) + Fg(q)

rg × Fg(q)

]
(2.13)

where rg is the center of gravity with respect to Fb (see Figure 2.8). Since the center of
lift is in the origin of Fb by definition, the torque resulting from the lifting force is zero.
In particular, the lift and gravity in the body-fixed frame can be obtained by transforming
the global lift [0, 0,mair g]T and gravity [0, 0,−mg]T into the body-fixed frame through
a rotation by the inverse of the orientation q:

[
0

Fl(q)

]
= q−1 �


0

0

0

mair g

� q and
[

0

Fg(q)

]
= q−1 �


0

0

0

−mg

� q .

Here, � is the quaternion product, q−1 is the inverse of the unit quaternion q [37], mair

is the mass of the air displaced by the airship, and g is the gravitational constant.
In general, two different types of air drag forces can be distinguished: viscous resis-

tance and quadratic drag. In the typical range of operation, our blimp has a Reynolds
number Re ≈ 30,000 so that we can safely drop the viscous resistance term and specify
the air drag by the quadratic term. We approximate the drag force and torque of the hull
in an uncoupled way as

FD,h(v,ω) = [−D1vx|vx|,−D2vy|vy|,−D2vz|vz|, 0,−D′ωy|ωy|,−D′ωz|ωz|]T .
(2.14)
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Figure 2.10: The forces of the rotors depend on their current direction. When calculating the
corresponding torques, the positions the forces are acting on, i.e. the rotor positions relative to
Fb, have to be taken into account.

Here, D1, D2, and D′ are the drag coefficients, and we exploit rotation symmetry along
the x-axis and neglect the ωx-component, which is dominated by the drag of the fins.
Analogously, the drag force of each fin acts at its center rf parallel to its normal nf and
scales with the fin drag coefficient Df, its area af, and the velocity component along the
normal:

Ff(v,ω) = −Df af (nf · (v + ω × rf)) |nf · (v + ω × rf)| nf . (2.15)

Consequently, the forces and torques resulting from each fin are

FD,f(v,ω) =

[
Ff(v,ω)

rf × Ff(v,ω)

]
. (2.16)

The propulsion force and torque of each rotor is

Fr,i(u) =

[
Fr,i(u)

rr,i × Fr,i(u)

]
(2.17)

and depends on the applied control signal where Fr,i(u) is the rotor force and rr,i is the
corresponding rotor position. Each rotor force depends on the applied control signal and
the current direction of the rotor, which is illustrated in Figure 2.10.

Finally, we compute the overall acceleration[
at
αt

]
= M−1 (Fexternal(qt,vt,ωt,ut) + Ffictitious(vt,ωt)) (2.18)
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Figure 2.11: The force of a rotor depending on the applied control signal was measured with
a force gauge. Due to the airfoil-shaped asymmetric propeller blades, the force in backwards
rotation is substantially smaller.

and solve Equation (2.8), which is a second-order differential equation, through the nu-
merical integration

vt+1 = vt + at ∆t (2.19)

ωt+1 = ωt +αt ∆t (2.20)[
0

pt+1

]
=

[
0

pt

]
+ qt �

[
0

vt ∆t+ 1
2
at ∆t2

]
� q−1

t (2.21)

qt+1 = qt � q̃
(
ωt ∆t+ 1

2
αt ∆t2

)
(2.22)

assuming constant acceleration during the time step of duration ∆t. The function q̃(ϕ)

represents the quaternion from the incremental rotation ϕ = [ϕx, ϕy, ϕz]
T around all

three axes [37].

2.6.2 Parameter Learning

The physical motion model described in the previous section depends on several pa-
rameters, such as the positions of the fins and of the rotors and the mass as well as the
volume of the airship. Most of the parameters can be determined in a straightforward
way [118, 183]. For example, the propulsion force of a rotor depending on the applied
control signal can be measured using a force gauge as shown in Figure 2.11. However,
especially the air drag parameters of the hull and the fin cannot be determined without
sophisticated or expensive methods such as gas simulations or measurements in a big
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wind tunnel. For a useful motion model, the parameters that are difficult to identify in
a straightforward way can be learned from data recorded during flight experiments with
the blimp.

For our first prototype, we learned these parameters from recorded data of the blimp
based on the reference trajectory x?1:T , which was acquired using the camera integrated
in the gondola of the blimp [161]. To find the parameters that minimize the incremental
prediction error of the motion model, we evaluated 30,000 uniformly sampled values
and started a gradient descent minimization routine from the ten best random parameter
vectors. As all of them converged to the same parameters, we expect this to be the global
minimum.

For our second and third prototype, we determined these parameters from data re-
corded during operation of the real airship by minimizing the difference

∆a = M−1 (Fexternal(q
?,v?,ω?,u) + Ffictitious(v

?,ω?))−
[

a?

α?

]
(2.23)

between the accelerations estimated by the motion model and the ground truth accelera-
tions a? and α?.

2.6.3 Probabilistic Motion Model

The probabilistic motion model p(xt | xt−1,ut) is the core component of the predic-
tion step of the recursive Bayes filter for probabilistic state estimation. We extend the
deterministic model described above by a statistical identification of the sources of un-
certainty and define the probabilistic motion model suitable for recursive Bayes filtering.

The uncertainty of the motion model described above has basically three sources.
First, the applied physical model is only an approximation, and second, the estimated
parameters are not guaranteed to be the true parameters due to imperfection of the ref-
erence trajectory and the minimization routine. Third, the most important errors are
statistical errors such as imperfect motor responses, wind, or numerical errors. In our
probabilistic localization system, we combine all three sources of error and approximate
them as a white (zero-mean) Gaussian noise of the acceleration estimated by the motion
model. From a sequence of differences defined in Equation (2.23) we can estimate the
covariance of the acceleration errors calculated by the learned model. This covariance
implicitly defines the probabilistic model needed for sampling in the prediction step of
the particle filter. In particular, we sample the acceleration errors from the correspond-
ing Gaussian and obtain samples of subsequent states by error propagation through the
numerical integration of Equations (2.19) to (2.22).
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2.6.4 The Blimp Simulator

Especially for the evaluation of approaches to autonomous navigation, a simulator can be
a great advantage. It enables the evaluation under controlled conditions and can save the
time of the elaborate experimental setups of the robotic blimp. Furthermore, a training
of pilot candidates in the blimp simulator has proven to substantially improve the safety
when these pilots manually control the real blimp through complex environments with
narrow passages in later experiments.

We implemented a blimp simulation module in our modular software framework. This
module simulates the behavior of the blimp as well as that of the sensors the blimp is
equipped with. To obtain a realistic simulation, our simulation module samples from
the probabilistic models of both, the motion of the blimp (described in the previous
section) and the sensors (described in the following chapters). As an additional option,
our simulation module allows to adjust the amount of noise when sampling from the
probabilistic models.

Consequently, the simulation system needs the static map of the environment for sim-
ulation and processes incoming blimp control commands. As an output, the simulator
provides the state of the blimp in terms of poses, velocities, and accelerations as well as
the measurements of the sensors enabled for simulation.

2.7 Related Work

In the past, several authors have considered autonomous aerial blimps. For example,
Kantor et al. [80], Elfes et al. [42], Hada et al. [65], Saiki et al. [149] and Hygounenc
et al. [73] developed airships with several kilograms of payload and utilized them for
surveillance, data collection, or rescue mission coordination tasks. The relatively high
payload of these systems allows the blimp to carry more powerful sensors and also fa-
cilitates more extensive on-board computations than our miniature blimp system.

Additionally, there has been work on navigation with small-scale blimps that utilize
cameras for localization or even SLAM [4, 88, 161]. While cameras provide rich infor-
mation, the processing of the images can typically not be carried out on the embedded
computers installed on such miniature airships.

Kirchner and Furukawa [86] present a localization system for indoor UAVs, which
utilizes an infrared emitter on the vehicle and three external infrared sensors to localize
the robot via triangulation. Although this approach does not have high computational
demands, it requires external devices that perceive the infrared signals.

In addition, many small-scale blimps have been designed for remote controlled opera-
tion or rather simple control tasks such as corridor or line following [57]. Consequently,
these airships are usually equipped with severely limited sensing and navigation capa-
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bilities. For example, Zufferey et al. [183] developed a miniature blimp, which was
controlled on a circular trajectory based on the image of a camera with only a single hor-
izontal line of pixels. Ishida [74] developed a blimp for mapping gas distributions during
random flights through the environment. Several approaches were proposed for blimp
systems equipped with altitude stabilization and collision avoidance. Al-Jarrah and
Roth [2] controlled their blimp using an on-board microcontroller processing sonar mea-
surements in fuzzy logic without considering their measurement uncertainty. Bermúdez i
Badia et al. [13] applied a wireless camera and operated the blimp from a base station
using neural network controllers.

In contrast to all small-scale blimp concepts described above, our blimp is equipped
with various sensors and a full-fledged computer for autonomous navigation in complex
environments, and its sensor setup can be easily adapted to different navigation tasks.





Part I

Localization





Chapter 3

Recursive State Estimation

Estimating the state of a system from noisy motion and sensor data
is a fundamental problem in the domain of autonomous robots. In
this chapter, we give an overview of the concept of the Bayes filter,
which is a recursive algorithm for probabilistic sensor data fusion.
We discuss several implementations of the Bayes filter with re-
gard to the localization of miniature airships. One exceptionally
powerful implementation is the particle filter for which we give a
detailed description and implementation details in the context of
miniature airship localization.

• • • • •

In this chapter, we describe fundamental techniques for estimating the state of the
world when a robot interacts with its environment. The state of the world can include that
of the robot, for example, its position or configuration, as well as that of its environment,
e.g. the location of objects surrounding the robot. We distinguish between two possible
modes of interaction of a robot with its environment:

• Action. When acting, the robot executes random or specific control commands to
alter its state or that of the environment. Typical actions include accelerating the
wheels of a mobile robot and manipulating the environment with the gripper of a
robotic arm.

• Perception. When perceiving, the robot retrieves information about its own state
or the state of the environment by the use of its sensors. The perception results in
a measurement, also called observation, which can, for example, be the image of
a camera or the distance measurement of a sonar sensor.

Throughout this part of the thesis, we consider the localization of a mobile robot, which
means to estimate its state including its position and orientation. In the localization
scenario, we assume that the state of the robot is dynamic, i.e. possibly changing over
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Figure 3.1: The dynamic Bayes network for the localization of a mobile robot under the complete
state (Markov) assumption. It characterizes the evolution of the hidden state variables x given
the observable control variables u and measurement variables z.

time, and the state of the environment is static and known a-priori. We represent the
known environment by a map, whose model usually depends on the type of the applied
sensor devices.

In this chapter, we describe our approach to online state estimation for autonomous
navigation, which requires a computationally efficient incremental integration of control
commands and sensor measurements as soon as they are available during operation of
the robot. Although optimization-based maximum likelihood estimators have become
popular recently [78, 94, 162], they usually require a time-consuming optimization on a
large fraction of all available data in certain intervals or even every time new information
from actuators or sensors comes in. In contrast to this, we describe in the following a
recursive filtering approach that enables an efficient incremental online integration of
control and measurement data and therefore is suitable for online localization as a part
of an autonomous navigation system.

3.1 The Bayes Filter

For solving the online localization problem, we follow the probabilistic approach and
apply the recursive Bayes filtering scheme, which is summarized in the following ac-
cording to Thrun et al. [169].

Throughout most of this thesis, we assume that the dynamic process is discretized into
discrete time steps and that the robot executes a control ut and takes a measurement zt
at time steps t ∈ N. The controls and the measurements are possibly multidimensional
vectors, e.g. the acceleration commands for each motor or the range values of all indi-
vidual beams of a laser range finder. The state xt at time t can, for example, include the
pose and velocity of the robot. Furthermore, we use the notation x1:t to denote the (time)
sequence x1, . . . ,xt of variables.
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In addition, we assume a complete state, which is also known as the Markov assump-
tion, throughout this thesis. This means that the knowledge of the current state contains
all information that is currently available about the future of the system. In particular,
the additional knowledge of past states or current or past measurements adds no extra
information about the future. Under the complete state assumption, the evolution and
causal dependencies of the random variables described above can be expressed by the
dynamic Bayes network shown in Figure 3.1. Since the state variables are not observ-
able, this in particular is a hidden Markov model, which is a special case of a dynamic
Bayes network [147].

The key concept of the Bayes filter algorithm is to explicitly account for the uncer-
tainty in the process by considering probability distributions instead of maximum likeli-
hood estimates. Although the Bayes filter algorithm can deal with discrete and continu-
ous probability distributions, the notation in this thesis assumes continuous probability
distributions, as robots usually operate in continuous state spaces. Let Y be a random
variable. Then, p(Y ) is the probability distribution of Y . Furthermore, p(Y = y) de-
notes the value of the probability density function of the random variable Y at the spe-
cific value y. For a detailed introduction to probability theory, the reader is referred
to Bishop [16]. In the following, we omit the random variable for brevity whenever
possible and use the common short notation p(y) instead of p(Y = y).

In the Bayes filter algorithm, we recursively estimate the a-posteriori probability dis-
tribution, also called posterior distribution,

p(xt | z1:t,u1:t) (3.1)

of the state xt conditioned on all sensor data z1:t and control commands u1:t up to time t.
Using Bayes rule [169] and the rules of d-separation [16] on the dynamic Bayes network
(Figure 3.1), one can derive the recursive update step [169]

p(xt | z1:t,u1:t) = ηt p(zt | xt)
∫
p(xt | xt−1,ut) p(xt−1 | z1:t−1,u1:t−1) dxt−1 . (3.2)

Here, ηt is a normalizing constant that ensures that
∫
p(xt | z1:t,u1:t) dxt = 1. Further-

more, the algorithm requires the belief p(x0) as an initial condition, which is usually
given as a Gaussian or a point mass distribution in practice.

The resulting Bayes filter algorithm is shown in Algorithm 4. Basically, it has two
separate steps:

• The prediction step, also called motion update, is implemented in line 1. It up-
dates the belief of the filter based on the so-called motion model p(xt | xt−1,ut).
The motion model specifies the state transition probability given the applied con-
trol command.
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Algorithm 4 BAYESFILTERUPDATE

Input: The belief belt−1 at time t−1 with belt−1(xt−1) = p(xt−1 | z1:t−1,u1:t−1) ∀xt−1,
the current measurement zt, and the applied control command ut.

Output: The belief belt at time t with belt(xt) = p(xt | z1:t,u1:t) ∀xt.
1: ∀xt : belt(xt) =

∫
p(xt | xt−1,ut) belt−1(xt−1) dxt−1

2: ηt =
(∫

p(zt | xt) belt(xt) dxt
)−1

3: ∀xt : belt(xt) = ηt p(zt | xt) belt(xt)
4: return belt

• The correction step, known as measurement update, is implemented in line 2
and 3. The probability distribution of the belief is corrected by the sensor model
p(zt | xt). The sensor model specifies the likelihood of the measurement zt given
the corresponding state xt. To obtain a probability distribution, the result is nor-
malized.

For practical applications with continuous state spaces, the rather abstract concept
of probability distributions in the Bayes filter algorithm has to be approximated by a
representation that can be implemented efficiently. In the following, we discuss popular
implementations of the Bayes filter algorithm. We present their complexity depending
on the dimensionality n of the state space and the dimensionality k of the measurement
space. Furthermore, we discuss their suitability for the localization of miniature indoor
airships equipped with tiny sonar and air flow sensors as well as an IMU.

Kalman filters [79] (and their counterparts, the information filters [6]) efficiently
approximate each probability distribution appearing in the Bayes filter by a normal dis-
tribution. The normal distribution is represented in a parametric way by its mean and
its covariance. Additionally, the Kalman filter requires linear system dynamics, i.e. a
linear measurement and motion function. Under these conditions, the Kalman filter is
the optimal estimator and each update step has (approximately) complexityO(k2.4 +n2).
To relax the prerequisite of linearity, there are several extensions. The extended Kalman
filter (EKF) [6] linearizes the system using a first-order Taylor approximation, and the
unscented Kalman filter (UKF) [75] as well as the square-root UKF [175] propagate the
Gaussians using deterministic sigma-points. Although they are robust to global nonlin-
earities in the process, they suffer from substantial nonlinearities in the measurement and
the motion function in the region of high probability of the normal distribution. These
nonlinearities are often an issue if only little sensor information is available and the
uncertainty of the estimator and therefore the region of high probability is large [169].

Discrete filters work on discrete state spaces, which, in the context of robotics, are
usually obtained by a discretization of the continuous state space into a grid [21, 169].
While these filters are precise as long as the resolution of the discretization is sufficiently
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high, their drawback is the high memory consumption of the grid and the computation-
ally demanding update of all grid cells in each filter step. For a fixed grid resolution
and a fixed size of the bounding box of the state space, the number of grid cells scales
exponentially in n and therefore the complexity is exponential in n.

Particle filters [40] approximate the posterior distribution by a set of weighted ran-
dom samples, called particles. This allows to represent arbitrary distributions, while the
accuracy of the approximation increases with an increasing number of samples. The
complexity of the particle filter algorithm is in O(nN) where N is the number of par-
ticles. For a fixed particle density, in general the number of particles scales exponen-
tially with the dimensionality of the state so that the overall complexity is exponential
in n [165]. However, since the resampling step ensures that only the area of high prob-
ability is represented densely by particles, for tracking scenarios, the particle filter has
proven to be substantially more efficient in practice than the discrete filters [35].

Besides the three popular Bayes filter implementations described above, there are a
couple of combinations and extensions of them. For example, the Gaussian particle
filter [91] is similar to the sigma-point Kalman filters. It relies on the Gaussian approxi-
mation of the posterior distribution but is more tolerant to nonlinear process dynamics, as
it is based on a possibly large number of random samples (like the particle filter) instead
of the deterministic sigma-points. The only advantage of this approach over particle
filters is that it does not require the resampling step. However, this advantage gives no
improvement in terms of complexity of the algorithm. Other methods that allow to repre-
sent a non-Gaussian posterior distribution are, for example, the multi-hypothesis Kalman
filters [136] using the sum of Gaussians approximation [3] and the recently introduced
antiparticle filter [48, 49].

For the localization of a miniature indoor airship equipped with tiny sonar and air
flow sensors as well as an IMU we choose the particle filter approach. The particle
filter has been successfully applied to localize mobile robots in the past [35, 60, 70,
95, 159, 165, 168] and can cope with the challenging properties of an airship, which
are a nonlinear motion model with high motion uncertainty combined with sparse and
ambiguous position information from tiny sonar sensors with a huge opening angle.

3.2 The Particle Filter

The particle filter [40, 169] is a nonparametric implementation of the Bayes filter for
recursive state estimation. It approximates the probability distribution of the state xt by
a set of weighted particles

Mt =
{(

x
[i]
t , w

[i]
t

)}
i∈[1,N ]

(3.3)
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where each particle consists of a state hypothesis x
[i]
t weighted by a so-called importance

weight w[i]
t . The importance weight of each particle is a positive value and the sum of

the weights over all particles is 1.
For recursive state estimation of a dynamic system, the most common particle filtering

algorithm is the sampling importance resampling (SIR) filter. In general, the actual
probability distribution p(xt) to be estimated and represented by the filter, also called
the target distribution, is not suitable for sampling. The SIR filter accounts for this
fact by sampling from a proposal distribution π with p(xt) > 0 ⇒ π(xt) > 0 for all
possible states. The recursive belief update of the SIR filter is performed according to
the following three steps [35, 40, 58]:

1. Sampling: In the prediction step, for each particle of Mt−1, a successor state
is drawn from the proposal distribution π. The resulting set of propagated parti-
cles isMt where the weight of each particle inMt is equal to the weight of the
corresponding particle inMt−1.

2. Importance Weighting: In the correction step, the importance weight of each
particle is updated according to the importance sampling principle, which takes
into account the difference between the target distribution p and the proposal dis-
tribution π:

w
[i]
t =

p(x
[i]
t )

π(x
[i]
t )

. (3.4)

3. Resampling: In the resampling step, a new generation of particles is drawn from
Mt (with replacement) so that each sample inMt is selected with a probability
that is proportional to its weight. This step accounts for having only a finite num-
ber of particles to approximate the continuous distribution. After resampling, the
equal weight 1

N
is assigned to all particles.

In the following, we describe the implementation of the particle filter in the context
of mobile robot localization. In this context, the particle filter is also called Monte Carlo
localization, which was first introduced by Dellaert et al. [35]. In mobile robot localiza-
tion, we recursively estimate the full trajectory

p(x1:t | z1:t,u1:t) (3.5)

of the robot as the target distribution in the particle filter. Hence, each particle contains
a hypothesis of a sequence of states x

[i]
1:t = x

[i]
1 , . . . ,x

[i]
t . To finally obtain the posterior

distribution of the current state from the state of the particle filter, we marginalize out
x1:t−1, which can be straightforwardly accomplished by ignoring the corresponding part
of the state hypothesis of each sample of the particle filter.
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For the implementation of the particle filtering scheme described above, the optimal
proposal distribution would be the target distribution p(x1:t | z1:t,u1:t). However, one
can usually not directly sample from this distribution. Instead, we factorize the target
distribution into

p(x1:t | z1:t,u1:t)

= ηt p(zt | x1:t, z1:t−1,u1:t) p(x1:t | z1:t−1,u1:t) (3.6)

= ηt p(zt | xt) p(x1:t | z1:t−1,u1:t) (3.7)

= ηt p(zt | xt) p(xt | x1:t−1, z1:t−1,u1:t) p(x1:t−1 | z1:t−1,u1:t−1) (3.8)

= ηt p(zt | xt) p(xt | xt−1,ut) p(x1:t−1 | z1:t−1,u1:t−1) (3.9)

where ηt is a normalizing constant. In this factorization, we apply Bayes rule in Equa-
tion (3.6) and exploit the rules of d-separation in the dynamic Bayes network (Figure 3.1)
under the Markov assumption in Equation (3.7) and Equation (3.9). Furthermore, in
Equation (3.8), we apply a factorization based on the rule of conditional probability. In
Equation (3.9), p(zt | xt) is the sensor model, p(xt | xt−1,ut) is the motion model,
and p(x1:t−1 | z1:t−1,u1:t−1) is the recursive term. As proposed by Dellaert et al. [35],
we use the probabilistic motion model together with the recursive term as the proposal
distribution, i.e.

π(x1:t | z1:t,u1:t) = p(xt | xt−1,ut) p(x1:t−1 | z1:t−1,u1:t−1) . (3.10)

As a consequence of this choice of the proposal distribution, the weight of the i-th
particle in the correction step of the particle filter is

w
[i]
t =

p(x
[i]
1:t | z1:t,u1:t)

π(x
[i]
1:t | z1:t,u1:t)

(3.11)

=
ηt p(zt | x[i]

t ) p(x
[i]
t | x

[i]
t−1,ut) p(x

[i]
1:t−1 | z1:t−1,u1:t−1)

p(x
[i]
t | x

[i]
t−1,ut) p(x

[i]
1:t−1 | z1:t−1,u1:t−1)

(3.12)

∝ p(zt | x[i]
t ) . (3.13)

Thus, in the correction step, we weight each particle by the measurement likelihood
specified by the probabilistic sensor model and afterwards account for ηt by normalizing
the particles so that their weights sum up to 1.

In a nutshell, the resampling step typically replaces particles with a low weight with
particles that have a higher weight. On the one hand, this ensures that the set of particles
represents the target distribution and that its region of high probability is densely covered
by particles. On the other hand, the standard implementation of independent resampling
has complexity O(N logN) and additionally can problematically reduce the diversity of
the particles, which is known as the particle deprivation problem [169]. To cope with
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these challenges, we apply an efficient implementation of the particle filter: First, we use
low-variance resampling [169], also known as systematic resampling. Its complexity is
in O(N) and it furthermore reduces the particle deprivation problem through its system-
atic selection of particles. Second, we apply selective resampling, which means that we
omit the resampling step until the variance in the weights of the particles has reached a
specific threshold. In particular, we omit the resampling step until the effective number
of particles [106]

Neff =

(
N∑
i=1

(
w[i]
)2

)−1

, (3.14)

which is a measure of the equality of the importance weights, drops below N/2 where
N is the number of particles. A detailed description of these techniques as well as of
the particle filter in general and in particular for mobile robot localization is provided by
Doucet et al. [40] and Thrun et al. [169].

3.3 Particle Filter Localization for Indoor Airships

Throughout this part of the thesis, we consider the localization of an indoor airship
using a particle filter. In the prediction step of the particle filter, we sample from the
probabilistic motion model described in Section 2.6.3. Thereby, we first sample the
six-dimensional acceleration from a Gaussian. The mean of this Gaussian is determined
from the physical motion model based on the state and the controls (see Equation (2.18)).
The noisy acceleration value is then propagated through numerical integration of the
Newton-Euler equation of motion (see Equations (2.19) to (2.22)) to obtain a random
sample of the probabilistic motion model p(xt | xt−1,ut).

For pose and velocity measurements, our blimp is equipped with a couple of sonar and
air flow sensors as well as with an IMU. The measurements of the individual sensors
are considered together as one high-dimensional measurement vector z in the particle
filter described above. However, in practice, the individual sensors operate at different
frequencies so that their measurements cannot be considered as being available at each
discrete time step t.

Fortunately, under the Markov assumption, the measurements of the individual sen-
sors are conditionally independent given the state of the system [169]. Hence, we can
factorize the measurement likelihood

p(z | x) =

(
K∏
i=1

p(zS,i | x)

) (
L∏
j=1

p(zF,j | x)

)
p(zI | x) . (3.15)

into the product of the measurement likelihoods of the individual sensors. For our minia-
ture blimp, these are the scalar distance measurements zS,i of the K sonar sensors, the
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scalar measurement values zF,j of the L air flow sensors, and the orientation estimate
zI of the IMU. Due to their conditional independence given the state of the system, the
measurements of the individual sensors can be integrated in separate weighting steps
into the belief of the particle filter as shown in Figure 3.2.

Throughout the remaining chapters of this part, we describe the probabilistic models
for the sensors our airship is equipped with. Furthermore, we propose the simultaneous
localization and estimation of the parameters of the motion model and introduce our
novel air flow odometry motion model for computing accurate and efficient proposal
distributions for the particle filter.
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Figure 3.2: The process of the particle filter localization for a mobile robot equipped with an
IMU, L air flow sensors, and K sonar sensors. The left side shows the individual processing
steps of the set of particles. The right side shows the actuator and sensor devices providing
control and measurement data.



Chapter 4

Sonar Sensor Model

The major constraints of miniature airships stem from their lim-
ited payload, which introduces substantial constraints on their per-
ceptional capabilities. In this chapter, we consider the problem
of localizing a miniature blimp with lightweight ultrasound sen-
sors. Since the opening angle of the sound cone emitted by a
sonar sensor depends on the diameter of the membrane, small-
sized sonar devices introduce a high uncertainty regarding which
object has been perceived. We present a novel sensor model for ul-
trasound sensors with large opening angles that enables an autono-
mous blimp to robustly localize itself in a known environment us-
ing Monte Carlo localization. As we demonstrate in experiments
with a real blimp, our novel sensor model outperforms a popular
sensor model that has in the past been shown to work reliably on
wheeled platforms.

• • • • •

Sonar sensors have been a popular sensing device in mobile robot navigation, as they
are lightweight and cheap compared to laser range finders. In nature, for example, bats
navigate based on ultrasonic echolocation whereby they localize, avoid obstacles, and
hunt prey with great success. Their ultrasonic sensing technique is far more sophis-
ticated than the basic time-of-flight distance measurement approach sonar sensors in
robotics rely on. Although these sophisticated techniques would be desirable in robotic
applications, our work shows that even tiny time-of-flight sonar sensors can be success-
fully applied for perception in autonomous mobile robot navigation if their challenging
properties are adequately taken into account.

In probabilistic state estimation, a crucial aspect is the design of the so-called proba-
bilistic sensor model p(z | x), which defines the likelihood of a measurement z given the
state x of the system. In case of localization with sonar sensors, the measurement r ∈ R
is a scalar distance value and its likelihood depends on the pose of the sensor and the
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environment. We assume that the state x of the system contains the pose of the airship at
which the sensor is rigidly mounted or the pose of the sonar sensor itself and also tacitly
includes the map of the environment.

The probabilistic sensor model needs to be specified properly to provide accurate state
estimates and to avoid divergence of the filter. In this context, the miniature Devantech
SRF10 ultrasound sensors our blimp is equipped with pose a challenging problem. Their
wide opening angle introduces a high uncertainty, which needs to be correctly modeled.
We present a novel sensor model for ultrasound sensors that has several desirable features
compared to previously developed models. It better reflects the physical properties of
ultrasound sensors and it is especially suited to deal with the wide opening angles of
small-scale ultrasound sensors. We experimentally evaluate our model on a miniature
blimp system in an indoor navigation task. In practical experiments, we demonstrate
that our model outperforms an alternative and popular sonar sensor model.

In the following, we first briefly discuss the popular ray-casting sensor model. We will
then introduce our novel cone sensor model, which explicitly models the characteristics
of small-sized sonar sensors with large opening angles. While the novel cone sensor
model and its evaluation was published in the diploma thesis [118], the comparison to
the standard ray-casting sensor model and the extended experimental evaluation is a
contribution of this thesis.

4.1 The Ray-casting Model

Thrun et al. [169] and Choset et al. [28] describe an approach to model the measurement
likelihood for sonar or laser range finders, which in the past has successfully been ap-
plied to robustly localize wheeled platforms equipped with standard Polaroid ultrasound
sensors (see Figure 4.1) with an opening angle of approximately 15◦ [64].

Their approach models p(r | d(x)) based on the distance d(x) to the closest object
along the acoustical or optical axis of the sensor. To determine this likelihood, they
perform a ray-casting operation in the map to determine d(x) and calculate p(r | d(x))

based on a mixture of four different distributions to capture the noise and error character-
istics of range sensors. The major component of this model is a GaussianN (r; d(x), σ2)

that characterizes the distribution of measurements in situations in which the closest ob-
ject along the acoustical or optical axis of the sensor is detected. Additionally, this model
includes an exponential distribution λe−λ r to properly model measurements reflected by
objects not contained in the map. Furthermore, it utilizes a uniform distribution to model
random measurements caused, for example by sensor failures. Finally, maximum range
measurements are modeled using a constant probability. The measurement likelihood is
composed as a weighted average of these four different distributions.

While this model enables a highly accurate localization given typical ultrasound sen-
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(a)

(b)

Figure 4.1: Four standard Polaroid 6500 sonar sensors (a) in front and back view. Their mem-
brane has a diameter of 38 mm and the controlling board has a size of 77 mm × 102 mm. Com-
pared to that, the tiny Devantech SRF10 sonar sensor (b) our blimp is equipped with has a mem-
brane diameter of 8.5 mm and the controlling board has a size of 32 mm× 15 mm.
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Figure 4.2: The sonar distance measurement procedure according to Leonard and Durrant-
Whyte [104].

sors or laser range finders, it yields suboptimal results for small sonar sensors having a
large opening angle. The reason is that for wide opening angles, it is no longer suffi-
cient to calculate the measurement likelihood solely based on the distance to the closest
object along the acoustical or optical axis of the sensor. In this work, we especially
cope with this problem and propose a model that explicitly considers the opening angle
θ = 1.22 λ

dm
, which depends on the wavelength λ of the signal and the diameter dm of the

membrane (see Brown [17]). Accordingly, the closest object in the entire corresponding
cone is considered, which better reflects the wide opening angle.

4.2 The Cone Model

In our novel approach, we seek to model the observation likelihood by systematically
considering the underlying physics of ultrasound sensors, which is illustrated in Fig-
ure 4.2. A measurement starts with the generation and transmission of an ultrasound
signal. The signal propagates spherically through the space and, after it got reflected by
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Figure 4.3: The intensity pattern of the Devantech SRF10 miniature sonar sensor compared to the
one of the popular Polaroid 6500 sensor [23, 36]. Units are decibel normalized to the maximum
intensity.

objects in the environment, the corresponding echo is typically detected by the receiver
unit of the sensor. Since the received signal is usually much weaker than the transmitted
signal, it gets amplified by a predefined amplification factor fa. As soon as the received
and amplified signal exceeds a given threshold, the measurement procedure is terminated
and the distance r = c∆t

2
is calculated based on the time of flight ∆t and the constant

velocity c of sound in air.
For very small transmitters with a diameter in the same order of magnitude as the

wavelength, the signal is hardly focused as shown in Figure 4.3. Thus, it can be con-
sidered as a growing hemisphere, which has lower intensity at its boundary area. Con-
sequently, a small sensor tends to detect large, well reflecting objects such as walls that
are perpendicular to the heading of the sensor. At the same time, small objects that are
further away from the sensor cannot be detected even if they are in the center of the
cone. In our approach, we model this behavior by considering the detection of objects
depending on their size, angle, distance, and the applied amplification factor. In particu-
lar, we calculate a probability distribution of triggering a measurement by modeling the
received signal over the elapsed time ∆t.

To consider the propagation of the signal in the environment, we define a spherical
coordinate system with its origin at the position of the sensor (Figure 4.4). The emitted
signal intensity (power per area) I depends on the zenith angle θ, which is depicted in
Figure 4.3. Due to the symmetry of ultrasonic membranes, it does not depend on the
azimuth angle φ. Hence, the whole signal power can be written as

P0 =

∫
I(θ) dΩ (4.1)

by integration over the hemisphere in front of the sensor where Ω is the dihedral angle.
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Figure 4.4: The spherical coordinate system used for modeling the sensor behavior. An object
is seen by the sensor in distance r, azimuth angle φ, and zenith angle θ. In this way, the dihedral
angle Ω is covered.

This signal power is damped by a factor D(r) and the intensity is scaled by 1
r2

with
increasing distance r since the surface area of the hemisphere scales with r2. In contrast
to Moravec [115], we explicitly model these two effects physically.

To determine the objects that potentially reflect the propagating signal, we assume
that an occupancy map of the environment specifying the obstacles and the free space is
given. We determine the set of relevant objects by a discrete set of ray-casting operations
according to a fixed angular resolution so that the entire visible hemisphere is covered.
Let Hi be an object that is seen by the sensor in distance ri and zenith angle θi and that
corresponds to the dihedral angle Ωi. Then, the incident signal power is

Pi = I(θi)D(ri) Ωi . (4.2)

A proportion PR,i = κi Pi of this signal power is reflected back to the sensor. The
reflection proportion κi ∈ [0, 1] depends on the relative angle of incidence of the signal
and the reflection properties of the object. Unfortunately, the latter properties are hard to
obtain and would also further increase the storage requirements of the map. Since dif-
fuse reflection just occurs on surfaces that have a roughness in the order of the magnitude
of the wavelength, typical uncluttered indoor environments mainly produce specular re-
flections. Additionally, diffuse reflected signals again propagate on a hemisphere, which
causes them to be very weak. Therefore, we only consider specular reflections, whereby
the signal power that is reflected towards the receiver can be estimated according to

pi(PR,i) = α p(PR,i | reflection towards sensor)

+ (1− α) p(PR,i | reflection to other direction)

≈ α δ(PR,i − Pi) + (1− α) δ(PR,i) (4.3)
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for some α ∈ [0, 1] using the Dirac delta δ. Since there is typically no information
about correlations between the reflection properties of objects, we assume them to be
independent. Furthermore, we do not consider multiple reflections or interference.

At time ∆t, the sensor starts to receive the reflected signal of objects at the distance
r = c∆t

2
. The emitted ultrasound signal has the length ls, which usually is a couple

of wavelengths. Therefore, at this time, the sensor still receives the reflected signal of
objects in distances between r − ls

2
and r. In the following, we denote the set of objects

that reflect a signal that could contribute to trigger the measurement of distance r by
H(r) =

{
Hi | ri ∈ [r − ls

2
, r]
}

. Consequently, the total received power corresponding
to the distance r can be written as the sum over the reflected powers of all objects of
H(r)

PR(r,x) =
∑

Hi∈H(r)

PR,i (4.4)

where each PR,i is distributed according to Equation (4.3).
Furthermore, the probability distribution of PR(r,x) can be calculated by the convo-

lution

p(PR(r) | x) =

(
∗

Hi∈H(r)
pi

)
(PR(r) | x) . (4.5)

By choosing an appropriate and variable resolution during the calculation of the objects
via ray-casting, which results in an adapted Ωi, we can achieve equal incident signal
powers Pi for all objects Hi ∈ H(r). Thus, this quantity can be simplified to

p(PR(r) | x) =

|H(r)|∑
j=0

((|H(r)|
j

)
2|H(r)| · α

j · (1− α)|H(r)|−j · δ (PR(r,x)− j · Pi)

)
. (4.6)

Here, we exploit the fact that the Dirac delta is the neutral element of convolution. For
large values of |H(r)|, this binomial distribution can be approximated by the Gaussian

p(PR(r) | x) ≈ N
(
PR(r);α Pmax(r,x), α (1− α) Pmax(r,x)

)
. (4.7)

The mean µ = Pmax α and the variance σ2 = Pmax α (1−α) of this Gaussian depend on
the reflection proportion α and the maximum power

Pmax(r,x) =
∑

Hi∈H(r)

Pi (4.8)

that would be received if all objects in distance r would reflect the ultrasound signal
towards the receiver. An example of Pmax and the corresponding measurement likelihood
is shown in Figure 4.5.

In the measurement process, the received signal is amplified by some predefined factor
fa and the threshold circuit causes the sensor to measure the shortest distance out of
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Figure 4.5: An example of the maximum power Pmax that would be received if all objects in
distance r reflect the ultrasound signal towards the receiver and the corresponding measurement
likelihood.

which the received and amplified signal exceeds a given threshold PE . Consequently,
the measurement probability

p′(ri | x) = p (fa · PR(ri) > PE | x) ·

(
1−

∑
j<i

p′(rj | x)

)
(4.9)

is the product of the probability that the received and amplified signal exceeds the thresh-
old and the probability that the measurement procedure has not already been terminated.
In the course of this, we discretize the measured distances into r0, . . . , rM similar to
Moravec [115].

Additionally, dynamic, unmapped objects such as people or other robots could in-
fluence the measurements. This effect is modeled by a small probability for detecting
dynamic objects β, which extends the measurement likelihood to

p′′(ri | x) = ((1− β) p′ (fa · PR(ri) > PE | x) + β) ·

(
1−

∑
j<i

p′′(rj | x)

)
. (4.10)

Furthermore, the sensor could fail and generate measurements uniformly distributed over
the whole measurement range. This can be modeled by the uniform random measure-
ment probability and leads to the overall likelihood

p(ri | x) = (1− γ) · p′′(ri | x) + γ · puniform(ri) . (4.11)

All in all, there are four parameters to be determined in the model training stage: the
reflection proportion α, the probability of dynamic objects β, the probability of random
measurements γ, and the receiver threshold PE . We learn these parameters from data by
maximizing the joint log likelihood

log p(r1:T | x?1:T , α, β, γ, PE) =
T∑
t=1

log p(rt | x?t , α, β, γ, PE) (4.12)
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Figure 4.6: The environment used to evaluate our localization system with different sensor mod-
els.

of the sonar measurement data r1:T given the ground truth trajectory x?1:T of the airship.
The resulting likelihood is shown in Figure 4.5. In contrast to the ray-casting model,
our sensor model specifies a multi-modal likelihood, which explicitly models different
object sizes and takes into account multiple objects in different distances. Therefore, our
model can better deal with the large opening angle of miniature sonar sensors.

4.3 Experimental Evaluation

The sensor model described above has been implemented and evaluated using real data
acquired in a large indoor environment with our first blimp prototype described in Sec-
tion 2.1.1. The blimp is equipped with four Devantech SRF10 sonar sensors (see Fig-
ure 4.1) with a measurement range up to 6 m. Each sensor has two membranes with a
diameter of dm = 8.5 mm and a wavelength of λ = 8.5 mm. Three sonar sensors are
mounted horizontally at the front, left, and right side of the hull. The fourth sensor is
integrated into the gondola pointing downwards to measure the height. Additionally,
the blimp is equipped with an IMU [156] that provides accurate attitude and heading
estimates.

The indoor environment in which we carried out the experiments is shown in Fig-
ure 4.6. It provided an area for flying of about 14 m × 7 m with a vertical space of 5 m.
The multi-level surface map (see Section 2.3) representing the environment had a res-
olution of 0.1 m and was created from 3D laser scans. In this map, we precalculated
the set of potentially reflecting objects for our sensor model by ray-casting using a fixed
angular resolution of 5◦.
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As described in Chapter 3, we applied particle filter localization using the physical
simulation-based control motion model introduced in Section 2.6. We obtained ground
truth poses from the images of the camera integrated in the gondola of the blimp by
detecting the markers placed on the floor (see Section 2.5).

To compare our novel sensor model to the ray-casting model, we learned the parame-
ters of both models from real data by mounting the sonar sensor on a wheeled robot. We
determined the corresponding sensor poses using a laser-based localization approach and
calculated the parameters using the given map and 40,000 sonar measurements. There
were virtually no dynamic objects and very few wrong measurements while we acquired
the data. As a result, the values for the corresponding parameters β and γ of our model
were lower than 0.01.

In order to evaluate the improvement in terms of the localization error, we compared
the performance of our novel sensor model to the standard ray-casting model. We used
the Euclidean distance between the weighted average of all particles and the ground truth
pose as a measure of localization error.

In an extensive experiment of about 23 min of manually operated flight, the blimp
collected 13,430 sonar measurements. Figure 4.7 shows the path of the blimp as esti-
mated by the localization system using our novel sensor model. As can be seen from
Figure 4.8, our novel sensor model resulted in a significantly smaller localization error
than the standard ray-casting model. Furthermore, we evaluated the localization success
rate, which revealed that the number of particles required to reliably localize the blimp
is substantially smaller using our sensor model.

4.4 Related Work

Before laser scanners became available for installation on mobile robots, ultrasound sen-
sors were popular sensors for estimating the distance to objects in the environment of a
robot. Typically, robots were equipped with arrays of Polaroid ultrasound sensors, which
had, compared to the sensors installed on our blimp, a relatively small opening angle. In
the literature, several approaches to model the behavior of such ultrasound sensors can
be found.

Some approaches utilize ray-casting operations to estimate the distance to be mea-
sured according to a given map. One of the first of such approaches to model ultrasound
sensors in the context of localization and mapping is the pioneering work by Moravec
and Elfes [115, 116]. The sensor model approach described there is somewhat similar
to ours. However, it has originally been designed for two-dimensional occupancy grid
maps only and also does not specifically model the intensity decrease of the sound cone
while it propagates. A corresponding model has been utilized by Burgard et al. [20]
and has been shown to allow a mobile robot to robustly localize itself using Markov
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Figure 4.7: A horizontal sectional view of our testing area at 2.0 m height. Obstacles are shown
in black, unknown space is blue. The path localized with the novel sensor model is depicted in
red.
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Figure 4.8: The average translational RMS localization error and the success rate of our novel
sensor model in comparison to the standard ray-casting model. The error bars indicate the 99.7 %
confidence intervals over ten runs.

Localization, a grid-based variant of recursive Bayes filters. Thrun [166] proposed an
approach to occupancy grid mapping that considers multiple objects in the sound cone.
However, this approach utilizes a simplified sensor model. Fox et al. [50] presented a
sensor model for range measurements that has been designed especially for robots oper-
ating in dynamic environments. It also does not explicitly model the intensity changes
on the surface of the sound cone.

Crowley [30] estimated lines from sonar measurements and applied an extended Kal-
man filter for state estimation. One of the assumptions in this work is that the arc cor-
responding to the front of the sound wave can be approximated by a Gaussian, which is
only justified for ultrasound sensors with a small opening angle. Additionally, several
authors have presented so-called endpoint or correlation models, which are more effi-
cient but ignore the area intercepted by the sound cones [90, 164]. Schroeter et al. [152]
directly learned the likelihood function from data collected with a mobile robot, which
is an approach similar to the one described by Thrun et al. [169]. Compared to these
approaches, our technique seeks to rigorously model the physical measurement process
of the sensor and explicitly takes into account the potential reflections of objects.

Physical models have also been considered by Leonard and Durrant-Whyte [104].
Their approach assumes certain types of geometric objects, such as planes, cylinders,
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corners, and edges, in the context of a landmark-based SLAM algorithm. In this context,
Tardós et al. [163] utilized a similar approach to extract lines and corners to robustly
build large-scale maps based on ultrasound data. Compared to these techniques, our
approach does not rely on the assumption that the environment consists of certain types
of geometric objects. Rather, it can be applied to arbitrary indoor environments. Ad-
ditionally, these approaches assume relatively accurate odometry, which is typically not
available in the context of airships.

4.5 Conclusions

In this chapter, we presented a novel sonar sensor model for probabilistic localization
techniques that explicitly considers the characteristics of small sonar sensors with large
opening angles. Our approach is rigorously based on the physics of sonar sensors. It
explicitly takes the propagation of their hardly focused sound signal into account and
models the signal reflection by objects with different sizes and distances. In this way, it
specifies a multi-modal likelihood distribution. Practical experiments with a real minia-
ture blimp demonstrate that our novel sensor model allows the blimp to robustly localize
itself in a known environment. It also significantly outperforms the popular ray-casting
model in terms of the localization accuracy and the number of particles needed.





Chapter 5

Air Flow Sensor Model

While airships are attractive as they can move freely in the three-
dimensional space, their high-dimensional state space and the re-
striction to small and lightweight sensors are demanding con-
straints with respect to self-localization. Furthermore, their com-
plex second-order kinematics makes the estimation of their pose
and velocity through double integration in the motion model diffi-
cult and imprecise. In this chapter, we consider the problem of es-
timating the velocity of a miniature blimp with lightweight air flow
sensors. We present a probabilistic sensor model that accurately
models the uncertainty of the flow sensors and thus allows for ro-
bust state estimation using a particle filter. In experiments carried
out with a real airship, we demonstrate that our method precisely
estimates the velocity of the blimp and outperforms the standard
velocity estimates of the motion model as applied in many existent
autonomous blimp navigation systems.

• • • • •

Measuring the airspeed is an important capability of modern airplanes and a failure of
the corresponding sensors, the pitot tubes, can cause them to crash [126]. As opposed
to large airplanes, indoor airships do not require accurate airspeed measurements for
flight stabilization. However, airspeed sensors are often applied for velocity or wind
speed estimation on small UAVs [45, 171]. Furthermore, they can also be used for dead
reckoning in the context of localization, because the motion prediction of flying vehicles
usually suffers from large accumulating errors.

In this chapter, we consider the problem of designing an air flow sensor model that
can be applied in particle filter localization as well as in dead reckoning. In particular,
we introduce a probabilistic sensor model p(z | x), which defines the likelihood of a
measurement z given the state of the system x. In the context of air flow sensors, the
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measurement is a scalar value z ∈ R and its likelihood depends on the velocity of the
airship the sensor is rigidly attached to.

There exist various techniques for measuring air velocity. While cup, windmill, and
sonic anemometers are rather heavy and bulky, hot-wire anemometers and thermal mass
flow meters can be built in MEMS technology and therefore are suitable even for em-
ployment on miniature flying vehicles. To measure the airspeed, our blimp is equipped
with MEMS-based thermal air flow micro-sensors. These smart sensors determine the
velocity of media sweeping over them through the detection of on-chip thermal differ-
ences [110]. However, the measurement characteristics of these thermal flow sensors are
nonlinear and the measurement noise depends on the velocity of the air sweeping over
the sensor.

We present a probabilistic air flow sensor model that is based on the measurement
characteristics of the sensors. To approximate the characteristics of the air flow sensors
including their heteroscedastic measurement noise, we present and compare two regres-
sion techniques. Both are suitable for probabilistic sensor data fusion in a particle filter
and therefore our sensor model enables robust state estimation through the modeling of
all underlying uncertainties.

In the following, we first briefly discuss the placement of the air flow sensors on
miniature indoor airships. We introduce our probabilistic air flow sensor model, which
is suitable for dead reckoning (see Chapter 8) as well as state estimation in the particle
filter. In practical experiments, we demonstrate that our approach to velocity estimation
with air flow sensors outperforms the simulation-based control motion models applied
in many autonomous blimp navigation systems [55, 88, 183].

5.1 Sensors and Placement

Although various other types of miniature air flow sensors are available [34, 181], we
chose the SDP600 differential pressure sensors from Sensirion AG, Stäfa, Switzerland,
shown in Figure 5.1. They are operated here as thermal flow sensors and have several de-
sirable properties. They are fully developed, have a weight below 1 g, a very low power
consumption, quickly react to changes in the gas flow, and their integrated evaluation
circuitry can be controlled via the I2C interface available on the Gumstix computer of
the blimp. As an additional sensor setup, we mounted a short tube onto one of the sen-
sors to reduce the air turbulences in the vicinity of the thermal elements of the sensor.
This sensor is called tube sensor in the following.

When mounting air flow sensors on the airship, one has to take into account various
aerodynamic effects of the air flowing around the airship. First, due to the viscosity
of the air, there is a boundary layer in the vicinity of flat surfaces as illustrated in Fig-
ure 5.2. Second, the airship typically operates at velocities at which the air flow is turbu-
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Figure 5.1: Left: Two Sensirion SDP600 air flow sensors are mounted on a pole in parallel. One
of them is equipped with a short piece of a tube above the sensing element. Right: A detailed
picture of the sensing element.

Air velocity

Boundary layer

Free stream

Airship surface

Figure 5.2: The air velocity profile of a laminar flow in the vicinity of an approximately flat
surface.
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Figure 5.3: Different mounting methods of the air flow sensors on the blimp. The picture on
the left shows the blimp with four sensors (two of them are occluded) mounted directly on the
surface of the blimp. The picture on the right shows two sensors mounted in parallel on a pole
that has a height of 20 cm.

lent (see Section 2.6) and a substantial amount of the surrounding air is accelerated with
the airship and accompanies it [98]. While the thickness of the boundary layer can be
calculated in closed form for flat surfaces [111], the surface of the blimp is substantially
curved and therefore a flat surface approximation would be hard to justify. Furthermore,
modeling the turbulences and the accompanying air usually requires extensive simula-
tions of fluid dynamics or costly wind tunnel experiments.

Therefore, we performed a couple of practical experiments in which we evaluated
different mounting methods of the air flow sensors. Since we aim to mount the sensors
in a way so that the influences of the boundary layer and turbulences are reduced in
the measurements, we evaluated the mounting methods by relating the measurements
to the expected ones assuming that the sensors are operating in the free stream. In our
experiments, we evaluated three mounting positions where two of them are shown in
Figure 5.3:

1. Directly on the surface. In our first experiments, we placed four sensor chips,
similarly to Fei et al. [45] and Tokutake et al. [171], at different positions directly
on the hull of the blimp. In this configuration, the sensing element of each sensor
sticks up approximately 5 mm from the airship surface.

2. On a 10 cm pole. In a second experiment, we mounted a 10 cm high pole on the
top of the blimp so that the sensor is on an exposed position in 10 cm distance to
the hull.

3. On a 20 cm pole. In a third experiment, we extended the pole to 20 cm height so
that the sensor is mounted in 20 cm distance to the hull.



5.2. Probabilistic Flow Sensor Model 69

The measurements in the experiments with the first two methods showed a non-negligi-
ble influence of the surrounding air accompanying the blimp, which is hard to model.
Even when placing the sensors on a pole at a distance of 10 cm from the hull, the velocity
estimates provided by our particle filter approach were worse than those obtained with
the plain motion model. In contrast, the third method turned out to be a good trade-off
between a sufficiently large distance to the hull to minimize the influence of aerodynamic
effects on the one hand and a low distance to keep good navigation capabilities when
navigating close to obstacles on the other hand. Therefore, we decided to mount all flow
sensors in a distance of 20 cm to the hull in our further system setups.

5.2 Probabilistic Flow Sensor Model

Like many types of air flow sensors, the thermal flow sensors that we apply on our blimp
provide a scalar measurement value z ∈ R that depends on the air velocity vz along
the fixed measurement axis of the sensor. In the following, we present our probabilistic
sensor model that specifies the measurement likelihood p(z | x) of air flow sensors with
a fixed measurement axis.

We model the measurement principle by assuming Gaussian noise in the heteroscedas-
tic measurement process

z = h(vz) + ε with ε ∼ N (ε; 0, σ(vz)
2) (5.1)

where h is a strictly monotonic increasing function. The noise ε typically depends on
the sensor characteristics as well as on the air velocity.

In indoor navigation scenarios, we assume the air to be static (no wind) and the sensor
to be placed at a sufficient distance from the hull so that the influence of the surrounding
air accompanying the blimp can be neglected. The measurement depends on the trans-
lational velocity v and rotational velocity ω of the blimp where both are contained in
the state vector x. The velocity of the point at the position rz in the body-fixed frame
of reference where the sensor is rigidly mounted, is v + ω × rz. Hence, the velocity
component of the air sweeping over the sensor along its measurement axis nz is defined
through the projection

vz(x) = (v + ω × rz) · nz . (5.2)

According to Equation (5.1) the probabilistic measurement model used for Monte
Carlo state estimation is defined by the Gaussian distribution

p(z | x) = N (z;h(vz(x)), σ(vz(x))2) . (5.3)

For the implementation of the model described above, we learn functions approximat-
ing h : R→ R and σ : R→ R from a set of training data {(xi, yi)}i∈[1,n]. Each training
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data point contains the velocity vz of the sensor relative to the air in xi and the measured
flow value z in yi. According to our model, all points are assumed to be generated from
yi = h(xi)+εi with εi ∼ N (εi; 0, σ(xi)

2). In the following, we present a non-parametric
and a parametric regression approach to approximate h and σ. As shown in Figure 5.4,
both are suitable for our regression analysis problem.

5.2.1 Local Linear Regression

In general, local regression [176] computes a weighted average of the training function
values yi giving a higher weight to those points near the requested value x. In our
approach, we apply the Gaussian kernel

w(x, x′) =
1√
2π l

exp

(
−(x− x′)2

2 l2

)
(5.4)

with bandwidth l for local weighting. For a compact representation, we define

W (x) =
1∑n

i=1 w(x, xi)
diag(w(x, x1), . . . , w(x, xn)) , (5.5)

X =

[
1 . . . 1

x1 . . . xn

]
, (5.6)

and Y =
[
y1 . . . yn

]
. (5.7)

In local linear regression, each function value is computed from a linear regression

f(x) = A(x)

[
1

x

]
(5.8)

where the coefficient matrix A minimizes the locally weighted sum of squared errors

(Y − AX)T W (x) (Y − AX) . (5.9)

In the linear, one-dimensional case it holds that A = [a0, a1]. Minimizing Equation (5.9)
gives the weighted least squares estimator

Â(x) = Y W (x)XT (XW (x)XT )−1 (5.10)

and finally the estimated function value

f̂(x) = Â(x)

[
1

x

]
. (5.11)

For our flow sensor model, we extend the local linear regression by an estimate of the
variance σ2. In the training stage, we calculate εi = yi − f̂(xi) for each training data
point. Based on these values, we estimate σ(x)2 as the local constant regression [176]
on the squared residuals:

σ̂(x)2 =

∑n
i=1w(x, xi) ε

2
i∑n

i=1 w(x, xi)
. (5.12)
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Figure 5.4: The local linear regression (top) and the polynomial regression (bottom) on the tube
sensor training data generated from about 20 min of operation. The regression on the measure-
ment noise is represented by the 1σ interval.
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5.2.2 Polynomial Regression

An alternative technique is the polynomial regression. It is a parametric representation
and therefore less flexible than local regression, but the evaluation of the polynomial is
usually more efficient than applying a local linear regression to the training data. For a
compact representation of the polynomial function

f(x) =

p∑
d=0

adx
d = Ap [1, x1, . . . , xp]T (5.13)

of degree p, we define the regression parameter Ap = [a0, . . . , ap] and

Xp =


1 . . . 1

x1
1 . . . x1

n
...

...
xp1 . . . xpn

 . (5.14)

Minimizing the squared sum of estimation errors

(Y − ApXp)
T (Y − ApXp) (5.15)

on the training data gives the polynomial least squares estimator [176]

Âp = Y XT
p (XpX

T
p )−1 (5.16)

and finally the estimate f̂(x) = Âp [1, x1, . . . , xp]T . Here, we estimate the variance
σ(x)2 by another polynomial regression

σ̂(x)2 = Â′p [1, x1, . . . , xp]T (5.17)

on the squared residual with εi = yi − f̂(xi) and

Â′p = [ε2
1, . . . , ε

2
n]XT

p (XpX
T
p )−1 . (5.18)

As shown in Figure 5.4, both regression techniques are suitable for our flow sensor
model.

5.2.3 Efficient Model Approximation

Although it is computationally more demanding than the polynomial regression, we ap-
ply local linear regression, because it has better extrapolation properties, which are re-
quired in cases where the test data temporarily leaves the area covered by the training
data. Furthermore, local linear regression better models the heteroscedastic uncertainty
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compared to the polynomial regression, which does not ensure that the estimated vari-
ance is positive, especially when extrapolation is required.

The main drawback of local linear regression, however, is its computational complex-
ity. A single function call is in O(n) where n is the typically large number of training
data points. Additionally, the particle filter requires to call the regression function for
every particle on every incoming air flow measurement such that an online localization
requires a fast approximation of the regression. To obtain a fast approximation, we dis-
cretize the function and store a dense grid containing the function and variance values.
This discrete approximation can be calculated once and is stored in a table for fast ap-
proximative function calls with linear interpolation in O(1).

Furthermore, the fast approximation of the regression allows to efficiently calculate
the inverse h−1 of the strictly monotonic increasing measurement function, which is re-
quired for airship odometry from air flow and IMU sensors (see Chapter 8). We calculate
the inverse function value through a binary search in the function values of the model
approximation and apply linear interpolation. This results in a complexity of O(logm)

where m is the number of grid points in the discrete approximation.

5.3 Experimental Evaluation

We evaluated our probabilistic air flow sensor model in extensive experiments with
our second blimp prototype (see Section 2.1.2) in a large indoor environment of about
20 m × 12 m with a vertical space of 5 m. The blimp was equipped with two SDP600
differential pressure sensors, which are operating as thermal flow sensors. As a result
of our preliminary experiments, we mounted the flow sensors on a pole at a distance
of 20 cm from the hull. Because the estimation of the forward velocity usually suffered
from large errors, we placed the sensors on top of the blimp with the measurement axis
pointing forward. In particular, we mounted two sensors on the pole in parallel: one
sensor with a tube and a plain sensor as shown in the Figures 5.1 and 5.3. During all
experiments, we obtained accurate ground truth states from an optical motion capture
system (see Section 2.5).

In the model training stage, we recorded training data from about 20 min of manually
operated flight including 24,196 measurements of each air flow sensor at 20 Hz. Using
this data, we trained the flow sensor models as shown in Figure 5.4 and also learned the
parameters of our motion model (see Section 2.6).

To evaluate the performance of our novel air flow sensor model with respect to state
estimation, we applied the model in a particle filter as described in Section 3.2. To re-
duce the influence of other sensors, we utilized only the air flow sensors together with
the airship motion model for velocity estimation in the particle filter. In our implemen-
tation, we restricted the considered points in the local linear regression to those having
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Figure 5.5: The temporal correlations in the measurement errors of the air flow sensors that sense
the forward velocity of the blimp. Each measurement error is computed as the deviation between
the actual measurement and the prediction of our local linear regression air flow sensor model
given the ground truth velocity information.

a significant weight for the reason of efficiency. We chose the bandwidth l = 0.1 of
the Gaussian kernel and the polynomial degree p = 5. We evaluated our approach in
terms of the state estimation error in an experiment of about 12 min of manual opera-
tion. Throughout this experiment, the operator carried out many different maneuvers
including strong accelerations and rotations, which also caused rocking movements of
the blimp. We evaluated the quality of the velocity estimates in terms of the root mean
square error (RMSE) of the estimated forward velocity vx with respect to the ground
truth value v?x (see Section 2.5).

The Bayes filtering scheme on which our state estimation approach is based relies on
the Markov assumption [169] that the measurement noise of consecutive measurements
is conditionally independent. To validate this with respect to our flow sensor model
we evaluated the autocorrelation of the measurement noise depending on the time lag
(see Figure 5.5). Despite the high level of correlation even at a time lag of 1 s, the
results of our approach showed its optimal performance when a flow measurement is
integrated into the belief of the filter every 0.2 s (see Figure 5.6). This is caused by the
fact that the filter benefits from the information of more frequent measurements even if
there are a limited correlations that are not modeled. In our experiments, the tube sensor
significantly outperforms the plain sensor and the local linear regression model performs
slightly better than the polynomial regression model, at least for the tube sensor.

Figure 5.7 shows the robustness of our approach to the Monte Carlo approximation
with a limited number of particles. As a trade-off between accuracy and runtime, 500

particles seem to be the best choice. Furthermore, we compared the forward velocity
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estimates of our approach with both flow sensor models to those of the motion model
without any sensor data fusion. As shown in Figure 5.8 and 5.9, both sensor models sig-
nificantly outperform the plain motion model and therefore are beneficial to an improved
localization of miniature airships.

5.4 Related Work

A popular application of airspeed sensors on UAVs is the combination with GPS for
wind estimation [27]. In this context, approaches to calibrate the scaling of an airspeed
sensor have also been developed [24].

Furthermore, several authors considered state estimation or control of robots based
on flow sensors. For example, Fei et al. [45] and Tokutake et al. [171] utilized ther-
mal air flow sensors on the wings of small unmanned aircrafts for the detection of flight
parameters including the airspeed based on a neural network and piecewise quadratic re-
gression, respectively. Kruusmaa et al. [92] determined the optimal position of pressure
sensors on an artificial trout to estimate the velocity using a quadratic regression model.
For attitude estimation, Euston et al. [44] fused IMU and airspeed measurements of a
UAV.

Many researchers used optical flow on image sensors such as the low cost devices
employed in optical mice for improved dead-reckoning odometry on ground robots [85].
Dille et al. [38] additionally apply an online re-calibration of the local linear regression
calibration for an optical flow sensor. Likewise, Conroy et al. [29] determined the max-
imum likelihood velocity of a quadrotor using an omnicam-based optical flow sensor.
Similar techniques have been applied on micro aerial vehicles such as the palm-sized
glider designed by Woods et al. [179] inspired by flying insects. Here, the authors uti-
lized an embedded low resolution optical flow sensor for target detection and obstacle
avoidance. In addition to an optical flow sensor, some authors employed airspeed sensors
for flight stabilization [83] or even ground speed and wind estimation [148].

However, the approaches mentioned above apply maximum likelihood state estima-
tion or control of robots based on the calibrated output of one or multiple identical flow
sensors. In contrast, we explicitly model the uncertainty of the measurements and of the
motion of the robot for probabilistic state estimation. Thus, our approach can seamlessly
integrate arbitrary sensors and takes into account the control signals sent to the actuators
of the robot.

5.5 Conclusions

In this chapter, we presented a novel probabilistic model for air flow sensors, which
is suitable for dead reckoning odometry as well as for probabilistic velocity estimation
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for miniature indoor airships. In contrast to other approaches, we explicitly consider the
measurement uncertainties of the thermal air flow sensors and probabilistically fuse their
measurements with the prediction calculated by the airship motion model in a particle
filter. Additionally, our approach allows to seamlessly integrate other sensors such as
sonars or an IMU for localization. We compared two regression methods for sensor
calibration including uncertainties. Both proved to be suitable for probabilistic velocity
estimation. Furthermore, we identified suitable air flow sensor setups by investigating a
couple of sensor placement methods and different sensor configurations. In experiments
with a real blimp operating in a large indoor environment, we demonstrated that our
approach accurately estimates the velocity of the blimp and outperforms the velocity
estimates of a standard motion model for miniature airships.



Chapter 6

IMU Sensor Model

Today, inertial sensors are a popular means to obtain accurate ori-
entation estimates even in small-sized and low-cost devices. In
this chapter, we present a standard probabilistic sensor model for
the compensated measurement data for the individual sensor chips
applied on an inertial measurement unit (IMU). Furthermore, we
propose a probabilistic sensor model that specifies the likelihood
of orientation estimates of a recursive filter applied on the IMU.
In the context of miniature airship localization, we demonstrate in
experiments with a real blimp that the particle filter localization
with the sensor model for orientation estimates significantly out-
performs the localization with the standard model through its more
effective two-stage filter design.

• • • • •

Inertial sensors are a well-studied topic and most commercially available IMUs are
equipped with three-axis accelerometers, gyroscopes, and magnetometers. Furthermore,
they are usually equipped with a low-power processor, which carries out the compensa-
tion for systematic measurement errors resulting in the compensated measurement data
and the sensor data fusion resulting in the filtered orientations, which are accurate ori-
entation estimates using a variant of the Kalman filter. Especially since the sensor chips
that are usually applied on IMUs can be built in MEMS technology, lightweight and
energy-efficient IMUs are broadly available. Their sensors provide valuable and pre-
cise information on the motion of the device so that IMUs have become popular for the
localization of robots and mobile devices in general.

In this chapter, we consider two variants of IMU data and introduce corresponding
probabilistic sensor models for recursive state estimation. First, we present a standard
sensor model for compensated measurement data of the individual sensor chips the IMU
is equipped with. Second, we propose a model for the output of the on-board sensor data
fusion, namely filtered three-dimensional orientations. Both probabilistic sensor models
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specify the likelihood p(z | x) of a measurement z given the state of the system x, which
can be used in the particle filter for localization.

6.1 Sensor Model for Compensated IMU Measurement
Data

In this section, we present a standard sensor model for compensated IMU measurement
data [170]. We assume that the IMU provides the compensated measurements of the
individual sensor chips the IMU is equipped with. In particular, we assume that the
measurement vector

zI,c =
[
ωTI,c, a

T
I,c,m

T
I,c

]T
(6.1)

contains the angular velocities ωI,c = [ωI,x, ωI,y, ωI,z]
T measured by the gyroscopes, the

translational accelerations aI,c = [aI,x, aI,y, aI,z]
T measured by the accelerometers, and

the magnetic field vector mI,c = [mI,x,mI,y,mI,z]
T measured by the magnetometers.

Furthermore, we assume that all sensors are aligned with the IMU frame of reference
FI.

As it is common practice, we assume that the individual components of the mea-
surements are statistically independent given the state x and model their measurement
likelihood as the expected values with an additional white Gaussian noise [1, 18]. This
results in

p(ωI,c | x) = N
(
ωI,c;µω(x), σ2

I,c,ωI3×3

)
(6.2)

p(aI,c | x) = N
(
aI,c;µa(x), σ2

I,c,aI3×3

)
(6.3)

p(mI,c | x) = N
(
mI,c;µm(x), σ2

I,c,mI3×3

)
(6.4)

where I3×3 is the three-dimensional identity matrix and σI,c,ω, σI,c,a, σI,c,m are the stan-
dard deviations of the measurement noise of the individual sensors, which can be deter-
mined in various ways [1].

Here, all measurements are with respect to the IMU frame of reference FI. The ac-
tual angular velocity and acceleration contained in the state vector x are expressed with
respect to the body-fixed frame of reference Fb (see Section 2.4). Consequently, the
mounting position and orientation (pI,qI) of the IMU with respect to Fb has to be taken
into account. Furthermore, the actual magnetic field vector m and the gravity g, which
are assumed to be constant with respect to the global frame of reference Fg throughout
the operational area, have to be transformed to FI. When calculating the expected accel-
erations, we take into account the fictitious forces in the moving IMU frame of reference



6.2. Sensor Model for Filtered Orientations 81

FI. This results in[
0

µω(x)

]
= qI �

[
0

ω

]
� q−1

I (6.5)[
0

µa(x)

]
= qI �

[
0

a + ω × v +α× pI + ω × ω × pI

]
� q−1

I

+ (q� qI)� [0, 0, 0, g]T � (q� qI)
−1 (6.6)[

0

µm(x)

]
= (q� qI)�

[
0

m

]
� (q� qI)

−1 (6.7)

where � is the quaternion product and q−1 is the inverse of q [37]. As we assume that
the measurements of the individual sensors are statistically independent given the state
x, the overall measurement likelihood is the product

p(zI,c | x) = p(ωI,c | x) p(aI,c | x) p(mI,c | x) (6.8)

of the individual likelihoods.

6.2 Sensor Model for Filtered Orientations

In this section, we propose a probabilistic sensor model for the orientation estimates of
the on-board filter of an IMU. We assume that the IMU provides an accurate orientation
estimate in a quaternion zI,f. We model the measurement likelihood of the orientation
estimates by assuming Gaussian noise in all three rotation axes, i.e.

zI,f = q� qI � q̃([γ1, γ2, γ3]) with γi ∼ N
(
γi; 0, σ2

I,f

)
, (i = 1, 2, 3) (6.9)

where q is the orientation contained in the state vector x, qI is the mounting orientation
of the IMU with respect to Fb, and � is the quaternion product. The function q̃(ϕ) rep-
resents the quaternion from the incremental rotation ϕ = [ϕx, ϕy, ϕz]

T around all three
axes [37]. Further, σI,f is the standard deviation of the errors γ1, γ2, γ3 of the orientation
estimates of the IMU. Equation (6.9) can be formulated as

(q� qI)
−1 � zI,f = q̃(γ1, γ2, γ3) (6.10)

where q−1 is the inverse of q [37]. In a first-order Taylor approximation of q̃, which as-
sumes constant angular velocity during the incremental rotation (see Section 6.7 of [37]
for details), this results in

(q� qI)
−1 � zI,f ≈

[
1, 1

2
γ1,

1
2
γ2,

1
2
γ3

]T (6.11)

and finally specifies the probabilistic sensor model

p(zI,f | x) = N
(

[0, I3×3] ((q� qI)
−1 � zI,f); 0,

σ2
I,f
4
I3×3

)
. (6.12)

Here, I3×3 is the three-dimensional identity matrix.
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Figure 6.1: The third prototype of our miniature blimp operating in the maze-like indoor envi-
ronment.

6.3 Experimental Evaluation

We evaluated and compared both sensor models in the context of indoor airship local-
ization with our third blimp prototype (see Section 2.1.3). The blimp was equipped with
five sonar sensors, three air flow sensors, and an IMU for localization. The IMU [156]
weighs 9 g and is equipped with gyroscopes, accelerometers, and a three-axis magne-
tometer. The IMU sensor data is fused using an extended Kalman filter that runs on
the processor integrated into the IMU and provides accurate attitude and heading esti-
mates [118]. In addition to the orientation estimates, the IMU provides the measurement
data of the individual sensor chips, which is compensated for (temperature-dependent)
biases and magnetic cross-axis effects. For our experiments, we created a complex
maze-like environment in a large hall. The environment had a size of approximately
10 m × 10 m and is shown in Figure 6.1. It was mapped with the help of a laser range
finder and represented as an OctoMap with a resolution of 10 cm as shown in Figure 6.2.
During all experiments, we obtained accurate ground truth states of the blimp from the
optical motion capture system as a reference.

To evaluate and compare the performance of both IMU sensor models, we applied
them together with the sonar sensor model and the air flow sensor model in the parti-
cle filter localization (see Section 3.3). In our implementations of the particle filter, we
determined the set of objects relevant for the sonar measurements by ray-casting using
a fixed angular resolution of 3◦ and stored a precalculation of these objects for efficient
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Figure 6.2: The OctoMap representation of the indoor environment in which the blimp was
manually operated during the experiments. The trajectory of the blimp has a length of 276.6 m
and is depicted in yellow. The blimp itself is shown at its final position on the trajectory.
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lookups of the measurement likelihood. In the air flow sensor model, we chose the band-
width l = 0.1 m

s and precalculated the approximation with a grid resolution of 0.02 m
s .

We determined the standard deviations of the IMU measurement noise in a statistical
identification by comparing the measurements and filter estimates to the ground truth
data. In order to ensure the conditional independence of the measurements, we inte-
grated a sonar measurement only every 0.2 s and an air flow measurement every 1 s into
the belief of the filter. Additionally, we applied a convolution with a Gaussian kernel
with a standard deviation of 0.1 m to the measurement likelihood function of the sonar
sensors. This facilitated a reduction of the minimum-required density of the particles
and therefore reduced the number of particles needed for successful localization.

In the preparation of the experiment, we learned the parameters of all models from
the motion capture reference trajectory together with the real sensor and control data re-
corded during manually controlled flight experiments. Neither during the model training
nor during the localization experiments, there were any dynamic, unmapped obstacles
disturbing the measurements.

In our experiment, we manually controlled the blimp for 10 min through the maze-
like environment. The collision-free trajectory had a length of 276.6 m and is depicted
in Figure 6.2. We evaluated and compared the localization methods on the sensor and
control data recorded during operation. As a measure of the localization error, we used
the Euclidean distance between the ground truth position and the position estimate of the
particle filter, which is calculated as the weighted average of all particles. We considered
a localization run as successful, if the position estimate of the filter never deviated by
more than 2 m from the ground truth position during the whole run (see Section 8.4 for
details on this threshold). For each successful localization run, we measured the root
mean square (RMS) of the three-dimensional position error over the whole trajectory.

We evaluated the localization results of two different particle filter implementations:

• Compensated: The particle filter implementation with the IMU sensor model on
compensated measurement data.

• Filtered: The particle filter implementation with the IMU sensor model on filtered
orientations.

Both implementations additionally applied the sonar sensor model described in Chap-
ter 4 and the air flow sensor model introduced in Chapter 5.

Figure 6.3 and 6.4 show a statistical evaluation of the localization experiments. Since
the Compensated model also provides information about the translational acceleration, it
can achieve a higher localization accuracy than the Filtered model for a sufficiently high
number of particles. However, the Compensated implementation estimates the trans-
lational acceleration and the rotational velocity of the airship in the particle filter and
therefore demands a high number of particles to cover the high-dimensional state space.
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In contrast, the Filtered model relies on the preprocessed orientation estimates of the
on-board EKF of the IMU, which partially shifts uncertainty from the particle filter to
the more efficient EKF in the two-stage filter design. On the one hand, this results in
a better performance of the Filtered model when only a small number of particles can
be used. On the other hand, the Filtered model is an approximation, as the on-board
EKF only relies on IMU measurement data. This is a slight drawback compared to the
Compensated implementation in which the IMU measurements are fused with all avail-
able information – including the orientation, velocity, and acceleration estimates of the
motion model. However, the Filtered model outperformed the Compensated model for
reasonable numbers of particles in the context of blimp localization.

6.4 Conclusions

In this chapter, we introduced probabilistic sensor models for two variants of IMU mea-
surements. Both models take into account the uncertainties of the input data and provide
a Gaussian sensor model, which enables an efficient integration of sensor data into Bayes
filter implementations. We compared both models in an experiment with a real blimp
in the context of localization in an indoor environment. Although the filtered model is
an approximation, it significantly outperforms a standard model for compensated IMU
measurements in case of a small number of particles. Throughout this work, we aim at
developing an efficient approach to online blimp localization for autonomous navigation.
This requires a localization approach that can deal with the Monte Carlo approximation
with a limited number of particles in the particle filter. Hence, we prefer to use the sensor
model for filtered orientations over the sensor model for compensated IMU measurement
data in the remaining parts of this work.



Chapter 7

Simultaneous Localization and
Estimation of Motion Model
Parameters

With regard to self-localization, flying robots have several limita-
tions compared to ground vehicles. Due to their limited payload,
flying vehicles are restricted to a few lightweight sensors. Addi-
tionally, the kinematics of flying robots requires sophisticated mo-
tion models, which are typically hard to calibrate. However, since
the sensors provide only a limited amount of information, the mo-
tion models need to be highly accurate to reduce the potential in-
crease of uncertainty caused by the movements of the vehicle. In
this chapter, we present a novel approach to simultaneous localiza-
tion and estimation of motion model parameters and their adaption
in the context of a particle filter. To deal with sudden changes of
parameters, our approach utilizes random sampling augmented by
additional damping to avoid oscillations caused by the delayed de-
tection of the changes. As we demonstrate in experiments with a
real blimp, our method can deal with very sparse and imprecise
sensor information and outperforms a standard Monte Carlo local-
ization approach.

• • • • •

Recently, UAVs got smaller and are therefore applicable even in autonomous naviga-
tion tasks in narrow indoor environments. In the previous chapter, we showed how one
can accurately localize a miniature indoor blimp that is equipped with sonar and air flow
sensors as well as with an IMU. The smaller flying robots get, however, the less sensor
information is available due to their strictly limited number of lightweight and imprecise
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sensors. This increases the importance of the prediction model of the Bayes filter local-
ization, which in our case is called the motion model of the robot. Most ground vehicles
are equipped with wheel encoders and can sense their motion relative to the ground in a
fairly accurate way. Motion models of aerial robots, however, in general cannot rely on
direct measurements of the velocity and need to estimate accelerations due to thrust and
air drag. Consequently, the motion models are based on the complex kinematics of the
vehicle, which can be modeled by physical approximations and depends on numerous
parameters. In practice, these parameters are usually hand-tuned by a human or derived
from calibration experiments using expert knowledge or ground truth pose estimates.

In this chapter, we consider the problem of localizing a small-sized blimp in indoor
environments using Monte Carlo localization with very sparse sensor information. Our
first blimp prototype has an effective payload of 100 g and is equipped with four minia-
ture sonar sensors. Due to their huge opening angle, the sonar sensors provide only little
information about the orientation of the blimp. To cope with this lack of sensor infor-
mation, we improve the proposal distribution by simultaneously estimating the uncertain
parameters of the motion model. Our approach enables an online localization and has a
couple of beneficial properties. It does not rely on a previous calibration of the motion
model parameters and can adapt to changing parameters during operation. Our method
explicitly includes a damping to prevent an overshooting of the parameters for situations
in which parameter changes can only be detected with certain delays. We envision a wide
range of applications of our approach including a non-constant payload of the blimp, de-
formations of the blimp due to collisions, or even the application on ground robots, to
deal with, for example, ground-dependent wheel slippage. Furthermore, the estimated
parameters, in combination with the underlying physical motion model, can be used for
an online adaption of motion controllers [142, 183] in autonomous navigation scenarios.

In the following, we introduce our approach to simultaneous Monte Carlo localization
and parameter estimation and propose an approach to deal with changed parameters even
if they are detected with a certain delay. In experiments in simulation and with a real
robotic blimp, we demonstrate the performance of our approach compared to standard
Monte Carlo localization with previously calibrated parameters.

7.1 Simultaneous Monte Carlo Localization and
Parameter Estimation

In mobile robot localization, parametric models are often applied to predict the motion of
the robot [55, 88, 183]. Let Θ be the parameter vector containing unknown parameters
of the motion model. In the following, we derive how unknown (and probably time-
varying) parameters of the motion of the robot can be taken into account in the recursive
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Figure 7.1: The extended dynamic Bayes network for localization of a mobile robot. It charac-
terizes the evolution of the states x, the controls u, the measurements z, and the parameters of
the motion model Θ.

probabilistic state estimation in the particle filter, which was introduced in Section 3.2.
In the presence of such unknown parameters, the underlying Bayes network is extended
as depicted in Figure 7.1. Here, the hidden variables are the states and the additional,
non-observable parameter nodes. Consequently, the full localization posterior given in
Equation (3.5) is extended to p(x1:t,Θ1:t | z1:t,u1:t), which can be factorized to

p(x1:t,Θ1:t | z1:t,u1:t) = η p(zt | x1:t, z1:t−1,Θ1:t,u1:t)

· p(x1:t,Θ1:t | z1:t−1,u1:t) (7.1)

using Bayes rule where η is a normalizer. We factorize the second conditional probability
twice and obtain

p(x1:t,Θ1:t | z1:t−1,u1:t) = p(xt,Θt | x1:t−1,Θ1:t−1, z1:t−1,u1:t)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t) (7.2)

= p(xt | x1:t−1,Θ1:t, z1:t−1,u1:t)

· p(Θt | x1:t−1,Θ1:t−1, z1:t−1,u1:t)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t) . (7.3)
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Under the Markov assumption, Equation (7.1) together with Equation (7.3) can be sim-
plified to

p(x1:t,Θ1:t | z1:t,u1:t) = η p(zt | xt)
· p(xt | xt−1,Θt,ut)

· p(Θt | Θt−1,x1:t−1, z1:t−1)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t−1) . (7.4)

Here, we assume that future controls give no information about the current state of the
robot, which is a standard assumption that is elaborately justified by Thrun et al. [169].

To implement this recursive filtering scheme, we use a particle filter in which a setMt

of weighted particles represents the belief at time t. Each particle represents a hypothesis
of a robot state and parameter vector. As proposal distribution, we use the motion model
combined with the model of the parameter behavior

π(x1:t,Θ1:t | z1:t,u1:t) = p(xt | xt−1,Θt,ut)

· p(Θt | Θt−1,x1:t−1, z1:t−1)

· p(x1:t−1,Θ1:t−1 | z1:t−1,u1:t−1) , (7.5)

which results in the importance weight

w
[i]
t =

p(x1:t,Θ1:t | z1:t,u1:t)

π(x1:t,Θ1:t | z1:t,u1:t)

∝ p(zt | xt) (7.6)

of the i-th particle at time t.
Assuming the parameters to be constant over time, the belief update (7.4) can be

performed according to the following three alternating steps:

1. In the prediction step, for each particle, we draw a new particle according to the
parameterized motion model p(xt | xt−1,Θt,ut) given the action ut.

2. In the correction step, we integrate a new observation zt by assigning a new weight
w

[i]
t to each particle according to the sensor model p(zt | xt).

3. In the resampling step, we draw a new generation of particles from Mt (with
replacement) so that each sample inMt is selected with a probability that is pro-
portional to its weight.

Following Liu and West [105], we reduce the sample attrition by adding a small noise to
the parameter vector of each sample during resampling. To prevent a loss of information
in the parameter vector sampling, we apply kernel smoothing

Θ
[i]
t ∼ N (Θ

[i]
t ; aΘ

[i]
t−1 + (1− a)µΘt−1

, h2ΣΘt−1) (7.7)
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where µΘt−1
and ΣΘt−1 are the mean and the covariance of the parameter vector over

the particle set at time t−1. The constant factors a = 3γ−1
2γ

and h2 = 1−a2 only depend
on a discount factor γ, which we set to 0.95.

7.2 Adaption to Changed Parameters

In certain cases, we cannot assume the physical properties of the motion of the robot to
be constant for the complete period of operation. For example, wear and tear, changed
payload, collisions, low batteries, or even manual mounting of banner ads can change the
behavior of the robot. Once the parameter vector has converged within the particle filter,
an adaption to one or more changed parameters would take a large number of sampling
steps or could simply be impossible.

Fortunately, this problem can be solved in a similar way as the well-known “kidnapped
robot” problem by sampling an appropriate number of particles at random states [169].
We analogously cope with parameter changes by drawing the parameter vector Θ uni-
formly from the parameter space for those random samples. The proportion of uniform
samples is determined by monitoring the likelihood of the sensor measurements

pt =
1

N

N∑
i=1

p(zt | x[i]
t ) (7.8)

averaged over all particles. We adopt the technique of Gutmann and Fox [63] and extend
the resampling by setting the parameter vector of each particle to a uniform sample with
probability

max

(
0, 1− pshort

ν plong

)
. (7.9)

Here, pshort and plong are short-term and long-term averages of the sensor likelihood up-
dated by

pshort,t = (1− αshort) pshort,t−1 + αshort pt (7.10)

plong,t = (1− αlong) plong,t−1 + αlong pt (7.11)

in each correction step with the exponential decay factors 0 < αlong � αshort ≤ 1. The
parameter ν allows for adjusting the level at which random samples are added. Thus, this
approach only adds random samples if the short-term average of the sensor likelihood is
less than ν times the long-term average.

However, the sole addition of random parameter samples does not yield superior re-
sults. This is due to the fact that the adaption to changed parameters does not start until
the pose estimate is slightly displaced from the ground truth caused by wrong parameters
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and the average observation likelihood is dropped. When random parameter samples are
added, those particles that quickly correct the displacement will get a higher observation
likelihood. This leads to an overshooting of the estimated parameter values and causes
the parameter values to oscillate for several time steps (see Figure 7.4). We address
this oscillation problem by defining a lower bound of the covariance h2ΣΘ so that the
parameter vectors are sampled according to

Θ
[i]
t ∼ N (Θ

[i]
t ; aΘ

[i]
t−1 + (1− a)µΘt−1

, h2 m̃ax(ΣΘt−1 , ρ µΘt−1
µTΘt−1

)) (7.12)

where the m̃ax-operator builds a pointwise maximum over the diagonal elements of
the matrices and takes all other elements from the first argument. Here, ρ is the relative
covariance bound. This damps the oscillation and enables a lower localization error after
the change of parameters. Furthermore, this approach better handles very slow changes
of parameters, which are typically not detected through a sudden drop in the observation
likelihood.

Combining these techniques enables an autonomous robot to simultaneously localize
and estimate previously unknown parameters of the motion model in an online fashion
and to adapt to changed parameters during operation, which is especially important in
case of sparse or imprecise sensor information.

7.3 Experimental Evaluation

We implemented and evaluated our novel approach to simultaneous Monte Carlo local-
ization and parameter estimation using simulation experiments and data acquired with a
real indoor blimp. In particular, we extended the particle filter described in Section 3.3
by the techniques described above. To measure the localization error, we used the Eu-
clidean distance between the weighted average of all particles and the ground truth pose.

Since miniature airships are typically not equipped with sensors such as wheel en-
coders for directly measuring their motion, it has to be estimated based on forces and
torques acting on them. Except for the air drag forces, all constituent parts can be deter-
mined in a straightforward way [183]. We approximate the drag force and torque of the
hull in an uncoupled way in our motion model introduced in Section 2.6. The air drag
model is parameterized on the translational drag coefficients D1, D2 along the x and y/z
axis, respectively, as well as on the rotational drag coefficient D′ along the yaw axis. In
addition, the drag force of the fins depends on the fin drag coefficient Df. Consequently,
we aim to estimate the parameter vector Θ = [D1, D2, D

′, Df]
T for our blimp during

localization.
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7.3.1 Experiments with a real blimp

In our experiments with our first blimp prototype (see Section 2.1.1), we used the same
experimental setup as the one described in Section 4.3. The blimp was equipped only
with four small, lightweight wide-angle sonar sensors, which provide distance measure-
ments to the environment. The environment had a size of 14 m × 7 m and we obtained
ground truth positions from the camera integrated in the gondola and optical markers
placed on the floor.

In an experiment of about 9 min of manually operated flight, the blimp covered a dis-
tance of about 180 m. Since we did not use an IMU and the wide-angle sonar sensors
provide hardly any information about the orientation of the blimp, the localization relied
on an accurate prediction of the motion model. As can be seen in Figure 7.2, the simulta-
neous localization and estimation of initially unknown parameters substantially benefits
from the improved proposal distribution. It resulted in a significantly lower rotational
localization error compared to the results obtained using the implementation with previ-
ously learned (see Section 2.6) and fixed parameters of the motion model. Note that the
previously estimated parameters are not used for our proposed simultaneous localization
and parameter estimation. During localization, the estimate of the parameter vector typ-
ically converged within the first minute of the experiment. Although the dimensionality
of the state estimation problem was increased by the four parameters, the localization
success rate revealed that the number of particles required to reliably localize the blimp
is substantially smaller when using the simultaneous parameter estimation.

Furthermore, we tested our localization system with simultaneous parameter estima-
tion in a global localization scenario with initially unknown pose and motion model
parameters. We carried out 10 runs with 5,000 particles each. While the pose estimate
typically converged within the first 10 s, it still took 1 min to determine the parameters.

7.3.2 Simulation of Changing Parameters

To evaluate the capability of our localization system to adapt to changing parameters
of the motion model, we performed a series of experiments on the simulated blimp de-
scribed in Section 2.6.4. The true poses were passed as observations to the localization
system and their likelihoods were modeled as a Gaussian distribution with high transla-
tional and low rotational precision (σtrans = 0.2 m, σrot = 15◦).

In an experiment of about 10 min of manually operated flight, we evaluated different
relative covariance bounds ρ in our localization system using 5,000 particles. Note that
we experimentally tuned the parameters αshort = 0.2, αlong = 0.01, and ν = 0.8 to obtain
best results. Although we introduced only little noise to the velocity of the blimp during
simulation, the parameter estimation during localization was a challenging task due to
the correlation of the different parameters (see Figure 7.4). Furthermore, estimating all
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Figure 7.2: The average RMS localization error and the success rate of the simultaneous Monte
Carlo localization and parameter estimation compared to the standard localization with previ-
ously learned parameters of the motion model. The error bars indicate the 95 % confidence
intervals over ten runs.
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Figure 7.3: The average translational and rotational RMS localization error of a 10 min localiza-
tion experiment on simulated data with changing parameters of the motion model. The error bars
indicate the 95 % confidence intervals over ten runs.

parameters requires a certain spectrum of movements. For example, during the first sec-
onds of our experiment, the blimp was controlled to move only forward, which resulted
in a quick convergence of solely the drag coefficient Dx.

Figure 7.3 presents the localization accuracy on the simulated data during which the
parameters of the motion model were changed as depicted in Figure 7.4. Both the trans-
lational and the rotational localization error are significantly lower for a relative covari-
ance bound of ρ > 0.15 than without a lower bound (ρ = 0) of the covariance of the
parameters. Figures 7.4 and 7.5 show the comparison of the simultaneous localization
and parameter estimation with and without a lower bound on the covariance. Although
most changes in the parameters are detected with a delay in both variants, the covariance
bounding effectively inhibits the oscillation of the parameter estimates and enables the
adaption even to slight changes in the parameters.

7.4 Related Work

In the past, several authors considered the problem of localizing small flying vehicles.
The majority of approaches, however, employed previously learned motion models. For
example, Ko et al. [88] used the ground truth estimates of a motion capture system for
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Figure 7.4: The parameter estimation results in an exemplary localization run of the simulated
blimp without covariance bounding. The area between the 2.5 % and 97.5 % quantiles of the
estimated posterior is marked gray.
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tuning the motion model. Our work presented in the previous chapters relies on ground
truth poses and uses additional IMU sensor information for localization. Acquiring the
ground truth data involves either expensive and bulky systems or lacks sufficient preci-
sion to infer highly accurate motion models.

Several approaches have been proposed to improve the proposal distribution in Monte
Carlo localization using information from sensors other than wheel encoders or control
commands. For example, Thrun et al. [167] sampled additional “dual” particles from
the observation likelihood to improve the robustness of the system and to better recover
from localization failures. Although this approach is very effective, sampling from the
observation likelihood is computationally demanding for range sensors such as sonar or
laser range finders. Consequently, sampling from the observation model is mainly used
for vision-based localization. Grisetti et al. [58] matched laser range scans to improve
proposals for wheeled robots operating on planar ground. Later, a similar approach was
applied together with IMU data to localize miniature quadrotors operating in six degrees
of freedom [60, 67]. However, it is unclear whether small and lightweight sensors, such
as three miniature wide-angle sonar sensors, allow for such a scan matching approach.

One of the first systems for Monte Carlo localization with online calibration of the
motion model was developed by Roy and Thrun [144]. They incrementally updated the
calibration parameters for differential drive robots based on a maximum likelihood po-
sition estimate obtained by scan matching. However, their approach relies on the direct
calculation of parameters out of two consecutive pose estimates, which is not possible
for more sophisticated motion models such as those for blimps. The case of sudden
changes of the models or their parameters due to failures or collisions of wheeled robots
was addressed by Plagemann and Burgard [129, 130]. They extended the particle filter
localization by motion models of different complexity and used a parameter sampling
similar to our approach. However, they assumed that the model and its parameters are
initially known and switched online between a finite number of models.

Beside Monte Carlo localization, Kalman filters are a popular technique for mobile
robot localization. For example, Larsen et al. [99] and Martinelli et al. [108] extended the
state vector by additional parameters for odometry errors. However, motion models of
flying vehicles are typically nonlinear and our wide-angle sonar sensors are not suitable
to be used within a Kalman filter. In the context of localization of UAVs, Bryson and
Sukkarieh [19] estimated the difference between IMU and motion model prediction in
an additional extended Kalman filter to update the model parameters and the IMU bias.
In contrast to our approach, this requires to update the model parameters directly based
on the prediction error similar to Roy and Thrun [144].

Some approaches utilize the expectation maximization algorithm to simultaneously
localize a robot and adapt its motion model. For example, Eliazar and Parr [43] and Yap
and Shelton [182] iterated between estimating the path of the robot and optimizing the
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parameters of the motion model. However, these approaches are not intended for online
applications and require to quickly optimize the parameters of the motion model given
a trajectory of the robot, which is not the case, e.g. for more complex motion models of
flying robots such as blimps. Kaboli et al. [76] used the Markov Chain Monte Carlo tech-
nique to learn sensor and motion model parameters from raw sensor and control data by
sampling trajectories and parameters, which typically requires substantial computational
resources.

In contrast to these previous approaches, our approach provides an online estimation
and adaption of previously unknown parameters of a complex and potentially nonlinear
motion model in the context of localization with particle filters. Furthermore, compared
to multiple model tracking systems, our approach can better deal with very slow changes
in the continuous parameter space.

7.5 Conclusions

In this chapter, we presented a novel approach to Monte Carlo localization of autono-
mous robots with simultaneous estimation of the parameters of the motion model. In
contrast to other approaches, our technique enables an online localization without prior
knowledge of all motion model parameters and can adapt to changed parameters dur-
ing operation. To avoid oscillations after parameter changes on systems for which these
changes can only be detected with a certain delay, our approach includes an appropriate
damping mechanism. The techniques presented in this chapter can be applied to state
estimation for general systems with unknown and possibly changing parameters of the
system dynamics. In experiments carried out with a real blimp and in simulation, we
demonstrated that our system significantly outperforms standard Monte Carlo localiza-
tion with previously learned parameters in terms of the localization accuracy and the
number of particles needed.





Chapter 8

Odometry Motion Model

One advantage of miniature airships is their ability to move safely
and to hover for extended periods of time. At the same time, they
are challenging, as their complex second-order kinematics makes
the prediction of their pose and velocity through physical simu-
lation difficult and imprecise. In this chapter, we consider the
problem of particle filter-based online localization for a miniature
blimp with lightweight ultrasound and air flow sensors as well as
an IMU. We introduce an efficient odometry motion model, which
is based on the measurements of air flow sensors and an IMU and
which is less computationally demanding compared to the stan-
dard physical simulation-based control motion model. In experi-
ments with a real blimp, our approach has proven to allow accurate
and reliable online localization of a miniature blimp and requires
an order of magnitude fewer particles compared to the localiza-
tion based on the standard control motion model. Furthermore, we
demonstrate the substantial improvements in terms of localization
accuracy when taking into account the temporal correlations of the
air flow measurements in our novel odometry motion model.

• • • • •

When used as autonomous mobile systems for indoor navigation, miniature airships
require the ability to accurately estimate their position. Since miniature airships can
usually carry only a limited number of lightweight sensors, their localization algorithms
rely on an accurate prediction of the motion of the robot. However, motion prediction
of airships is typically based on a physical simulation of the forces and torques acting
on the vehicle, e.g. thrust and drag. This prediction is computationally expensive and
induces a high amount of uncertainty.

In this chapter, we consider the problem of online localization for a miniature blimp
in indoor environments through probabilistic state estimation with a particle filter. The
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blimp is equipped with five tiny sonar sensors, three air flow sensors, and an IMU. We
therefore introduce an efficient odometry motion model, which combines the measure-
ments of multiple air flow sensors and an IMU for accurate probabilistic motion pre-
diction in the particle filter. In contrast to the standard simulation-based control motion
model, our odometry motion model requires an order of magnitude fewer particles for
localization and is less computationally demanding because it does not rely on complex
physical simulations. Therefore, it enables an accurate online localization. We present
the results obtained in experiments carried out with a real robotic blimp in a complex
indoor environment. The results demonstrate that our approach to online localization
outperforms the standard particle filter localization based on the control motion model
applied in many state-of-the-art autonomous blimp navigation systems [55, 88, 183].

8.1 Odometry for Miniature Airships

For ground robots, odometry motion models are often applied for localization. These
models integrate the measurements of wheel rotations, which is typically considerably
more accurate than predicting and integrating the motor accelerations based on the con-
trol commands [35, 103, 114]. A similar technique has been successfully applied with
optical flow on various kinds of robots [29, 38, 85, 179]. Unfortunately, most robotic
airships are not equipped with appropriate motion sensors. They therefore have to rely
on a physical motion simulation based on controls, which suffers from large errors [88],
even when adaptive motion models are used. In this section, we transfer the idea of
using odometry measurements together with probabilistic motion models to flying vehi-
cles equipped with an IMU and three or more air flow sensors. Thereby, we explicitly
consider the measurement uncertainty of the odometry sensors when drawing particles
from the odometry motion model used as the proposal distribution in the particle filter.

Figure 8.1 shows the particle filter localization process with our IMU and air flow
odometry motion model. When using the odometry motion model, which is based on
a first-order differential equation, the state vector of the particle filter can be reduced to
the pose x =

[
pT ,qT

]T , which drastically decreases the dimensionality of the filtered
state from twelve to six. In the remainder of this section, we assume that ũ represents the
odometry measurements, which is a common practice in the context of odometry motion
models for wheeled robots [169]. In our case, the odometry measurements

ũt = zF,1, . . . , zF,L, zI (8.1)

are those from all air flow sensors and the IMU. In our efficient implementation of the
particle filter with the odometry motion model, the proposal distribution p(xt | xt−1, ũt)

is conditioned on this odometry measurement vector. Consequently, the measurement
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Figure 8.1: The process of the particle filter localization for a mobile robot equipped with an
IMU, L air flow sensors, and K sonar sensors. The left side shows the individual processing
steps of the set of particles in the vanilla implementation introduced in Section 3.3. The actuator
and sensor devices providing control and measurement data are shown in the middle. The right
side shows the individual processing steps of the set of particles with our novel IMU and air flow
odometry motion model.
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likelihood

p(zS,1, . . . , zS,` | x) =
∏̀
i=1

p(zS,i | x) (8.2)

used for weighting the particles in the correction step of the particle filter takes into
account the remaining sensor data, which here are the sonar measurements. Hence,
throughout this chapter, we assume that z represents the measurements of all sonar sen-
sors.

8.2 IMU and Air Flow Sensor Odometry Motion Model

For dead-reckoning odometry of flying vehicles, the full six-dimensional velocity con-
sisting of v and ω is required. While the rotational part ω is directly measured by the
IMU, the translational part v cannot be obtained in a straightforward way for flying ve-
hicles. However, in indoor scenarios, where the air is assumed to be static, each air flow
sensor can measure its translational velocity along its measurement axis. In the follow-
ing, we assume the vehicle to be equipped with an IMU and L ≥ 3 air flow sensors
whose measurement axes are linearly independent. This is the minimum requirement
for estimating the three-dimensional translational velocity v. Furthermore, the number
of air flow sensors can be increased for additional redundancy.

Let the robot be equipped with L air flow sensors, which are mounted at the positions
r1, . . . , rL and whose measurement axes are n1, . . . ,nL. For a compact representation,
we combine the measurements z1, . . . , zL of all air flow sensors and formulate the joint
measurement function z1

...
zL

 =

 h((v + ω × r1) · n1) + ε1

...
h((v + ω × rL) · nL) + εL

 (8.3)

according to Equation (5.1) with εi ∼ N (εi; 0, σ((v + ω × ri) · ni)2). We solve Equa-
tion (8.3) for v by applying the inverse measurement function h−1 and obtainh

−1(z1 − ε1)
...

h−1(zL − εL)

 =

 (v + ω × r1) · n1

...
(v + ω × rL) · nL

 (8.4)

=

v · n1

...
v · nL

+

 (ω × r1) · n1

...
(ω × rL) · nL

 (8.5)

=
[
n1, . . . ,nL

]T
v +

[
r1 × n1, . . . , rL × nL

]T
ω (8.6)

= Afv +Bfω (8.7)
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with the constant matrices Af = [n1, . . . ,nL]T and Bf = [r1 × n1, . . . , rL × nL]T de-
pending on the arrangement of the air flow sensors on the vehicle. We invertAf using the
left pseudo-inverse A−1

f,left = (ATf Af)
−1ATf , which requires that rank(Af) = 3. This can

be guaranteed by at least three air flow sensors having linearly independent measurement
axes. We obtain

v = A−1
f,left


h
−1(z1 − ε1)

...
h−1(zL − εL)

−Bfω

 , (8.8)

which is the least-squares solution to v of the over-constrained system in Equation (8.7)
in the case of L > 3 [176]. In the case of L = 3, it is the exact solution and the left
pseudo-inverse is equal to the inverse A−1

f .
In the odometry motion model, we obtain the rotational velocity ωI = ω+ δ from the

IMU according to Equation (6.2). Here, we assume that the IMU is mounted aligned to
the body-fixed frame of reference. Otherwise, the corresponding rotation has to be taken
into account as described in Section 6.1. The measurement error δ ∼ N (δ; 0,Σω,I) is
modeled as zero mean Gaussian noise so that the resulting velocity estimates are

ω = ωI − δ (8.9)

and

v = A−1
f,left


h
−1(z1 − ε1)

...
h−1(zL − εL)

−Bf(ωI − δ)

 . (8.10)

In the particle filter, we utilize the dead-reckoning odometry motion model as the pro-
posal distribution in the prediction step. Thereby, we sample the measurement errors
ε1, . . . , εL and δ from zero mean Gaussian distributions where the covariances can be
identified from recorded measurement data with ground truth information. Subsequently,
we propagate the errors through Equation (8.9) and Equation (8.10) and compute the
position hypothesis p[i] of each particle from the resulting velocities by numerical inte-
gration. Additionally, we exploit the orientation estimated by the on-board sensor data
fusion of the IMU by sampling the orientation hypothesis q[i] of each particle directly
from the IMU sensor model described in Section 6.2.

8.3 Odometry Data with Temporally Correlated
Measurement Errors

One fundamental assumption of the Bayes filter is the Markov assumption, which states
that the random variables of the measurements and the motion of the robot are con-
ditionally independent given the state of the system [169]. However, as can be seen in
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Figure 8.2: The extended dynamic Bayes network for localization of a mobile robot taking into
account the temporal correlations in the odometry measurement errors. It characterizes the evo-
lution of the states x, the odometry ũ, the measurements z and the measurement errors of the
odometry data ε.

Figure 5.5, the measurement errors of an air flow sensor, and therefore the corresponding
random variables, are temporally correlated. This effect is caused by turbulences and the
motion of the surrounding air, which is displaced by the vehicle and partially accelerated
with it. Although Bayes filters have been found to be surprisingly robust to violations
of the Markov assumption [169], we explicitly take the correlation into account in the
filtering process.

To achieve this, we combine the measurement errors of all air flow sensors together
in the vector ε = [ε1, . . . , εL]T and explicitly consider their history as illustrated in
Figure 8.2. In particular, we estimate the history of errors together with the state of the
robot and extend the posterior of the particle filter to

p(x1:t, ε1:t | z1:t, ũ1:t) = η p(zt | x1:t, z1:t−1, ε1:t, ũ1:t) p(x1:t, ε1:t | z1:t−1, ũ1:t) (8.11)

where η is a normalizer. We factorize the second conditional probability twice and obtain

p(x1:t, ε1:t | z1:t−1, ũ1:t) = p(xt, εt | x1:t−1, ε1:t−1, z1:t−1, ũ1:t)

· p(x1:t−1, ε1:t−1 | z1:t−1, ũ1:t) (8.12)

= p(xt | x1:t−1, ε1:t, z1:t−1, ũ1:t)

· p(εt | x1:t−1, ε1:t−1, z1:t−1, ũ1:t)

· p(x1:t−1, ε1:t−1 | z1:t−1, ũ1:t) . (8.13)

Under the Markov assumption in the extended network shown in Figure 8.2, Equa-
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tion (8.11) together with Equation (8.13) can be simplified to

p(x1:t, ε1:t | z1:t, ũ1:t) = η p(zt | xt) p(xt | xt−1, εt, ũt)

· p(εt | ε1:t−1,x1:t−1, z1:t−1, ũ1:t)

· p(x1:t−1, ε1:t−1 | z1:t−1, ũ1:t−1) (8.14)

= η p(zt | xt) p(xt | xt−1, εt, ũt)

· p(εt | ε1:t−1)

· p(x1:t−1, ε1:t−1 | z1:t−1, ũ1:t−1) . (8.15)

Here, p(xt | xt−1, εt, ũt) is the odometry motion model as described in Section 8.2, con-
ditioned on the air flow measurement error. Note that in this context, ũ represents the
air flow and IMU odometry measurement data. The term p(εt | ε1:t−1) is the air flow
measurement error transition model and Equation (8.15) follows from d-separation [16]
on the dynamic Bayes network (Figure 8.2). Learning this full high-dimensional proba-
bility density function would require a large amount of data and is prone to overfitting.
Therefore, we apply the joint Gaussian approximation

e1:t ∼ N (e1:t; 0,Σε) with e1:t =
[
εT1 , . . . , ε

T
t

]T
and Σε = Cov(e1:t) . (8.16)

In the prediction step of the particle filter, we sample from the odometry motion model
p(xt | xt−1, εt, ũt) p(εt | ε1:t−1) as the proposal distribution by first sampling the tem-
porally correlated measurement error εt from the conditional distribution p(εt | ε1:t−1).
This conditional distribution can be derived from the joint Gaussian (8.16) with the par-
titioned covariance

Σε =

[
Σ11 Σ12

Σ21 Σ22

]
(8.17)

so that the blocks are Σ11 = Cov(e1:t−1) and Σ22 = Cov(εt). This leads to the condi-
tional Gaussian distribution [41]

p(εt | ε1:t−1) = N
(
εt; Σ21Σ−1

11 e1:t−1,Σ22 − Σ21Σ−1
11 Σ12

)
, (8.18)

which is suitable for an efficient sampling. In the second step, we sample the motion of
the vehicle from p(xt | xt−1, εt, ũt) conditioned on the (temporally correlated) measure-
ment error εt of the air flow sensors.

The method described above accounts for the temporal correlations in the air flow
measurement errors in the particle filter. However, in practice, amending each particle
with the full history of the measurement errors results in the computational complexity
O(TN) of each resampling step where T is the length of the trajectory and N is the
number of particles. As can be seen in Figure 5.5, in practice, the correlations of the
measurement errors are limited to a few seconds so that one can safely limit the size of
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the considered history to a constant value h depending on the temporal correlations and
the measurement frequency. This results in the approximation

p(εt | ε1:t−1) ≈ p(εt | εt−h:t−1) (8.19)

so that the resampling step of the particle filter is in O(N) as in its standard implemen-
tation.

8.4 Experimental Evaluation

We evaluated our efficient localization approach with the odometry motion model using
our third blimp prototype (see Section 2.1.3). The blimp was equipped with five tiny
sonar sensors, three air flow sensors mounted on poles, and an IMU. In our experiments,
we used the same experimental setup and recorded measurement and control data as
described in Section 6.3. The trajectory traveled during 10 min of manually operated
flight in a maze-like indoor environment had a length of 276.6 m (see Figure 6.2). During
the experiment, we obtained accurate ground truth states from an optical motion capture
system. Despite the fact that the IMU relies on magnetic measurements, which can
be subject to serious disturbances, the RMS error of the orientation estimates was only
3.22◦ during the experiment in the indoor environment.

We implemented two variants of our novel approach as well as two state-of-the-art
approaches to airship localization:

1. Vanilla: The vanilla implementation of the particle filter with the standard physical
simulation-based control motion model as described in Section 3.3.

2. Vanilla+MP: The vanilla implementation extended by the simultaneous estimation
of the air drag parameters of the control motion model. This approach is described
in Chapter 7.

3. Flow-IMU-Odometry: Our novel localization approach with the odometry motion
model using air flow and IMU measurements without taking into account the tem-
poral correlations of the air flow measurements.

4. Flow-IMU-Odometry+TC: Our novel localization approach with the odometry
motion model using air flow and IMU measurements taking into account the tem-
poral correlations of the air flow measurements as described in Section 8.3.

In our implementations of the particle filter we applied the same parameters and pre-
calculations of the sensor and motion models as described in Section 6.3. Furthermore,
we trained all models and evaluated the temporal correlations of air flow measurement
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Figure 8.3: The relative frequency of the maximum localization error of all localization runs of
all experiments. Additionally, in 32 % of the runs, the particle filter lost track of the blimp and
the maximum error exceeded 4.5 m, which is not shown in the plot.
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Figure 8.5: The average RMS localization error of the individual localization approaches. The
error bars indicate the 95 % confidence intervals over ten successful runs.

errors from recorded data together with accurate ground truth states in the preparation of
the experiment.

We evaluated and compared the localization methods on the sensor and control data
recorded during operation. As a measure for the localization error, we used the Euclidean
distance between the ground truth position and the position estimate of the particle filter,
which is the weighted average of all particles. We evaluated the maximum error of
each individual run of our experiments and found two groups of results as shown in
Figure 8.3: good runs with a maximum error lower than 2 m and outliers with high
errors (higher than 2 m). Therefore, we considered a localization run as successful if the
position estimate of the filter never deviated more than 2 m from the ground truth position
during the whole run. For each successful localization run, we evaluated the root mean
square (RMS) of the three-dimensional position error over the whole trajectory.

Offline Comparison
In an offline experiment, we evaluated all localization methods on the recorded data with
a varying number of particles. The success rate of the individual methods is depicted in
Figure 8.4. As can be seen, the flow odometry approach facilitates a reliable localization
even if a low number of particles is used. This is due to the fact that in this method, the
velocities are directly measured by the odometry sensors, namely the IMU and the air
flow sensors such that they do not need to be estimated in the particle filter. This de-
creases the dimensionality of the state estimation problem and therefore fundamentally
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reduces the number of particles needed to densely represent the area of high likelihood
in the posterior about the pose of the vehicle.

The average RMS position errors are depicted in Figure 8.5. The vanilla implemen-
tations generated significantly lower position errors when using a huge number of parti-
cles. This is caused by the fact that they integrate all sensor information and, in contrast
to our novel approaches, additionally take into account the information about the control
commands sent to the rotors. The simultaneous estimation of the motion model parame-
ters (Vanilla+MP) has proven to outperform the vanilla implementation when only very
sparse sensor information is available (see Chapter 7). Here, much more sensor data
was available in addition, namely IMU and air flow measurements, so that there is no
significant difference in the RMS position error for 100,000 particles. A further result
of this experiment is the significantly lower localization error with the odometry motion
model when taking into account the temporal correlations of the air flow measurements.
This is mainly due to the slow turbulences of the air accompanying the blimp causing
slowly varying systematic measurement errors.

Online Comparison
For autonomous operation, the localization algorithm should be able to provide accurate
state estimates during operation for motion planning and closed-loop control. Therefore,
we compared our implementation of all localization methods listed above with respect
to online operation. All localization methods were executed on an Intel R©AtomTM N270
1.6 GHz with 1 GB RAM in a single thread. This processor could potentially be carried
by the blimp and is considerably faster than the Gumstix computer, especially in floating
point calculations. In this setting, we determined the maximum number of particles that
just enables the particle filter running online, i.e. processing the data as fast as it was
generated by sensors and actuators.

Table 8.1 shows the maximum number of particles for online localization. The phys-
ical simulations of the control motion model of the vanilla implementations are compu-
tationally demanding so that their maximum number of particles is substantially lower
and far from enabling a reliable online localization, as can be seen in Figure 8.4. Since
the odometry motion model is computationally modest compared to the control motion
model and the dimensionality of the state space is reduced, our novel implementations
clearly outperform the vanilla implementations in terms of efficiency and allow a reliable
online localization on a low-power embedded computer.

8.5 Related Work

Recently, autonomous navigation for unmanned aerial vehicles (UAVs) has become a
growing research field. Especially in the context of quadrotor helicopters, several re-
searchers considered online localization or SLAM with on-board sensors in GPS-denied
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Method # Particles

Vanilla 107

Vanilla+MP 105

Flow-IMU-Odometry 564

Flow-IMU-Odometry+TC 455

Table 8.1: The maximum number of particles that enables online localization of the blimp.

environments [5, 61, 67, 154, 177]. Furthermore, the problem of localizing fixed-wing
vehicles with on-board sensors has been successfully addressed by Bry et al. [18]. The
relatively high payload of these systems, however, allows them to carry more powerful
sensors, e.g. laser range finders, and also facilitates more extensive on-board computa-
tions compared to miniature blimps.

Corresponding to the odometry sensors most wheeled robot platforms are equipped
with, one can use airspeed sensors on flying vehicles for state estimation or control. For
example Euston et al. [44] fused IMU and airspeed measurements of a UAV for atti-
tude estimation. Furthermore, many researchers used optical flow on camera images for
dead-reckoning odometry [29, 38, 85] or target detection and obstacle avoidance [179].
However, these approaches apply maximum likelihood state estimation or control. In
contrast, we explicitly represent the measurement uncertainty of the sensors and define
a probabilistic motion model for robust state estimation in recursive Bayes filters.

Besides optical flow and airspeed measurements, there are other techniques for the
prediction of incremental movements of UAVs. Most localization and control approaches
for miniature blimps rely on physical simulation-based control motion models, which
are computationally demanding and require the tedious calibration of several parame-
ters [55, 73, 84, 88, 183]. Furthermore, the motion of UAVs can be predicted based on
the acceleration and angular rate measurements of an IMU [18]. However, due to the
sedate navigation of blimps, their acceleration is low compared to gravity, which results
in a poor signal to noise ratio of acceleration measurements.

In contrast to these approaches, our method closely follows the odometry motion
model applied on most ground robots [35, 169]. We transfer the principle of dead-
reckoning odometry to our blimp and combine the translational velocity information of
air flow sensors with the rotational velocity estimated by an IMU. As opposed to the
common localization approaches of wheeled robots, where the uncertainty of the precise
wheel odometry sensors is approximated by considering Gaussian noise on the integrated
2D movement [169], we model the measurement uncertainty of the flow sensors and the
IMU individually and propagate the uncertainty through the measurement equations.

Taking into account the correlations between measurement errors, which violate the
Markov assumption in the recursive Bayes filter, has been addressed by only a few re-
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searchers. For example Plagemann et al. [131] and Pfaff et al. [128] model the spatial
correlations of the noise of adjacent laser beams in the sensor model of laser range find-
ers. Furthermore, most localization approaches cope with the temporal correlations of
the noise of non-odometry measurements in a simplistic way. Instead of modeling the
correlations explicitly, the localization modules of the popular robot navigation frame-
works CARMEN [113] and ROS [54], for instance, integrate a laser range measurement
only whenever the robot executes a motion that exceeds a certain distance or rotation
threshold. However, to our knowledge, there is no work on modeling the temporal cor-
relations of odometry errors in the prediction step of the Bayes filter.

8.6 Conclusions

In this chapter, we presented a novel approach to probabilistic online localization for a
miniature blimp equipped with lightweight ultrasound and air flow sensors as well as an
IMU. For robust state estimation in a particle filter, we introduced a probabilistic odome-
try motion model that takes into account the measurement uncertainties of the individual
sensors and decreases the dimensionality of the state space in the particle filter. Further-
more, our novel motion model can compute the odometry from the air flow sensors and
the IMU in a linear way and is therefore computationally much more efficient than the
standard physical simulation-based control motion model. Additionally, we introduced a
general approach to take into account the temporal correlations of odometry errors in the
prediction step of the particle filter. Our method applies a joint Gaussian approximation
and therefore enables an efficient sampling of temporally correlated odometry noise in
the particle filter.

We implemented our approach and carried out extensive experiments with a real blimp
in a complex indoor environment. In all experiments, our approach has been proven to
enable accurate and reliable online localization of a miniature blimp and to outperform
the particle filter localization based on the standard control motion model. Since the
odometry motion model provides accurate estimates of the velocity of the blimp, the
dimensionality of the state space in the filter is decreased. Therefore, the number of
particles required for a reliable localization is reduced by one order of magnitude. Addi-
tionally, we demonstrate significant improvements in terms of localization accuracy by
taking into account the temporal correlations of the air flow measurements in our novel
odometry motion model.
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Motion Planning and Control





Chapter 9

Basic Planning and Control Techniques

Planning and control for autonomous robots is a well-studied topic
and the diversity of robotic systems has spawned a variety of plan-
ning and control algorithms. In this chapter, we give a formal
problem definition for motion planning and discuss several plan-
ning techniques with regard to motion planning for autonomous
airships. We introduce the A? graph search algorithm and the
sampling-based tree planning approach, which both are the basis
of our online planning system introduced in the following chapter.
Furthermore, we introduce the linear quadratic regulator (LQR)
for optimal control of linear Gaussian systems.

• • • • •

There are two fundamental tasks in autonomous navigation for intelligently behaving
mobile robots. First, the robot needs to perceive its environment in order to estimate
the state of the world, which is its own state and the state of the environment. Second,
given the estimated state, the robot decides about a single action or a sequence of actions
that are suitable to reach a predefined goal or to accomplish its job. This chapter gives
an overview of techniques to determine suitable actions for a mobile robot. In mobile
robotics, this task is often divided into two separate parts. The motion planning task
focuses on the generation of a collision-free path from a start state to a goal state. The
motion control task copes with the execution of the path and corrects small deviations
from the desired path by adjusting the control commands during execution. In this chap-
ter, we will provide a formal problem definition and introduce basic planning and control
techniques that are suitable for autonomous mobile robot navigation.
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9.1 Motion Planning

Throughout this thesis, we consider the autonomous navigation of an indoor airship in
a static environment that is known in advance. Accordingly, we assume that a complete
description of the robotic system and the environment is provided for motion planning.

We define the general motion planning problem by the following components:

• The state space X is the manifold the robot is operating in. The free state space
Xfree ⊆ X represents the environment in a way so that the free state space only
contains states that are valid. Often, a state is considered as valid if the robot is
not in collision with the environment in that state.

• The action space U , also called control space, defines the possible control com-
mands the robot can execute.

• The start state s ∈ X .

• The goal state g ∈ X or the goal region G ⊂ X .

• The motion function describing the motion of the robot given its current state and
the applied control command.

The task of the planning algorithm is to compute a path that leads the robot from the
start state to a goal state. In particular, the solution path is a sequence of states together
with the controls moving the robot from the corresponding state to the subsequent one.
In case of planning under differential constraints, each control is supplemented by the
duration the control has to be applied to reach the successor state.

Depending on the robotic system, both the state space and the action space can be
either discrete or continuous. For planning problems with a discrete state and action
space, the problem can be formulated as a graph search where the set of states repre-
sents the nodes connected by actions and the cost of each edge is determined by the
cost of the corresponding action. In such static graphs, A? [66] is the most popular
graph search technique. In continuous state and control spaces, sampling-based planning
techniques have proven to be a suitable means to solve even high-dimensional planning
problems of real robotic systems. The most popular techniques are probabilistic road
maps (PRMs) [82] and sampling-based tree planners [32] such as rapidly-exploring ran-
dom trees (RRTs) [102]. However, there are certain limitations when planning for a
miniature airship that requires kinodynamic motion planning [39]. Kinodynamic plan-
ning is a case of planning under differential constraints where second-order constraints
and velocity and acceleration bounds must be satisfied [101]. As the controls needed
for connecting two given states in PRMs and bidirectional RRTs cannot be calculated
analytically in nonlinear kinodynamic systems [173], these techniques are not suitable
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for miniature airships. Thus, unidirectional sampling-based tree planners have been the
most popular means to cope with such systems. In the following, we introduce the ba-
sic planning techniques on which our approaches to autonomous navigation of indoor
airships are based.

9.1.1 A? Graph Search

The A? algorithm [66] is an informed search method for finding the cheapest path from
a start node to a goal node in a graph. In a nutshell, A? is a kind of best-first search. In
every iteration it expands the node with the lowest value of the evaluation function f ,
taking into account a heuristic estimating the cost to the goal. In this way, A? minimizes
the number of expanded nodes such that it is optimally efficient [147]. In the following,
we give a more formal description of the A? algorithm according to Choset et al. [28]
and Russel and Norvig [147].

Let G = (V,E) be a finite graph with a set of nodes V (also called vertices) and a
set of edges E ⊆ V × V connecting the nodes. Each edge ei,j = (vi, vj) ∈ E is a
tuple of two nodes vi and vj representing a directed connection from vi ∈ V to vj ∈ V .
In motion planning graphs, each node represents a possible state x ∈ X and each edge
(vi, vj) means that the robot can move from vi to vj . A solution path in G from a start
node vs to a goal node vg is a sequence of nodes

(vi1 , . . . , vin) (9.1)

so that vi1 = vs and vin = vg and there is a connecting edge between each pair of
subsequent nodes vij and vij+1

, i.e.

{(vij , vij+1
) | j ∈ [1, n− 1]} ⊆ E . (9.2)

For optimal path planning, we define a cost function c : E → R that assigns a cost to
each edge of the graph. Consequently, the cost of a solution path is the sum of the cost
of all edges along the path

c̃ ((vi1 , . . . , vin)) =
n−1∑
j=1

c
(
(vij , vij+1

)
)
, (9.3)

and an optimal path is a solution path with minimal cost with respect to all solution
paths.

The A? graph search is guided by a heuristic function h : V → R, which estimates
the cost of the cheapest path from the given node to the goal. Algorithm 5 shows the A?

graph search. During search, the A? algorithm maintains the cheapest path from the start
node to each node expanded so far. The predecessor of each node on this path is stored
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Algorithm 5 A?GRAPHSEARCH

Input: Graph G = (V,E), cost function c : E → R, heuristic function h : V → R,
start node vs ∈ V , goal node vg ∈ V

Output: The cheapest path from vs to vg.

1: p[vs]← NULL // predecessor map
2: g[vs]← 0 // cost map
3: C ← ∅ // closed set
4: Initialize Q ← {(vs, h(vs, vg))} as a priority queue that is sorted by the second

element of the tuple.
5: while Q 6= ∅ do
6: v ← pop(Q)

7: C ← C ∪ {v}
8: if v = vg then // Return the cheapest path given by the predecessor map.
9: P = [v]

10: while p[v] 6= NULL do
11: v ← p[v]

12: prepend(P, v)

13: end while
14: return P

15: end if
16: S = {v′ ∈ V | ∃(v, v′) ∈ E} // the successors of v
17: for all v′ ∈ S \ C do
18: if v′ /∈ Q ∨ g[v] + c((v, v′)) < g[v′] then
19: p[v′]← v

20: g[v′] = g[v] + c((v, v′))

21: if v′ /∈ Q then
22: push(Q, (v′, g[v′] + h(v′)))

23: else
24: decreasekey(Q, (v′, g[v′] + h(v′)))

25: end if
26: end if
27: end for
28: end while
29: return [ ] // No solution
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in the predecessor map p : V → V ∪ {NULL}. The cost of this path of each node is
stored in the cost map g : V → R. As a kind of best-first search, A? maintains a set of
nodes open for expansion. In every iteration, it expands the node with the best value of
the evaluation function f . For an efficient implementation, the open set is represented by
a priority queue sorted by the evaluation function. In particular, the evaluation function
of a node v is

f(v) = g(v) + h(v) , (9.4)

which is the estimated cost of the cheapest solution path through v given by the cost
g(v) of the cheapest path to v and the estimated cost h(v) from v to the goal. To avoid
expanding a node twice in a cyclic graph, the closed set C stores all nodes expanded
so far. The expansion of a node is described in line 16 to 27 of Algorithm 5. It con-
siders all successors of the expanded node and adds them to the priority queue together
with the corresponding value of the evaluation function (line 22). In case a successor is
already contained in the queue and a shorter path is found, the corresponding element
in the queue is updated (line 24). As soon as the goal is reached, the cheapest path is
reconstructed by a backwards stepping through the predecessor map (line 8 to 15).

Since A? explores the graph incrementally through the expansion of nodes, the graph
has not to be explicitly specified and stored completely in advance, which usually is a
great advantage in motion planning tasks with huge state spaces. Furthermore, A? returns
the optimal (i.e. the cheapest) path in a finite graph if the following three preconditions
hold [147]:

• The cost function c is non-negative.

• The heuristic function is admissible, i.e.

h(v) ≤ h?(v) ∀v ∈ V , (9.5)

where h?(v) is the real cost of the cheapest path from v to the goal.

• The heuristic function is consistent (also called monotonic), i.e.

h(v) ≤ c(v, v′) + h(v′) ∀v, v′ ∈ V . (9.6)

In addition, A? is complete, i.e. it will find a solution if there is one, and it is optimally
efficient, which means that given any heuristic function there is no other algorithm that
computes the optimal path and in doing so expands fewer nodes than A? [147].

Consequently, A? is a popular approach in optimal motion planning on low-dimen-
sional discrete or discretized state and control spaces.
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9.1.2 Sampling-based Tree Planning

Sampling-based tree planners have proven to be a suitable means in many robotic motion
planning problems because they naturally can deal with continuous state and control
spaces. They have become a popular approach in challenging motion planning problems,
especially in high-dimensional state spaces where a discretization with fixed resolution
would lead to a huge number of nodes.

Sampling-based tree planners iteratively grow a tree of motions in the state space
using random sampling. Since they basically require only the forward kinematics of the
system when growing the tree, they can solve both, geometric planning problems as well
as planning problems under differential constraints. In general, tree planners initialize
their tree with the start state as a single (root) node. When growing the tree of motions
and corresponding states, each iteration is performed according to the following four
steps:

1. Node selection. Select a node of the tree from which the tree should be expanded.

2. Motion selection. Choose a control and a duration of the motion expanding the
tree from the selected node. When planning in continuous state and action spaces,
the state propagation function f : X × U × R+ → X maps a control applied for a
certain time span at a given state to the subsequent state.

3. Validity check. Check whether the path and the successor state resulting from
the chosen motion are valid and if so expand the tree. This step requires a func-
tion v : X → {⊥,>}, which evaluates the validity of a given state – usually by
collision checking given the map of the environment.

4. Goal check. Check whether the goal is reached and the planning process can be
completed. The function g : X → {⊥,>} indicates whether the specified goal or
goal region is reached through the given state. If so, the resulting path is obtained
by backwards stepping through the tree.

The first and the second step of each iteration are usually decided through random sam-
pling from heuristics. The heuristics substantially influence the effectiveness of the
planning algorithm and are designed domain or even problem dependent in most ap-
proaches [32]. There is a wide literature of efficient approaches to geometric motion
planning. However, for planning under differential constraints, which is required for
indoor airships, the literature is comparably sparse, as this problem is usually more com-
plex to solve.

In principle, there are two distinct objectives during tree planning. On the one hand,
the tree should grow in a way so that the entire state space will eventually be explored
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by the tree. In that context, LaValle and Kuffner [102] introduced the probabilistic com-
pleteness of sampling-based planning algorithms; that means that if a solution exists it
will eventually be found [28, 101]. On the other hand, an important objective is the effi-
ciency of a planner. In order to achieve a high efficiency, the exploitation of knowledge
about the current tree as well as the planning task can be helpful. With that knowledge,
the growth of the tree can be focused towards the goal so that the number of required
expansions of the tree is minimized. These two objectives, namely exploration and ex-
ploitation, are contradictory to some extent and therefore demand carefully chosen sam-
pling heuristics. In the following, we give an overview of sampling heuristics suitable
for planning under differential constraints according to Şucan and Kavraki [32].

There are several heuristics for node selection. A common technique is to introduce
a Voronoi bias, i.e. to guide the tree towards large Voronoi regions to force a quick ex-
ploration of the state space. This method draws a uniform sample from the state space
and chooses the node that is nearest to the sampled one according to a distance metric
ρ : X × X → R+

0 on the state space [100]. This is one of the most successful heuris-
tics but depends on a good distance metric [25]. Another approach is to consider the
out-degree of the nodes in the tree in order to quickly reach unexplored space [72]. Fur-
thermore, the node selection through the decomposition of the state space – often in
a hierarchical way or in combination with a lower dimensional projection of the state
space – has shown to contribute to the exploration of the state space [31, 97]. While
the heuristics mentioned above are focusing on the exploration of the state space, the
exploitation of knowledge in the motion selection to guide the tree towards the goal has
been addressed by several methods. A directed expansion or keeping track of previously
used directions can focus the growth of the tree towards promising regions of the state
space [22, 25]. Such regions can be determined by computing paths – often in a dis-
cretized, lower-dimensional projection of the state space – that lead to the goal [132].
Furthermore, biasing the expansion of the tree towards the goal by sampling from the
goal region periodically (also called goal-biasing) can improve the efficiency of the plan-
ning algorithm [33, 102] but can also degrade the performance in case of strong local
minima [31].

Many of these techniques have been combined in several ways to successfully cope
with various motion planning problems in simulation and for real robots. However, in
the literature, there are hardly any approaches that can generically deal with motion
planning problems under differential constraints and none of them efficiently provides
online motion planning in high-dimensional state spaces.
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9.2 The Linear Quadratic Regulator (LQR)

For the model predictive optimal control of linear systems, the linear quadratic regulator
(LQR) is a popular means in the field of robotics and engineering. The linear feedback
control law for keeping a system close to a given trajectory can be calculated efficiently
in closed form such that it is suitable for real-time control even of high-dimensional
systems. In the following, we summarize the finite-horizon discrete-time LQR controller
according to Bertsekas [14].

The given trajectory, which is usually computed by the planning algorithm, specifies
the desired full state and control information (xH

t ,u
H
t ) at discrete time steps t ∈ [1, T ].

The model of the linear Gaussian system can in general be specified by the system dy-
namics equation

xt+1 = Atxt +Btut + wt (9.7)

where wt is the white Gaussian noise and At and Bt are the system-dependent process
matrices. Taking into account the desired trajectory, which complies with the system
dynamics through xH

t+1 = Atx
H
t +Btu

H
t , Equation (9.7) can be written as

(xt+1 − xH
t+1) = At(xt − xH

t ) +Bt(ut − uH
t ) + wt (9.8)

in terms of the deviation from the desired trajectory.
At time t, the LQR controller aims to minimize the cost function

E

[
T∑
`=t

(
(x` − xH

` )TP (x` − xH
` ) + (u` − uH

` )TQ(u` − uH
` )
)]

, (9.9)

which quadratically penalizes the expected deviation of the actual future states and con-
trols (xt,ut), . . . , (xT ,uT ) from those defined by the trajectory. Here, E denotes the
expectation of the linear Gaussian system and the weight matrices P and Q are symmet-
ric and positive definite.

The optimal control ut at time t minimizes the quadratic cost function (9.9). It can be
derived as the linear function

(ut − uH
t ) = Gt(xt − xH

t ) (9.10)

of the actual state and the trajectory where Gt is the linear feedback gain matrix. The
gain matrix Gt is computed recursively by the discrete-time Riccati equation

MT = P (9.11)

∀` ∈ [t, T − 1] : G` = −(BT
` M`+1B` +Q)−1BT

` M`+1A` (9.12)

M` = P + AT`M`+1A` + AT`M`+1B`G` . (9.13)
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This equation can be computed in linear time with respect to the length of the trajectory.
In practice, the horizon of the model prediction is often limited to a constant size hLQR

so that the gain matrix of the LQR controller can be calculated by considering the time
steps ` ∈ [t, t+ hLQR] instead of the whole remaining trajectory.





Chapter 10

Online Motion Planning and Control

Miniature airships are especially challenging with respect to au-
tonomous navigation since they behave nonlinearly, are typically
under-actuated, and are also subject to drift. These aspects, paired
with their high-dimensional state space, demand efficient planning
and control techniques. In this chapter, we present a highly ef-
fective approach to autonomous navigation of miniature blimps
in mapped environments, which applies a multi-stage algorithm
to accomplish strongly goal-directed tree-based kinodynamic mo-
tion planning. It performs path-guided sampling and selects op-
timal actions leading the robot towards sampled subgoals. Thus,
our approach can quickly provide a partial trajectory, which is ex-
tended and refined in the consecutive planning steps during oper-
ation. The navigation system has been implemented and is able to
reliably operate a robotic blimp in a real-world setting. Further ex-
periments demonstrate that our approach outperforms a standard
tree planner.

• • • • •

Miniature airships naturally float in the air and therefore can fulfill long-term oper-
ation tasks and navigate safely. However, these favorable properties come at the cost
of some challenges imposed on autonomous navigation for airships. The very limited
acceleration capabilities together with the serious under-actuation make it practically
infeasible to neglect second-order dynamics. Due to the nonlinear, non-holonomic, and
drift-prone second-order dynamical system, kinodynamic motion planning has to be per-
formed in the 12-dimensional state space consisting of the pose and velocity of the robot.
Furthermore, the cost of the shortest path does in general not follow any metrics [97] and
the commonly applied decoupling of the planning of the trajectory shape from that of
the velocities is not applicable.
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In this chapter, we consider the task of indoor navigation on a round trip in a mapped
environment, e.g. in a continuous surveillance task. We present an approach to online au-
tonomous navigation including the state estimation, a multi-stage planner, a mission con-
trol module, and a controller. We approximate the kinodynamic motion planning, which
in general is PSPACE-hard [137], by first applying A? search to generate a collision-free
path on a discretized low-dimensional subspace of the state space. In the second stage,
a tree planner applies path-guided sampling to quickly generate a trajectory, which is
extended and refined in consecutive planning cycles by re-using a pruned version of the
tree. We show the reliability and performance of our navigation system in extensive ex-
periments in simulation and with a real robotic blimp. Furthermore, we show that our
planning approach outperforms a standard goal-biased RRT planner [84].

10.1 Related Work

In the past, several authors considered the problem of autonomous navigation of blimps.
The majority of approaches, however, focused on the control of robotic blimps in the
absence of obstacles.

Some authors successfully applied model-free learning to control a single selected de-
gree of freedom of a real indoor blimp [87, 142]. In contrast to that, Liu et al. [107] and
Zufferey et al. [183] learned controllers for the full state space of the blimp. However,
both papers report a large number of iterations when learning a controller that is specific
for a single trajectory or goal configuration. Several model predictive approaches have
been proposed, namely decoupling of components [73], extending the classic LQR [52],
or nonlinear control [117]. As opposed to the LQR controller we designed for our navi-
gation system, the tuning of the control design parameters of those controllers usually is
time-consuming.

During the last decades, motion planning for mobile robots has been an area of active
research [28, 101] and has spawned a wide literature of efficient approaches to geometric
motion planning [81, 82, 93, 150]. However, these approaches rely on the assumption
that the differential constraints, which are inherent in most physical robotic systems, are
ignored in the planning task and the corresponding complexity is moved to the controller.
This has been a common method for systems that are not required to operate close to their
maximum velocity and acceleration, for example, slowly moving robotic arms.

In contrast, the literature of planning under differential constraints, which is required
for indoor airships, is comparably sparse as this problem is usually more complex to
solve. Many high-dimensional kinodynamic motion planning problems have been suc-
cessfully addressed using sampling-based tree planning techniques [32]. For example,
Kim and Ostrowski [84] proposed an RRT with goal biasing for blimp motion planning.
However, their planner was designed for an outdoor blimp in an obstacle-free environ-
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ment. Ladd and Kavraki [96] account for under-actuation and drift of robots most plan-
ners are suffering from. Unlike our approach, they aim to explore the full state space,
which is time-consuming even in scenarios that are not very complex.

The concept of multi-stage planning is popular for discrete goal-directed online mo-
tion planning in real robot applications [26, 53, 160]. Maček et al. [109] use the nodes of
a path on a route graph as subgoals in an RRT together with randomly sampled subgoals
and actions for online motion planning. However, they do not re-use valid parts of the
tree of the previous planning cycle. Rickert et al. [138] and Plaku et al. [132, 133] pre-
sented tree planners that quickly explore the lower-dimensional workspace of the robot
through multiple paths to the goal that are not necessarily collision-free. In contrast to
this, our planner is guided by one collision-free low-dimensional path, which is addi-
tionally augmented by velocity information. Therefore, our algorithm results in a more
focused exploration of the state space and enforces that even partial trajectories do not
head for a dead end.

In our approach, we apply a novel combination of many existing techniques in order
to build an efficient navigation system, which has several desirable properties. It takes
into account obstacles and is strongly goal-directed and efficient. Therefore, it is suited
for online navigation of a real indoor blimp.

10.2 Efficient Motion Planning for Airships

As described in Section 2.4, we model our blimp as a floating rigid body in a three-
dimensional environment. Consequently, its state for kinodynamic motion planning is
described by its pose and velocity in the 12-dimensional state space X ⊆ SE(3) × R6.
The blimp can be controlled by a three-dimensional vector u ∈ U = [−1, 1]3 defining
the relative forward, upward, and rotational thrust about the vertical axis. In a nutshell,
the motion model can be described as a function

xt+1 = f(xt,ut) (10.1)

of the state xt and the control ut at time t. Here, we assume that the control command is
applied for the certain duration ∆t of one time step, which is fixed during planning. The
successor state is computed through numerical integration as described in Section 2.6.

The environment of the blimp was mapped beforehand and is represented using the
OctoMap framework (see Section 2.3). For collision checking, we compute a distance
map and conservatively approximate the blimp by a set of spheres that are arranged along
its longitudinal axis. Since collision checking in this way is just a lookup to the distance
map at the centers of the spheres, it can be done efficiently. We specify a certain state
g ∈ X as goal, which should be reached within a predefined radius.
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Figure 10.1: The interaction of the modules of our approach to autonomous blimp navigation.
In the simulation experiments, we replaced the state estimation of the motion capture (MoCap)
system and the blimp executing controls by a simulator module.
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The interaction of the planning modules of our approach to autonomous navigation
is shown in Figure 10.1. Our planning algorithm works in two stages. First, we ap-
ply A? search (see Section 9.1.1) to compute an optimal path assuming a simplified
motion model on a discretized 4-dimensional subspace of the state space. In the sec-
ond stage, a sampling-based tree planner efficiently searches for a trajectory in the full
12-dimensional state space by utilizing the A? path in order to draw samples in a goal-
directed way. This prevents the tree planner from getting trapped, e.g. in a maze.

10.2.1 Low-dimensional Optimal Path Generation

The low-dimensional path generation provides a collision-free path. In this planning
step, we consider a 4-dimensional subspace X ′ ⊆ R3× SO(2) of the state space defined
by the translation and the yaw-orientation of the blimp. This reduces the full state space
by the velocity and the roll and pitch angles, which are not directly controllable. To allow
for path generation by A? search, we discretize this subspace into a grid and guide the
search by Euclidean distance heuristics. To additionally improve the efficiency of the A?

search, we ignore the yaw-orientation at positions where the circumcircle of the blimp
is collision-free. As the blimp can turn approximately on the spot when moving very
slowly, we define the set of allowed actions as moving one grid cell forward, backward,
upward, downward and rotating to the left and to the right. We define the resulting path
computed on the 4D grid as a sequence of 4D states P ′ = (x′1, . . . ,x

′
N) with x′i ∈ X ′ for

all i ∈ [1, N ].

10.2.2 Path-guided Sampling-based Tree Planning

In a preprocessing step, our tree planner augments each new 4D path P ′ resulting in the
augmented (12D) path P = (x1, . . . ,xN). Thereby, the roll and pitch angles are zero,
since airships are usually stable in these dimensions. The forward, upward, and yawing
velocity are determined based on the clearance to obstacles as well as the curvature of the
4D path and a maximum centripetal acceleration. Here, both, a low clearance or a high
curvature, lead to a reduced velocity. Note that the augmented path P is not necessarily
dynamically feasible but aims to focus the sampling of the tree planner to reasonable
areas of the huge state space.

Algorithm 6 shows the pseudocode of our RRT-based tree planning approach with
path-guided sampling and re-planning. In the first planning cycle, we initialize the tree
with the current state propagated to the time tmax at which the planning cycle will be
finished. In all subsequent planning cycles, we prepare the tree generated in the previous
planning cycle for re-use by searching for the node that will be reached at tmax and
pruning (line 1 to 3) similar to Bekris and Kavraki [11].
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Algorithm 6 PATH-GUIDEDRE-PLANNING

Input: Previous tree T , planning timeout tmax, augmented pathP , current state x, goal g

Output: A (partial) solution trajectory

1: Determine node xstart of T at time tmax

2: Prune everything below xstart from T
3: T .root = 〈xstart,0〉
4: xclosest = xstart

5: while CURRENTTIME() < tmax do
6: xrnd ← GAUSSIANSAMPLEFROMPATH(P)

7: xnear ← NEARESTNEIGHBOR(T ,xrnd)

8: u′ ← OPTIMALACTION(xnear,xrnd)

9: xnew ← f(xnear,u
′) // propagate the state

10: if v(xnew) then // state validity check
11: T .insert(〈xnew,u

′〉)
12: EXTENDSAMPLINGINTERVAL(P ,xnew)

13: xclosest ← UPDATECLOSEST(xclosest,xnew)

14: end if
15: end while
16: return SOLUTIONTRAJECTORY(T ,xclosest)

Figure 10.2 shows an example of an extension step of the tree. GAUSSIANSAMPLE-
FROMPATH (line 6) utilizes the augmented path P to draw goal-directed samples from
the state space. First, a position on the path is sampled from the current sampling inter-
val. Then, the sample xrnd is drawn from a Gaussian with the sampled augmented path
element as mean. This implicitly induces goal-biasing and ensures that a valid partial
trajectory is returned if the time available for planning runs out before the tree reaches
the goal.

Our tree planner selects the NEARESTNEIGHBOR, which will be extended towards
the sampled state xrnd based on the weighted Euclidean metrics [84]

ρ(x1,x2) = (x1 − x2)TD(x1 − x2) (10.2)

with a diagonal distance matrix D. Since the distance matrix is diagonal, we can find the
nearest state efficiently by utilizing a kd-tree [51] containing all tree nodes scaled by the
square root of D.

We select the optimal action leading from the nearest neighbor xnear towards the sam-
pled state xrnd as we describe in Section 10.2.3.

Finally, the sampling interval on P (see Figure 10.2) is extended according to the
growth of the tree (line 12) and the node xclosest that is nearest to the goal is determined
by UPDATECLOSEST (line 13). This can be done by selecting the node that is closest to
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Samples

12D tree

End of sam-
pling interval

Figure 10.2: An example of an extension step of the tree with path-guided sampling. The aug-
mented A? path P is shown in blue, the current sampling interval is highlighted in light blue.
The node xrnd is sampled around P . xnear, which is the nearest node to xrnd, is extended towards
xrnd resulting in the new node xnew. The node xclosest is chosen as the node that is closest to the
end of the current sampling interval. Obstacles are shown in black.

the end of the sampling interval on the guiding path. It ensures a good choice even when
only a partial trajectory has been computed and the robot has to veer away from the goal
when navigating through a maze.

10.2.3 Optimal Action Selection

We select the optimal action u′ leading from a state xt towards a target state x′ with
respect to the metric ρ. This means that we want to select the action

u′ = argmin
u∈U

ρ(f(xt,u),x′) (10.3)

that minimizes the metric distance to the target state x′ after executing one motion step
starting from xt.

By linearizing the motion model with respect to the control around the state xt and
the neutral control 0, we obtain

f(xt,u) ≈ f(xt,0) +
∂f

∂u
(xt,0) u . (10.4)

Plugging Equation (10.4) and Equation (10.2) into Equation (10.3) results in

u′ = argmin
u∈U

(Ctu + yt)
TD(Ctu + yt) (10.5)

= argmin
u∈U

uTCT
t DCtu + uTCT

t D yt + yTt DCtu + yTt D yt (10.6)

= argmin
u∈U

1

2
uTCT

t DCtu + uTCT
t D yt (10.7)
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with Ct := ∂f
∂u

(xt,0) and yt := f(xt,0)− x′ by omitting the constant term and exploit-
ing the symmetry of D.

In an unbounded control space U this can be solved in closed form. For robots with
bounded controls ulow ≤ u ≤ uhigh such as our blimp, this problem can be solved
efficiently, e.g. using a quadratic programming-based solver [46].

10.3 LQR Control

The trajectory computed by the planning algorithm consists of the full state and control
information (xH

t ,u
H
t ) at discrete time steps t ∈ [1, T ]. In order to keep the robot on

this trajectory, we apply finite-horizon discrete-time linear-quadratic regulation (LQR)
control as described in Section 9.2.

The LQR controller efficiently computes control commands for linear systems. To
apply this control method to miniature airship systems, we use the common method of
linearizing the motion model along the desired trajectory. We compute the Jacobians

At =
∂f

∂x
(xH

t ,u
H
t ) and Bt =

∂f

∂u
(xH

t ,u
H
t ) (10.8)

with respect to the state and the control command, respectively, in a first-order Taylor
approximation at the desired state and control given by the trajectory. Even for nonlinear
systems such as an airship, this approximation provides good control results as long as
the vehicle stays close to the desired trajectory. The Jacobians specify the linearized
system

(xt+1 − xH
t+1) ≈ At(xt − xH

t ) +Bt(ut − uH
t ) (10.9)

for which the feedback gain matrix Gt and finally the optimal control command

ut = uH
t +Gt(xt − xH

t ) (10.10)

can be computed as introduced in Section 9.2.

10.4 Experimental Evaluation

We implemented and evaluated the approach described above in simulation and with the
second prototype of our real robotic blimp (see Section 2.1.2) operating in a large indoor
environment with two rooms. In our experiments, we consider the task of continuously
navigating on a round trip specified in advance by an ordered set of goals, which are
shown in Figure 10.3.

In the preparation of the experiment, we learned the parameters of the motion model
described in Section 2.6 from about 10 min of manually operated flight observed by a
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1

2
3

Figure 10.3: The experimental environment consists of two rooms connected by an open door
where each room has a size of 8 m×6 m. The round trip navigation task is defined by three goals,
which are set sequentially by the mission control module.
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Vicon motion capture system. The parameters P and Q of the LQR controller were
chosen according to Bryson’s rule. We chose a 0.25 m and 45◦ resolution for the low-
dimensional A? path generation. To achieve fast online computations, we precalculated
the distance map of the environment and the numerically derived Jacobians of the motion
model for the typical range of velocities. In all experiments, we set the planning timeout
tmax to 1 s. With this setting, the tree-based planner extended the tree by 150 to 500 nodes
in each period depending on the initial tree size and the ratio of successful attempts to
extend the tree.

The mission control module (see Figure 10.1) continuously checks whether the blimp
is approaching the current goal. If the distance to this goal drops below a threshold, it
switches to the next goal and provides it to the planner modules. All experiments were
run on an Intel R© CoreTM 2 Duo processor running at 2.53 GHz.

10.4.1 Simulation

Our simulation module described in Section 2.6.4 handles control commands and simu-
lates the motion of the blimp according to the parametric motion model learned from real
recorded data of the blimp. Additionally, it provides the simulated position and velocity
as state information. Due to the difference in time discretization used in the individual
modules, the simulation deviates slightly from the prediction of the planner.

In an extensive experiment, the online simulated blimp traveled for 110 min on a round
trip and reached each of the 3 goals 70 times. For that, it calculated 6,628 trajectories
including all re-planning steps. The controller executed all trajectories without any col-
lision. The calculation of the control feedback matrices for a new trajectory took 1.1 ms
on average with a maximum value of 6.8 ms. The 4D A? planner took 14.4 ms on average
with a maximum value of 81.7 ms for calculating a full path.

We compared our planning algorithm to an RRT planner with goal-biased sampling as
proposed by Kim and Ostrowski [84] for airship navigation. We experimentally found
that drawing 10 % of the samples from a Gaussian around the goal was a good trade-off
between exploration and exploitation. We also ran the goal-biased planner for 110 min
of online operation on the same round trip during which it failed in 14 of 191 attempts to
plan a trajectory to a goal. In case of failure, the goal-biased planner created only a partial
trajectory that ran into a dead end and resulted in a collision. The planning times until the
trajectory provided by the planner reached the goal are compared in Figure 10.4. While
our planning algorithm never needed more than 6 s, the goal-biased sampling resulted in
a wide-spread distribution, which caused the planner to fail in 14 attempts.

As shown in Table 10.1, the average travel time for the trajectories planned by our
algorithm had a considerably lower standard deviation, since the path-guided sampling
turned out to be more goal-directed. In fact, the travel times resulting from our planning
algorithm proved to be significantly shorter in a paired t-test with a p-value of 0.6 %.
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Figure 10.4: Comparison of the planning times for three different goals of our path-guided and
the goal-biased planner.
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Goal Path-guided Goal-biased
Mean StdDev Mean StdDev

1 35.2 13.6 35.1 19.1
2 51.4 10.0 62.7 18.2
3 18.4 6.9 22.4 11.7

Table 10.1: Comparison of the travel times of the planned trajectories using path-guided and
goal-biased sampling. All units are seconds.

10.4.2 Real Blimp

We performed an extensive experiment with the second prototype of our robotic blimp
(see Section 2.1.2) showing that the models used for planning and control are realistic
and that our approach is able to deal with real noise and moderate modeling approxima-
tions.

For our experiments, we did not use the on-board sensors to localize the blimp. In-
stead, we localized the blimp using a Motion Analysis motion capture system with eight
digital Raptor-E cameras tracking four retroreflective markers mounted around the gon-
dola of the blimp (see Section 2.5). Due to practical reasons, we only built up the door
frame and the contour of the door, as building up the all obstacles and walls would pre-
vent tracking the blimp with a reasonable number of motion capture cameras. Since the
pose estimate provided by the motion capture system is very accurate (in our setting the
error is typically below 3 mm), we additionally applied online collision checking based
on motion capture pose estimates and the map.

In our experiment, the blimp autonomously traveled on the round trip for about 20 min
and passed 28 goals without any collision. In this setup, the problem of Inevitable Col-
lision States (ICS) [11] did not arise due to the quick planning and the comparably low
velocity of the goal states. Figure 10.5 shows the blimp passing the narrow passage
of the planning task. Two exemplary trajectories generated by our planning approach
during operation are shown in Figure 10.6. In our experiment, the root mean square
(RMS) translational deviation from the trajectory was 0.24 m and the RMS deviation
in the yaw-orientation was 8.6◦. This is due to air motion caused by the air condition-
ing system of the adjacent clean rooms and the moderate approximations of the motion
model. The RMS deviation from zero roll was 0.35◦. Since the velocity profile on the
4D path guides the sampler to move at low velocities in the vicinity of obstacles, the
blimp passed the door slowly in the majority of those safety-critical situations. Thus,
the controller operated the blimp with a low deviation from the desired trajectory when
passing the door.
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Figure 10.5: The robotic indoor blimp operating in the experimental setting observed by cameras
of the motion capture system. The blimp is passing the safety-critical narrow passage with a low
velocity so that the controller can accurately keep the blimp on the trajectory in this situation.

10.5 Conclusions

In this chapter, we presented an approach to autonomous navigation of a blimp in a
known indoor environment including motion capture state estimation. To efficiently
approximate the high-dimensional nonlinear kinodynamic motion planning, we apply
a multi-stage planning technique. In the first stage, a collision-free path is generated
through A? search on a low-dimensional subspace of the state space. We utilize this path
to efficiently generate kinematically feasible trajectories by goal-directed, path-guided
tree planning in the full 12-dimensional state space. In contrast to other approaches, our
algorithm selects optimal actions towards sampled subgoals and is able to quickly pro-
vide a possibly partial trajectory, which is extended in the consecutive planning steps.
Including a motion capture state estimate, a mission control module, and an LQR con-
troller, our approach successfully controlled a robotic blimp. We performed extensive
experiments in simulation and with a real robotic blimp. In all experiments, our navi-
gation system efficiently and reliably operated the blimp and outperformed a standard
goal-biased RRT planner.
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Figure 10.6: Two exemplary trajectories generated by our path-guided planner during the exper-
iment with the real robotic blimp. The goals are shown as a big red ball with an arrow indicating
the desired orientation of the blimp. The four-dimensional A? path is shown as a thick blue line,
the tree built by the tree planner is shown in red, and the chosen branch is marked by a thick
yellow line.
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Chapter 11

Conclusions and Future Work

In this thesis, we proposed several novel approaches to address the challenges of minia-
turized, low-cost, and resource-constrained embedded systems in mobile devices. Using
the example of autonomous navigation for miniature airships, we presented techniques
that can deal with the common challenges of such systems, namely limited computa-
tional power, imperfect and weak actuators, and imprecise sensors.

We introduced methods for robust, efficient, and accurate self-localization, which is
a fundamental problem in the domain of autonomous navigation for mobile robots. In
particular, we investigated probabilistic sensor data fusion in recursive state estimators
and presented an implementation of the particle filter that is suitable for localizing an
airship with nonlinear system dynamics and ambiguous sensor measurements in its high-
dimensional state space. Our localization method includes carefully designed probabilis-
tic sensor models for small sensors that are applicable on miniature indoor airships.

We discussed a novel sonar sensor model that explicitly considers the characteristics
of tiny sonar sensors with large opening angles. In contrast to other models, our approach
is rigorously based on the physics of the measurement process and takes into account
the ambiguity of measurements, which is induced by the signal reflection by objects
with different sizes and distances. We developed a novel probabilistic model for air flow
sensors, which is suitable for dead-reckoning odometry as well as for probabilistic state
estimation. In contrast to other approaches, we explicitly consider the measurement
uncertainty and the heteroscedastic characteristics of the thermal air flow sensors and
address them using appropriate regression techniques. Additionally, we presented an
effective probabilistic model for fusing the orientation estimates of an IMU into the state
estimate of our localization approach. Our model has proven to enable a significantly
more accurate localization than a standard model.

Furthermore, we showed that the localization accuracy can be significantly improved
through the simultaneous estimation of the parameters of the system dynamics, espe-
cially if only sparse and imprecise sensor information is available. We proposed a gen-
eral approach that can estimate initially unknown and possibly changing parameters of
the motion model during localization and avoids oscillations of the parameter estimates.
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We developed an efficient probabilistic odometry motion model for flying vehicles.
Our novel motion model can compute the odometry from air flow sensors and the IMU
in a linear way and therefore is computationally much more efficient than the standard
control motion model, which is based on physical simulations. Additionally, we intro-
duced a general approach to account for the temporal correlations of odometry errors
in the prediction step of the particle filter. Our odometry motion model decreases the
dimensionality of the state space in the recursive filter and therefore enables an accurate
online localization for miniature airships.

In addition to our solutions to online localization, we addressed the task of planning
and closed-loop control for autonomous navigation of mobile robots. In the context of
miniature airships, this is especially challenging, since their complex and nonlinear sys-
tem dynamics paired with their weak actuators demand to solve the kinodynamic motion
planning problem in the high-dimensional state space. We presented a solution to accu-
rate and efficient planning and control by applying a multi-stage planning technique and
an LQR controller. Our planning algorithm efficiently generates kinematically feasi-
ble trajectories through path-guided sampling based on a low-dimensional A? path. In
contrast to other approaches, our algorithm selects optimal controls towards sampled
subgoals and is able to quickly provide a possibly partial trajectory, which is extended
in subsequent planning steps.

We implemented, thoroughly tested, and evaluated our approaches presented in this
thesis. In extensive experiments, we demonstrated that our techniques enable a minia-
ture indoor blimp to accurately localize itself in a known, complex indoor environment
in an online fashion. Furthermore, our planning and control system has proven to en-
able a reliable operation of the blimp in a real-world setting. Additionally, we showed
that our solutions significantly outperform comparable state-of-the-art techniques for au-
tonomous navigation.

In summary, this thesis answers the following questions:

• How can a self-localizing mobile robot maximize the amount of information ex-
tracted from imprecise and ambiguous measurements obtained by imperfect sen-
sors?

• How to deal with unknown or changing parameters of the system dynamics during
state estimation?

• How to efficiently approximate the high-dimensional state estimation while pro-
viding a robust and accurate solution to online self-localization?

• How can a mobile robot equipped with weak actuators effectively plan suitable
actions in an online fashion to autonomously reach its desired goal?
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We demonstrated that the methods presented in this thesis enable robots to effectively
and reliably operate in their environment, and we believe that the proposed solutions are
relevant for future low-cost, small, and resource-constrained embedded systems that are
useful in industrial settings and everyday life.

Although we presented a modular robotic blimp together with a flexible and powerful
autonomous navigation system and encouraging experimental results, there are several
possibilities for extensions that remain for future investigation.

For example, we see additional potential in considering the influence of multiple re-
flections of the ultrasound signal in the environment. Our current approach considers the
direct reflection of the signal from individual objects in different distances. Although
our sensor model has proven to be robust against multiple reflections, a modeling of the
corresponding effects could be beneficial to accurate and robust localization. However,
this would require a more detailed map of the environment, which also provides normals
of the surfaces of objects and introduces additional complexity in the computations.

Another extension of our work would be to expand our probabilistic model for air flow
sensors that can measure the flow in two or three dimensions. For example, the two-
dimensional flow sensors of Cubukcu et al. [34] could replace the two one-dimensional
flow sensors mounted on top of the blimp providing comparable measurements at a lower
weight. This could make it possible to attach more of these sensors to the blimp in order
to exploit the capabilities of our probabilistic air flow sensor model to deal with L ≥ 3

sensors for an increased robustness to measurement noise. In addition, the combination
with highly integrated optical flow sensors, such as the sensors applied in optical mice,
could be beneficial to an accurate and robust odometry for flying vehicles.

Furthermore, an interesting extension of our approach to simultaneous parameter es-
timation would be the estimation of wind in the environment. We envision an effective
approach that detects strong differences between the motion predicted by the physical
simulation-based control motion model and the motion predicted by our air flow odom-
etry motion model. This could enable a flying robot to estimate the wind field in its sur-
rounding and to take into account the expected disturbances during planning and control.

Another promising direction is the consideration of the temporal correlation of mea-
surement noise. This temporal correlation is often caused by non-modeled systematic
errors, which especially occur in the field of miniature and low-cost devices. In Sec-
tion 8.3, we introduced a corresponding extension for the particle filter. Since various
implementations of the recursive Bayes filter are popular for embedded systems, a simi-
lar extension to other implementations such as the Kalman filters would cover a wide
range of applications.

Moreover, one could combine the work of Part I and II by considering the autono-
mous navigation of blimps with self-localization using its on-board sensors. Especially
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in the context of localization with sparse and imprecise sensor information, this usually
requires to take into account the uncertainty of the state estimates during planning and
control. The general formulation of this problem is known as the partially observable
Markov decision process (POMDP) [77], which requires efficient approximations to be
computationally tractable [134, 145, 146]. Future research could deal with developing
efficient POMDP approximations that exploit the characteristics of indoor airship navi-
gation.

Another interesting direction for future research is the consideration of autonomous
navigation algorithms in the presence of transient faults. Such discrete errors on bit-level
of digital circuits are not only an issue in planetary exploration or disaster scenarios un-
der high radiation but also increasingly occur in the shrinking nanometer technology of
modern microprocessors with aggressive supply voltage down-scaling to save energy. In
the context of autonomous navigation, we envision the effective combination of partially
fault-tolerant algorithms with techniques for error detection and recovery in software or
hardware. This can extend our recent work on fault-injection and fault-tolerant algo-
rithms [139, 140, 151, 158] and combine it with the work presented in this thesis.

Of course, our future research is not limited to robotics. Today, miniature low-cost
embedded devices are omnipresent in industry and everyday life. In this context, we
believe that we can exploit the techniques and the insights of our work in designing
accurate and efficient algorithms for state estimation and planning in a broad area of
applications.
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