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Abstract— Precise localization of robots is imperative for
their safe and autonomous navigation in both indoor and
outdoor environments. In outdoor scenarios, the environment
typically undergoes significant perceptual changes and requires
robust methods for accurate localization. Monocular camera-
based approaches provide an inexpensive solution to such
challenging problems compared to 3D LiDAR-based methods.
Recently, approaches have leveraged deep convolutional neu-
ral networks (CNNs) to perform place recognition and they
turn out to outperform traditional handcrafted features under
challenging perceptual conditions. In this paper, we propose
an approach for directly regressing a 6-DoF camera pose using
CNNs and a single monocular RGB image. We leverage the idea
of transfer learning for training our network as this technique
has shown to perform better when the number of training
samples are not very high. Furthermore, we propose novel data
augmentation in 3D space for additional pose coverage which
leads to more accurate localization. In contrast to the traditional
visual metric localization approaches, our resulting map size
is constant with respect to the database. During localization,
our approach has a constant time complexity of O(1) and is
independent of the database size and runs in real-time at∼80 Hz
using a single GPU. We show the localization accuracy of our
approach on publicly available datasets and that it outperforms
CNN-based state-of-the-art methods.

I. INTRODUCTION

Robust monocular camera-based autonomous navigation
in outdoor environments is still a challenging problem.
Precise metric localization is of paramount importance for
an autonomous platform. Monocular global localization can
be broadly categorized into visual place recognition and 6-
DoF camera pose estimation. The approaches which fall into
the former category, recognize the same place when a robot
revisits. These methods provide topological localization but
do not provide exact camera position. Approaches from
the latter category estimate camera’s global position and
orientation in the map. In this paper, we address the latter
problem as we believe that inferring the location of the robot
in the map is crucial for its safe and autonomous navigation.

Most of the approaches [10, 20, 25] rely on local fea-
ture descriptors such as SIFT by Lowe [12] to cope with
the problem of image-based localization. For a given 3D
model of an environment, each point is associated with
its image features that are used for triangulation. These
approaches then establish 2D-3D correspondences between
the query descriptors and the descriptors of 3D points.
The correspondences are used to estimate the camera pose
with a Perspective-n-Point solver. This is prone to outliers
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Fig. 1: Given an RGB image, our approach regresses the global
6-DoF camera pose in a large outdoor map. Top: 3D point cloud
of the map (shown for visualization purpose). Middle: projection
of the 3D cloud by the estimated camera pose using our approach.
The projected point cloud is colorized with the color information
of the test image. Bottom: Test image captured from a hand-held
camera.

in the set of point correspondences. Generally, these pose
estimates are further refined with RANSAC to cope with the
outliers. Pose estimation in such a framework highly relies
on correct feature matches. Image degradations like blur,
poor illumination, and perceptual changes affect the feature
descriptions and hence lead to poor localization accuracy.

Recently, convolutional neural networks (CNNs) have
shown tremendous progress in the area of visual place
recognition in such perceptually challenging conditions [13].
Inspired by the amazing ability of such networks to perform
well under harsh visual conditions, Kendall and Cipolla [7, 8]
(Bayesian PoseNet, PoseNet) have explored the area of
directly regressing the camera pose from these networks. In
this paper, we propose to regress the 6-DoF camera pose
from a single monocular RGB image as shown in Fig. 1.
We leverage pre-trained CNNs on the Places database [26]
for the regression task. This method is known as transfer
learning. Kendall et al. [8] has recently shown that the
networks that are pre-trained for classification tasks can
be deployed to perform regression as well. Our idea in
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Fig. 2: Our proposed deep regression architecture with final pose regressors that predict position and orientation for an input image.

spirit is similar to PoseNet. We propose a novel CNN-based
architecture for our regression task which builds upon the
VGG architecture [21]. We segregate the fully connected
layers for independent orientation and position prediction.
Two fully connected layers (pose regressors) are added
after the respective low dimensional features. The proposed
architecture achieves better performance than vanilla VGG
with pose regressors as the final branches. Furthermore, we
propose data augmentation in the 3D pose space to generate
more training examples which leads to better performance.
We augment the images using a single monocular image.
We leverage deep networks to generate depth maps from a
single image. Together with the original RGB image and
the corresponding depth map, we generate synthetic poses-
image pairs. This helps us to expand the span of the pose
space while training our network. To show that our method
generalizes well to every scenario in the benchmark we
do not perform grid search to optimize a main weighting
parameter. We show with real-world experiments on the
publicly available datasets that our approach outperforms
CNN-based state-of-the-art methods.

Our contributions can be summarized as follows:
– We propose a segregated architecture for 6-DoF camera

pose estimation.
– We propose data augmentation in 3D space for the task

of camera relocalization. This helps in regressing the
camera pose more accurately as the network is able to
learn a more discriminative regression function.

– Our approach generalizes well to different scenarios of
a public benchmark without performing a grid search
to choose the main weighting parameter that balances
the importance of orientation and position errors.

II. RELATED WORK

Although visual localization has received great attention in
computer vision and robotics communities, it still remains a
challenging problem. We categorize these into topological
localization and metric localization.
Topological Localization: Given a query image and a set of
database images, these approaches retrieve the closest place
in the map by leveraging different feature matching strate-
gies. Milford and Wyeth [15] proposed an approach for place
recognition across large perceptual changes by performing
linear sequential filtering on image matchings. Sünderhauf

et al. [22] proposed to leverage robustness of convolutional
features with region proposals for accurate topological lo-
calization. Badino et al. [1] proposed an approach which
fuses LiDAR and image data with a particle filter framework
to perform longterm place recognition. Neubert and Protzel
[17] propose a multi scale approach based on superpixel
segmentation for robust place recognition. Although these
approaches have shown impressive results in challenging
conditions, these do not provide metric information about the
6-DoF pose of the camera. Torii et al. [23] used Google Street
view images and corresponding depth maps to synthesize
virtual views to boost the place recognition performance.
Metric Localization: McManus et al. [14] proposed an
approach for learning salient visual elements of a place using
a bank of SVM classifiers. This approach is hybrid as it
uses weak localizers to find the closest topological node
in the map and then refines the pose using the bank of
SVM classifiers per place. It achieves sub-meter localization
accuracy and requires 10 MB storage per place. Pascoe et al.
[18] proposed an approach to localize camera images in a
map built by fusing LIDAR and image data. Caselitz et al.
[2] proposed to match geometry of images to the geometrical
structure of a map built from 3D LiDAR data to cope
with large perceptual changes. Visual SLAM, and vision-
based localization approaches mostly focus on matching
viewpoints using point-based features [3, 16, 19]. Kendall
et al. [8] proposed to directly regress the camera pose from
a monocular image in an end-to-end fashion. Kendall and
Cipolla [7] showed that modeling the uncertainty in camera
pose estimates can lead to better localization performance.
A very recent method by Walch et al. [24] proposed to
learn contextual features of images using spatial LSTMs
[5] combined with PoseNet architecture to improve the
localization accuracy. Our idea is similar in spirit to PoseNet
with key differences in the architecture and the training
strategies. We show the generalization of our approach which
uses same training parameters in contrast to these recent
CNN-based methods that use hyperparameter optimization
for each dataset. In the next section, we discuss the technical
contributions of our approach followed by extensive set
of evaluations and show that our approach outperforms
recent methods for 6-DoF camera pose regression in outdoor
environments.



III. TECHNICAL APPROACH

Deep learning-based approaches have shown immense
impact in the area of image classification and recognition.
In this paper, we propose a method to achieve robust metric
global monocular localization using convolutional neural net-
works in an end-to-end fashion. In this work, we build upon
existing convolutional architectures and propose effective
modifications for camera pose regression. We propose a
novel CNN architecture which segregates the fully connected
layers to estimate the position and orientation independently.
Furthermore, we create synthetic viewpoints from the train-
ing images to prevent the network from over fitting on the
datasets with small number of training examples. Such an
augmentation in 3D space helps to learn a more discrimi-
native regression function. In the following subsections, we
discuss the proposed architecture and the training strategy.

A. Regression Conv-Net Architecture

In this subsection, we discuss the proposed convolutional
neural network architecture for regression. We build upon
the VGG16 architecture for directly regressing the 6-DoF
pose from a single monocular RGB image in an end-to-
end manner. It uses small receptive field of size 3 × 3
through out the network. It stacks several convolutional
layers in conjunction to approximate a conv-layer of greater
receptive field. This results in reduced trainable parameters.
The proposed architecture is shown in Fig. 2. VGG16 has
3 fully connected layers (fc6, fc7, fc8) after the convolu-
tional layers. We branch out the network after the first
fully connected layer to regress the camera position and
orientation separately. We add two fully connected layers fc9
and fc10 at the end which are the final pose regressors for
position and orientation. Dropout layers are added after each
fully connected layers except the pose regressors to perform
regularization. The pose regressors are initialized with Xavier
weights as it prevents the input signal from shrinking or
exploding based on the initial values of the weights [4]. For a
fully connected layer, the variance of the weights W depends
on its input and output dimensionality.

V ar(W) =
2

nin + nout
(1)

All the remaining layers are initialized with the weights of
VGG16 that is pre-trained on the Places database. We train
our network with Adam [9] as the gradient descent solver.

B. Regression Conv-Net Training

Given a input image I and network parameters θ, our
network predicts 6-DoF camera pose as two disjoint vectors.
The output vector consists of the 3D camera position p and
its orientation q represented as a quaternion.

Our aim is to optimize the following objective function
which minimizes the euclidean loss between position and
orientation estimate predictions and the true labels.

L(θ) = ‖p̂− p‖2 + β‖q̂− q‖2 (2)
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Fig. 3: We generate synthetic depth maps from a monocular RGB
image using a Convnet. We then generate synthetic viewpoints using
this depth information which help to learn a more discriminative
regression function. We rotate the camera ±5◦ around pitch and
yaw and translate by ± 0.5m along the depth of the scene.

Here, β is the weighting factor for the importance of balance
between position and orientation error. Although quaternions
are preferred to be used as a representation for the orien-
tation, there are cases where such a representation can be
ambiguous too. Unit quaternions q and −q denote the same
rotation, we cope with such a case as follows.

φ1(q1,q2) = min{‖q1 − q2‖2, ‖q1 + q2‖2} (3)

The function in Eq. (3) is pseudometric than a metric on
unit quaternions. Due to its nature of 2 to 1 mapping to
SO(3), the pseudometric on the unit quaternions becomes
a metric on 3D rotations [6]. It is important to regularize
neural networks while training as it prevents over fitting.
We use L2 regularization which penalizes the values of the
network parameters θ and help the network to generalize.
We regularize only the weights of the network using Eq. (4)
and not the biases. λ is a hyperparameter that controls the
regularization strength.

L(θ) = L(θ) + λ‖θ‖2 (4)

C. Synthetic Viewpoint Generation

Training deep neural networks require large amount of
training data. We leverage the idea of transfer learning to
train our network. As our task is to regress a global 6-DoF
camera pose in a map, we propose to augment the pose space
in 3D and generate the corresponding images and pose labels
from the original RGB training images.

For image classification tasks, general data augmentation
methods include color and shape distortions in 2D image
space as it does not affect the class label. In our case
random 2D shape augmentations cannot be applied as it
would affect the pose of the camera. Therefore, for pose
space coverage, we create synthetic viewpoints in 3D from



the training images and its associated synthetic depth. We do
not have any stereo information, so we generate depth images
from a single RGB image during the training phase. We use
the method of Liu et al. [11] to generate depth images. We
assume a pinhole camera model in our approach, that defines
the relationship between a 3D point p = (x, y, z)T ∈ R3 and
a 2D pixel position x = (i, j)T ∈ R2.

π(x, y, z)T =
(fxx
z

+ cx,
fyy

z
+ cy

)
= (i, j)T (5)

Here, fx, fy, cx, cy refer to the focal length and the optical
center of the camera respectively. Given the depth z of a pixel
(i, j), we can reconstruct the 3D point as follows:

ρ(i, j, z) =
( (i− cx)z

fx
,

(j − cy)z

fy
, z
)T

(6)

We generate a local 3D point cloud using Eq. (6). Then
we apply 6 different pose variations. We rotate the camera
around pitch, yaw by ±5◦ as strong rotations around roll are
not expected. For more spatial coverage, we also synthesize
views at ±0.5 m along the depth of the scene. The resulting
depth maps from the single image-based CNN predictions are
not highly accurate, hence it limits large variations for pose
synthesis and would degrade the synthesized image quality.

Given the original rotation R of a point p in global
coordinates, the translation of the camera from origin of the
global coordinate system in the camera-centred coordinates
is given by t = −Rp. We calculate the synthesized rotation
Rs, translation ts and position ps after applying ∆R rotation
around a certain axis and ∆t translation using Eq. (7)-(9).

Rs = (∆R)R (7)

ts = (RsR
T)t + ∆t (8)

ps = −Rs
Tts (9)

This gives us the new pose labels for the synthetic view-
points. To generate synthetic images, we project these 3D
points to 2D using Eq. (5). The resulting data augmentations
are shown in Fig. 3. We train our network with the original
training images and the synthesized images. During the
localization phase, our approach just uses a monocular RGB
image and estimates the global 6-DoF camera pose with a
constant time complexity of O(1).

IV. EXPERIMENTS

We have evaluated our approach on four public benchmark
datasets (Kings College, ShopFacade, St Mary Church, Old
Hospital) to show the robustness of our approach in outdoor
scenarios. These datasets comprise of images recorded from
a hand-held camera in London. In this section, we will
discuss the quantitative evaluation of different aspects of our
approach on these datasets. We report positional errors in
meters and the orientation errors in degrees. To train our
network, we use a mini-batch of 64 images, learning rate of
10−2 and λ = 0.1 for the L2 regularization of the weights.
Furthermore, to show that our approach generalizes well to
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Fig. 4: Our proposed regression architecture and the data augmen-
tation method in the 3D pose space outperforms vanilla VGG16,
PoseNet and Bayesian PoseNet. These errors are reported for Kings
College dataset.

different scenes, we use the same parameters to train our
network. Both the methods (PoseNet, Bayesian PoseNet) use
grid search to optimize the main tuning parameter β for each
dataset. In our experiments, the relatively similar value of
β(200, 250) for all the scenarios shows the generalization
of our method with a small variation on the accuracy. As
extensive hyperparameter optimization of our approach will
lead to better results, we regard the presented results as the
lower bound for the accuracy. We denote the vanilla VGG16
architecture with pose regressors (fc9, fc10) as VGGPose,
the proposed segregated architecture as VGGRegNet, and
the proposed architecture trained with data augmentation as
Proposed. We present the median errors for both orientation
and position and also the average error over all the datasets.
The ground truth poses are available from the 3D recon-
structed models of the datasets that are created using SfM.
We calculate L2 norm of difference in positions for positional
accuracy. The orientation errors are reported in degrees by
calculating the difference between the estimated and ground
truth quaternions as 2 arccos(|q1 · q2|) 180

π .

We first discuss the advantage of using our proposed
architecture and the data augmentation on the Kings College
dataset. Fig. 4 shows the comparison of all the methods.
VGGPose achieves 3.89% better accuracy in orientation and
7.29% better accuracy in position than PoseNet. This exhibits
the potential of VGGPose as a better pose regressor. The
reduced trainable parameters enable VGGPose to learn a
better discriminative function for camera pose estimation.
We also quantify the gain in accuracy of our proposed
architecture. VGGRegNet results in further 14% reduction in
position error and 3.3% reduction in the angular deviations.

Next, we compare our approach to PoseNet and Bayesian
PoseNet over all 4 datasets. Fig. 7 shows median localization
errors for both position and orientation on these datasets.
Kings College has the largest spatial extent of 5000 m2

amongst all the datasets. It consists of 1220 training images
and 346 testing images. It does not contain extreme angular



Fig. 5: This figure shows challenging test images from all the datasets. Images are subjected to severe occlusions, camera rotations and
structural ambiguities. From Left: Kings College, Old Hospital, Shop Facade, St. Mary Church.
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Fig. 6: Comparison of the localization accuracy on all the datasets
as a cumulative histogram exhibits the relative errors between them.
It can be observed that St. Mary Church is the most challenging
dataset amongst them. Shop Facade has a relatively small spatial
extent, hence its positional localization errors are least of them all.

deviations as the images are recorded while walking along
the college. Our approach outperforms all state-of-the-art
methods with positional and rotational errors are combined.
ShopFacade dataset contains large angular variations and
does not cover large space spatially as it covers an area
of 875 m2. Our approach outperforms Bayesian PoseNet
with the gain of 42.5% and 24% accuracy in position and
orientation respectively. Fig. 3 shows that data augmentation
helps to cover more orientations from a single training image
in 3D space. This leads to better regression as the pose
regressors have more data points for association and the
weighted mean of these data points would give better pose
estimate.

Old Hospital has a spatial extent of 2000 m2, it contains
895 training and 182 testing images. It shows relatively larger
positional errors than Kings College. It is due to the large
translational deviations of the camera along the depth of the
scene. Our data augmentation along the zoom level and pitch
and yaw makes our approach robust towards these deviations.
We achieve 35% more accurate positional estimates and our
orientation predictions are 27.5% more robust than Bayesian
PoseNet. This dataset also contains strong angular deviations
around pitch along with substantial changes in the position of
the camera as well. In such scenarios, one could also exploit
combined data augmentation, where the synthetic image not
only undergoes a single variation in either position or rotation
but is synthesized from the combination of both of these. We
leave this investigation for future work.

The fourth dataset is recorded by walking a complete loop
around St. Mary Church. It contains 1487 training images
and 530 testing images. This dataset proved to be one of the
most challenging dataset for pose regression. It comprises
of strong camera rotations while covering a spatial area
of 4800 m2. The Church has many similar windows on its

Error PoseNet Bayesian PoseNet Proposed
Positional Error [m] 2.1 1.9 1.3
Angular Error [Deg] 6.8 6.3 5.2

TABLE I: Average localization errors over all the datasets.

periphery which makes the pose estimation ambiguous as
shown in Fig. 5. Our approach perform as good as Bayesian
PoseNet for positional accuracy and reduces the median
orientation by 3.22%. Combined data augmentation might
be helpful in such scenarios or probabilistic modeling of
the resulting pose estimates would also help in such cases
as indicated by the improvement of Bayesian PoseNet over
PoseNet.

We also show the cumulative localization errors for both
position and orientation over all the datasets in Fig. 6. It can
be observed from the figure that positional localization errors
for areas with larger spatial extent are relatively higher than
those which cover relatively smaller areas. It is not only the
spatial extent but also the magnitude of camera translations in
the area. Although, Old Hospital has a smaller spatial extent,
it has relatively lower positional localization accuracy than
Kings College because of large spatial camera movements.
The cumulative distributions of angular errors show that
datasets with large angular deviations (Shop Facade and
St. Mary Church) resulted in higher orientation errors than
scenarios where the camera did not undergo severe rotations.
We also report the average localization accuracy over all the
datasets in Table I. Our position estimates are 31.6% and
orientation estimates are 17.4% more accurate than Bayesian
Posenet. Regarding timing, our approach only requires a
single forward pass through the network for pose prediction,
taking 12.5 ms on NVIDIA-TITAN X and it is independent
of the database size.

Note that, a very recent method by Walch et al. [24]
that uses spatial-LSTM combined with PoseNet architecture
shows similar average positional error of 1.3 m and higher
average rotational error of 5.5◦(5.45%) than our proposed
method. We believe that learning spatial context of image
features using LSTMs is an interesting idea and would lead
to further improvement in the localization accuracy. We
do not report results on the Street dataset, which is the
final outdoor dataset from Cambridge Landmarks. The same
observation is pointed out by Walch et al. about this peculiar
behavior on this dataset. This dataset comprises of videos
recorded in opposite compass directions with similar spatial
positions resulting in large angular deviations at similar
global position. As we do not perform grid search for tuning
parameters, the model could not converge with the same
tuning parameters.
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Fig. 7: Our approach outperforms PoseNet and Bayesian PoseNet on these datasets. using the same parameter settings for each of them.
This exhibits that our approach generalizes well to different scenes.

V. CONCLUSION

In this paper, we proposed a novel approach for regressing
6-DoF camera poses with a mononcular RGB image in out-
door environments using convolutional neural networks. We
proposed a novel architecture for deep regression and showed
its effectiveness compared to state-of-the-art methods. The
proposed data augmentation in 3D pose space resulted in
a substantial improvement in the localization accuracy. In
extensive experiments we demonstrated that our approach
outperformes state-of-the-art CNN-based methods for metric
localization in outdoor scenarios. For future work we plan to
investigate the scalability of such networks for city scale pose
regression and generalization across large time lags where
methods based on point features do not perform well.
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