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Abstract— Learning from demonstration is a powerful tool
for teaching manipulation actions to a robot. It is, however,
an unsolved problem how to consider knowledge about the
world and action-induced reactions such as forces imposed onto
the gripper or measured liquid levels during pouring without
explicit and case dependent programming. In this paper, we
present a novel approach to include such knowledge directly in
form of measured features. To this end, we use action demon-
strations together with external features to learn a motion
encoded by a dynamic system in a Gaussian Mixture Model
(GMM) representation. Accordingly, during action imitation,
the system is able to couple the geometric trajectory of the
motion to measured features in the scene. We demonstrate
the feasibility of our approach with a broad range of external
features in real-world robot experiments including a drinking,
a handover and a pouring task.

I. INTRODUCTION

In the past, service robotics has grown in importance and

received rising interest. Several service robotic systems are

commercially available as robots that mow the lawn or vac-

uum the floor. However, applications involving manipulation

tasks as organizing shelves or interactions with the environ-

ment rely on feedback as handing over objects to a human

are still tough to accomplish. Mostly such systems depend on

predefined motion trajectories and require expert knowledge.

On the other hand, learning from demonstration alleviates

the robot teaching process allowing even non-expert users to

extend the robot’s usability by teaching new skills. Common

techniques rely on learning a geometric representation of the

action which determines a trajectory. They are able to adapt

to other geometric setups and dynamically react to external

perturbations on the trajectory course. Many real-life tasks

however are not only described by geometric constraints

but also depend on additional properties as contact forces

or other measurable parameters like the liquid height in a

container while pouring. So far such reacting behavior is

either triggered externally or regulated by time.

In this paper, we present a novel approach that learns

actions from demonstration considering both the geometric

information about the motion as well as its interdependence

to other, non-geometric features in the scene. Those can be

direct results of the motion, like when pouring a liquid, or

caused by independent sources as measured contact forces.

Both cases exert influences on the motion. Thus, we aim at

coupling the knowledge about these influences directly into

the action model by including the measured feature as an

additional dimension.
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Fig. 1: Our approach uses Gaussian Mixture Models to create a
motion model for a manipulator. Besides the common geometric
description of demonstrations, the model takes external parameters
as contact forces or liquid levels into account. The pictures depict
how force as an external parameter can influence the motion
generation. Our model is able to deliver the object properly, by
learning the correlation between force measurements and geometric
course of the demonstrations.

Fig. 1 shows an example application. Handing over an

object requires to react when the collaborator successfully

grasped the object. For such manipulation tasks, many ap-

proaches create a motion model that only considers the

trajectory of the object at hand. While these models can

create trajectories that closely imitate the training data, the

safe and smooth interaction with the human can constitute a

problem. Obviously, the opening of the robot gripper should

not only depend on its relative position to the human hand

but rather be influenced by the measured contact force.

Moreover, this force should only cause the gripper to be

opened when the object is also close to the human hand.

Therefore, considering a threshold on the measured forces

is not sufficient. By incorporating external parameters into

the model one can overcome these issues. As can be seen

in Fig. 1, our model is able to cope with undesired forces

acting on the robot (t1) and forces caused by the sudden

accelerations (t2). After reaching the human hand the robot

does not open its gripper before the human has actually

grasped the object (t3). Other examples include drinking and

pouring tasks. In the first one, the robot should not start

tilting the cup as long as no contact between the human lips

and the rim of the cup is established. In pouring tasks the

robot has to consider the liquid height in the cup.

In this paper the following contributions are made: we
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couple the geometric course of a motion described in a dy-

namical system with other quantifiable entities like measured

forces or the height of a liquid in a cup. This correlation is

learned through a small number of action demonstrations and

can in principle be applied to any action that should react

to arbitrary, measurable external features. We demonstrate

the feasibility of our approach for different applications in

real-world robot experiments including a drinking task, a

handover task and a pouring task.

II. RELATED WORK

In the context of learning from demonstrations the two

major question addressed in the research community over the

last years focus on how and what to imitate. The question of

what to imitate refers to learning relevant context or frames

of reference for generalizing demonstrated actions. This pa-

per addresses the how to imitate question and extends it into

the direction of why and when. We explore how externally

perceived information that should influence the trajectory’s

course can be incorporated into the modeling of actions.

Recent work dealing with imitation learning on trajectory

level describes the motion using dynamic systems [1]. The

underlaying representations vary from movement primitives

as described in [2] to probabilistic approaches as presented

by Calinon et al. [3], [4]. In [3] the authors propose a

formulation regarding the motion mechanism as driven by

a virtual spring-damper system. The dynamical system’s

parameters are then learned as a mixture of Gaussians. This

approach can be implemented as an autonomous system,

i. e., independent of time, or as directly time dependent.

Khansari-Zadeh et al. [5] further extend the probabilistic

representation with a mixture of Gaussians by proposing a

learning approach that ensures asymptotic stability of the

generated motions. Recent work by Welschehold et al. [6],

[7], [8] use similar dynamical systems to learn a variety of

mobile manipulation actions directly from human demon-

strations. Mühlig et al. [9] presented a system that learns

manipulation actions using an articulated model of the human

body. Although [6], [9] interact with the world, the actions

they imitate are not critically dependent on reaction of the

environment as it is for instance in a pouring task. All of

these approaches focus on imitating and generalizing seen

demonstrations from a purely geometric viewpoint. In our

work we also rely on autonomous dynamical system using a

mixture of Gaussians to learn the demonstrated behavior. In

contrast to the described approach above however, we include

additional non-geometric features that are not controlled by

the system.

In [10] Kim et al. present an approach that allows catching

of object in flight using the dynamical system representation

from [5]. The approach reacts online to pose measurements

of the flying object. In contrast to our work the measurement

of the object motion is not directly part of the learned

model but triggers an adaption of the system to the best

predicted catching pose. In [11] Do et al. address the task of

pouring water into a cup, which is also one of our example

applications. While we use their pipeline to measure the

liquid height, their implementation of the pouring action

relies on a manually designed PID controller. They recently

extended their work by learning the pouring trajectory from

simulation using an approach based on deep reinforcement

learning and applied it in real-world experiments [12]. In

the context of our drinking experiment, Burget et al. have

proposed a framework in which an autonomous robotic

drinking assistant detects and localizes the user’s mouth and

then generates a motion to bring a cup to the mouth [13]. In

contrast to our approach, their system cannot handle dynamic

movements of the user’s head.

III. APPROACH

For acquisition of new robot skills, our approach learns a

dynamic action model which adopts the geometric represen-

tation of the intended motion in response to external features

from human demonstrations. Hence, our proposed framework

consists of three steps: (1) data collection, which gathers

demonstration data as trajectories recorded as motion of hu-

mans, robots or objects as well as their corresponding effects

on the scene or other parameters that exert influence on the

motion, (2) motion model learning, which allows to learn

robot actions from this set of demonstrations constrained on

the perceived parameters, and (3) an online execution system

which ensures reactive behavior of the system in presence

of disturbances. In general, the demonstrations can contain

parameters obtained by arbitrary sensors as liquid heights

determined by a vision-based system or end-effector contact

forces measured by the robot.

A. Problem Statement

Given N demonstrations of an action we want to learn

action models that capture their geometric route and link

it to other non-geometric features. A demonstration X =
〈(ξ1,ρ1), . . . , (ξn,ρn)〉 consists of n vectors (ξi,ρi) ∈ R

d,

where ξi is a geometric pose and ρi a feature describing

additional information. Thus, a typical task is described

by a 6-DOF (Degree-of-Freedom) trajectory and associated

features as contact forces or liquid level heights. The features

can not be controlled directly by the robot but are a reaction

of the environment to the geometric trajectory or a result of

an external source. When imitating the action, the system has

to adopt the geometric execution in response to the perceived

external features.

B. Learning a Dynamical System with Gaussian Mixture

Models

Khansari-Zadeh et al. [5] use autonomous dynamical

systems to explain encoding of point-to-point motions. An

autonomous dynamical system employs a first order ordinary

differential equation to map the state of the system to its first

derivative. In other words, if ξ defines the state of the system,

then

ξ̇ = f(ξ) + ǫ, (1)

where f is a nonlinear steady and continuously differentiable

function and ǫ is a zero-mean additive Gaussian noise.

Note that Eq. (1) is autonomous since the derivative only
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depends on the state ξ and not on time explicitly. The

noise-free estimate of f can be learned by a mixture of

Gaussians, i. e., as a linear superposition of multivariate

Gaussian distributions which aims to capture a model for

the density of the nonlinear data at hand. This provides an

estimate of the variation and correlation across all variables

of the data. A GMM with K Gaussian components represents

the joint probability of the pose ξ and the corresponding

velocity ξ̇ by

P(ξ, ξ̇) =

K
∑

k=1

P(k)P(ξ, ξ̇ | k). (2)

P(k) is a prior and P(ξ, ξ̇ |k) is the joint probability density

corresponding to the k-th Gaussian. Hence, the estimate of

f is parametrized by θ = {πk,µk,Σk}
K
k=1, where πk is

the prior, µk the mean and Σk the covariance of the k-th

Gaussian function. The means and covariances are defined

by:

µk =

(

µk
ξ

µk

ξ̇

)

and Σ
k =

(

Σ
k
ξ Σ

k

ξξ̇

Σ
k

ξ̇ξ
Σ

k

ξ̇

)

. (3)

These parameters can be estimated iteratively with different

optimization techniques such as Expectation-Maximization

(EM) algorithms.

By using this estimated joint probability density function

we can retrieve ξ̇ given ξ as the conditional distribution

P(ξ̇ | ξ) through Gaussian mixture regression [14]:

µ̂ξ̇ =

K
∑

k=1

hk(ξ)

(

µk

ξ̇
+Σ

k

ξ̇ξ

(

Σ
k
ξ

)

−1
(

ξ − µk
ξ

)

)

(4)

Σ̂ξ̇ =
K
∑

k=1

h2
k(ξ)

(

Σ
k

ξ̇
−Σ

k

ξ̇ξ

(

Σ
k
ξ

)

−1

Σ
k

ξξ̇

)

, (5)

where the weights hk(ξ) correspond to

hk(ξ) =
P(k)P(ξ | k)

∑K

k=1 P(k)P(ξ | k)
(6)

and µ̂ξ̇ and Σ̂ξ̇ are the estimated parameters of P(ξ̇ | ξ).
The autonomous dynamical system can now reproduce the

learned behavior by estimating the next velocity at the given

current pose. Since f̂(ξ) = µ̂ we get:

ξ̇ =

K
∑

k=1

hk(ξ)

(

µk

ξ̇
+Σ

k

ξ̇ξ

(

Σ
k
ξ

)

−1
(

ξ − µk
ξ

)

)

. (7)

By updating the pose ξ with the generated velocity ξ̇ and

proceeding iteratively we can generate a robot trajectory.

C. Incorporating External Features into Action Models

The system described in Sec. III-B is able to reproduce

trajectories in a geometrically suitable way. There are how-

ever countless cases in which just reproducing a trajectory

will not yield the desired outcome since the system should

also dynamically react to other features of the scene. In this

section we describe our contribution to treat external features

of the system as additional dimensions in the action model

learning approach.

As we have changed the definition of a trajectory X to

include feature values ρ at each of the n poses (see Sec. III-

A), accordingly the representation of the Gaussian function

parameters θ change to

µk =

(

µk
(ξ,ρ)

µξ̇

)

and Σ
k =

(

Σ
k
(ξ,ρ) Σ

k

(ξ,ρ)ξ̇

Σ
k

ξ̇(ξ,ρ)
Σ

k

ξ̇

)

(8)

With Gaussian mixture regression we can again estimate

the conditional probability P(ξ̇|(ξ,ρ)) as a new Gaussian

distribution

µ̂ξ̇ =

K
∑

k=1

hk(ξ,ρ)
(

µk

ξ̇

+ Σ
k

ξ̇(ξ,ρ)

(

Σ
k
(ξ,ρ)

)

−1 (

(ξ,ρ)− µk
(ξ,ρ)

)

)

(9)

Σ̂ξ̇ =

K
∑

k=1

h2
k(ξ,ρ)

(

Σξ̇ −Σ
k

ξ̇(ξ,ρ)

(

Σ
k
(ξ,ρ)

)

−1

Σ
k

(ξ,ρ)ξ̇

)

(10)

and retrieve velocity commands accordingly. Note that we

are not interested in generating any prediction for ρ̇ as we as-

sume that the external features cannot be controlled directly

by the robot. ρ is only considered as an observation of the

dynamical system to augment the action model learning by

the further knowledge about the world in order to generate

reactive motion commands. This way the correlation between

the behavior of external features and velocity of geometric

motion is captured in the action representation by the covari-

ances Σk

(ξ,ρ)ξ̇
and Σ

k

ξ̇(ξ,ρ)
of the GMM. Accordingly, Eq. (8)

demonstrates that covariance matrices and means of all K

Gaussian functions capture the relation between positions

and external features observed during demonstrations and

their corresponding velocities.

D. Online Execution

The model described in the previous two sections is used

to generate velocities for our robot end-effector. In tasks

which involve object manipulation or human-robot interac-

tions it is often sufficient to train a model that generates

the desired velocities for the end-effector and ignores the

joints velocities. Thus, our approach relies on a Jacobian-

based task space controller [15] that transforms the end-

effector velocities of the dynamic system into joint velocities

to be executed by the robot. Furthermore, to enable online

adaption of the trajectories at every time step we update

the dynamic model to fit the current scenario and send the

resulting new commands to the motion controller. By using

a task space controller, our approach can cope with both

human demonstrations and kinesthetic teaching.

IV. EVALUATION

Learning a skill from demonstrations can be accomplished

through different approaches. In the following, we evaluate
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our approach in three scenarios and investigate different

learning modalities, scene tracking approaches and external

features.

A. Experimental Setup

In order to detect the demonstrated motions in the scene

we employ a marker-less optical approach for motion cap-

turing in some of the experiments. OpenPose [16], [17] can

be used to efficiently detect keypoints of multiple people in

real-time. However, for body parts like hands the estimation

of orientations is not always robust. We thus also relied on

a marker-based tracking system yielding smoother trajectory

recordings. Furthermore, for detecting and tracking of rele-

vant objects we used Simtrack [18], a model-based tracking

system that retrieves the object’s 6D poses. All experiments

have been conducted with a KUKA iiwa manipulator in a

real-world environment.

To train our GMMs we used the SEDS library presented

in [5]. It estimates the parameters of the mixture model

by solving a constraint optimization problem and ensures

global asymptotic stability of the model. In doing so, SEDS

guarantees that the system always converges to the target

point. This approach is designed to estimate the joint proba-

bility of a set of variables and its corresponding velocities. It

furthermore assumes that all parameters can be controlled by

the model. In our case, we add feature values as additional

input dimensions since we are interested in their influence

on the geometric course of the model. The estimated rates

of change for these parameters, i. e., their velocities, are not

relevant in our approach as they are not directly controlled by

the robot. This breaks the guaranteed asymptotic stability of

the system. However, in practice this does not cause critical

behavior of the system.

B. Drinking

One important area that can greatly benefit by autonomous

robotic agents is assessment of people with disabilities. A

patient who is paralyzed due to spinal cord injury or stroke

might suffer from an inability to perform tasks like liquid

intake. In this experiment, we aim to show that by performing

only a few drinking demonstrations and treating the force

interaction between cup and human lip as an external feature

we can ensure a compliant and dynamic behavior of the

robot. To measure contact forces between cup and human lips

we mounted a force-sensitive resistor around the rim of a cup.

With this setup, a human teacher performed three drinking

demonstrations. This imitation learning approach is the most

intuitive and convenient way of teaching skills to a robot. The

cup trajectories are specified relative to the teacher’s nose

frame and contain 6-DOF poses as well as corresponding

force sensor measurements. Using these demonstrations, we

trained a GMM model with two Gaussian functions. Our

intention behind this experiment is that the future service

robot is able to learn how to perform everyday tasks by

observing a human, non-expert demonstrator.

To evaluate the trained model, we compared it with

another GMM model which is learned by taking only the

t1 t2 t3

t1 t2 t3
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t1 t2 t3

t1 t2 t3
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Fig. 2: The upper image shows the drinking task executed by our
dynamic system that uses a geometric description of the trajectory
only. At t1 the cup already starts tilting without having contact to
the lips. The contact is established in t3 which results in potential
spilling of liquid. The lower image shows our extended model
which also considers the contact forces between lips and the cup
ensures an upright and thus safe position of the cup as long as
there is no contact. The two graphs visualize the corresponding
tilting angles and contact forces. Compared to the extended model
which yields the desired behavior, the geometric one does not know
about the forces and starts tilting the cup too early.

geometric representation of the same demonstrations into

account. Fig. 2 illustrates the relation between the tilting

angle of the cup and the amount of force which is exerted

on the rim for both models. The upper image shows the

experiment which is performed by the model that relies only

on the geometric description. The lower image illustrates the

behavior of our model which additionally takes force inter-

action into consideration. Evidently, the geometric model has

already started to tilt the cup while approaching the user’s

lips (t1) and would spill liquid before reaching them (e. g.,

t2). In contrast, our extended model keeps the cup upright

until the lips get in contact with the rim (t2) which finally

triggers the tilting motion of the cup (t3). Thus, it has learned

the correlation of desired force and the relative position of

the cup to the lips at each point of the trajectory. Note that

by employing the extended model users additionally have

the possibility to actively control the motion. As long as the

user has no contact with cup it will stay upright in front of

the lips. This also yields a convenient stop condition since

reducing the pressure between lip and cup causes a return

motion into the upright position.
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C. Pouring Liquids into a Cup

Another essential skill for a domestic service robot which

intends to serve beverages or cook meals is to pour liquids

appropriately and accurately into containers. In the follow-

ing, we demonstrate that our approach is able to adopt the

liquid height in a cup as an external feature and learns an

action model which pours an intended amount of liquid into

the cup – regardless of whether the cup is empty or partially

filled.

Do et al. have proposed a probabilistic framework for

estimating the liquid level in a cup using low-cost and widely

available RGB-D cameras [11]. Using this framework, the

setup for this experiment consists of a RGB-D camera which

is located above the cup to estimate its liquid height and

another RGB-D camera to track the bottle of water. In

the training phase, three demonstration were recorded by a

human in which the cup was filled until reaching a liquid

height of approximately 80%. The trajectory of the bottle

has been defined as the bottle orientation in the frame of

reference of the cup which we record alongside the liquid

height. Using this information, we trained a GMM model

with two Gaussian components that allows execution of

pouring tasks and properly fills cups to a liquid height of

80%.

In order to assess the effectiveness of adding the liquid

height as an external feature to the action model, we com-

pared it with a model which was trained from the same

demonstrations but without using the liquid height. Thus,

it only relies on the geometrical description of the motion.

The objective of this experiment was to pour water into the

cup until 80% of the cup was filled. Table I illustrates the

difference between both models. While the geometric model

fails if there is already a specified amount of water in the

cup, our model is able to cope with different initial liquid

heights and still reaches the target height.

D. Handing Over Objects to a Human

A fundamental yet complex skill for human-robot col-

laborations is a seamless handover of different objects to

a human. For such an interaction, the robot has to resolve

where to transfer the object at hand and more importantly

when to exchange it in a dynamical setting to ensure that

the human has control of the object immediately. With this

experiment, we show that our GMM model which is based

on a small set of handover demonstrations performed by

kinesthetic teaching is not only able to capture the physical

process of approaching an object to the human, but also does

not release the object before the human has grasped it. To

this end, our approach also takes into account the interacting

forces. A widely used approach to transfer skills to robots

is kinesthetic teaching. Although hand guiding a robot arm

with many degrees of freedom could be challenging for non-

expert users, it opens up the possibility of utilizing integrated

sensors of the robot while performing demonstrations. In

this experiment, we used kinesthetic teaching to collect five

handover demonstrations with three different objects. During

collection of training data, the hand was always at the same

t1 t2 t3
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C-Height

L-Height

t1 t2 t3

t1 t2 t3
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Fig. 3: The Geometric Model (upper image) fails to fill the learned
height (L-Height) of the cup when the cup is already partially
filled at the beginning, and the current height (C-Height) of liquid
increases and results in an overflow of water. The Extended Model
(lower image) manages to deal with the liquid height which is
already in the cup and stops pouring immediately when the learned
height of the cup is filled.

Goal Initial Final Height Final Height
Height Height Extended Model Geometric Model

80%

0% 81.02% 79.58%

10% 82.84% 92.66%

40% 78.30% Overflow

TABLE I: The table illustrates the results of the pouring task. While
the goal liquid height was always 80%, the initial heights varied
from 0% to 40%. The two right columns compare the final liquid
heights resulting from our extended model and a GMM model that
only uses geometric parameters. It can be seen that independently
of the initial height our model always reaches approximately 80%.
The geometric model tries to fill additional 80% to the cup which
finally results in an overflow.

position and the starting positions of the robot’s end-effector

was moderately similar. For each demonstration we recorded

(a) the 6-DOF poses of the human hand and the robot’s

end-effector, (b) the opening width of the gripper and (c)

the Euclidean norm of the Cartesian force measurement of

the robot at its end-effector. As in our other experiments,

the trajectory of the end-effector was defined relative to the

target frame, i. e., the human hand. To be invariant to specific

objects and their weight we defined the extended features to

be relative to the first measurement in each demonstration by

computing their differences. Based on these demonstrations,

we trained a GMM model with two Gaussian components
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which was able to successfully execute handover tasks with

various objects.

To elaborate the characteristics of our trained model, we

compared it with two baseline approaches. The first baseline

method GeoGMM only considers the geometry of demon-

strations to complete the handover task. Thus, it releases

the object as soon as the robot reaches the human hand.

Furthermore, ThGMM also uses the geometric parameters but

additionally incorporates a static and user defined threshold

to control opening of the robot’s gripper based on the forces

exerted to it. Finally, our approach – ExtGMM – combines

the poses of the robot’s end-effector and the forces exerted to

it to train a model that resolves the shortages of the baseline

methods. For each approach, we ran 25 experiments while

using five different objects, two start positions of the robot

end-effector and four hand positions.

Table II shows the results of this comparison in more

detail. For the evaluation of the handover task we used

different objects than what we used in the training. The

limitation of the first baseline (GeoGMM) is that the model

has no capability to infer if the human has already grasped

the object or not. Thus, it typically opens the gripper too

early resulting in a success rate of 48%. In contrast, the

second baseline (ThGMM) is able to reach the goal pose

correctly. However, the deficiency of this method is that

it still opens the gripper before reaching the hand of the

human in cases of external perturbations , e. g., by collisions

with the environment or other persons interfering. Hence,

the success rate of this approach was 56%. Our proposed

approach (ExtGMM) is able to dynamically react to force

changes since it implicitly couples the required contact forces

that triggers an opening of the gripper with the distance of

it to the human hand. Thus, the user can ask a robot to

bring an object towards its hand and still controls when the

grasp takes place, leading to the success rate of 88%. Our

learned model only failed to deliver the object in scenarios

where the pose of hand has been detected incorrectly by the

perception system. However, since new trajectory waypoints

are determined in an online manner the motion can mostly

be recovered seamlessly.

Approach # Runs
# Fails # Fails # Fails Success

Geometry Dropped Forces Rate

GeoGMM 25 2 11 0 48%

ThGMM 25 3 0 8 56%

ExtGMM 25 3 0 0 88%

TABLE II: Results of the handover in a human-robot interaction
task. The table compares two baseline approaches with our model
(ExtGMM). The GeoGMM only employs geometrical parameters
to describe handovers resulting in a poor performance because of
frequent unwanted drops of the object. ThGMM incorporates an
additional threshold that monitors the forces exerted to the end-
effector. While this model has no problems with dropping too early,
it still fails if unexpected forces act on the robot. Finally, our model
is able to reach the desired goal pose close to the user’s hand and
waits until the object has been grasped before opening the gripper.

t1 t2 t3

t1 t2 t3

GeoGMM

Force

Opening Width

Force Threshold

t1 t2 t3

t1 t2 t3

ThGMM

t1 t2 t3

t1 t2 t3

ExtGMM

Fig. 4: GeoGMM (upper image) drops the object as soon as the
robot end-effector reaches to the human hand. ThGMM (middle
image) considers a static force threshold for opening the gripper but
it also fails when unexpected forces work on the robot. ExtGMM
(lower image) brings the object to the human hand and delivers it
when the human has successfully grasped the object.

V. CONCLUSIONS

In this paper, we presented an approach to integrate non-

geometric features into action model learning. We encode

the motion in a dynamical system parametrized by a Gaus-

sian Mixture Model. The correlation between the geometric

course of the imitated motions and the additional features is

captured in the covariances of the model. Our experiments

show that we achieve a significant improvement over purely

geometric approaches in the motion imitation. In all evalu-

ated scenarios our approach is able to establish the desired

geometric reaction to the perceived non-geometric features,

thus yielding a convenient and safe way for robots to learn

and execute new skills. In this fashion arbitrary reproducible

signals could be integrated to influence the geometric course

of a motion. A potential extension could build on trying to

detect promising influential features automatically based on

the available sensors.
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