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Abstract— A key challenge for an agent learning to interact
with the world is to reason about physical properties of objects
and to foresee their dynamics under the effect of applied
forces. In order to scale learning through interaction to many
objects and scenes, robots should be able to improve their
own performance from real-world experience without requiring
human supervision. To this end, we propose a novel approach
for modeling the dynamics of a robot’s interactions directly
from unlabeled 3D point clouds and images. Unlike previous
approaches, our method does not require ground-truth data
associations provided by a tracker or any pre-trained percep-
tion network. To learn from unlabeled real-world interaction
data, we enforce consistency of estimated 3D clouds, actions and
2D images with observed ones. Our joint forward and inverse
network learns to segment a scene into salient object parts and
predicts their 3D motion under the effect of applied actions.
Moreover, our object-centric model outputs action-conditioned
3D scene flow, object masks and 2D optical flow as emergent
properties. Our extensive evaluation both in simulation and
with real-world data demonstrates that our formulation leads to
effective, interpretable models that can be used for visuomotor
control and planning. Videos, code and dataset are available at
http://hind4sight.cs.uni-freiburg.de

I. INTRODUCTION

What will happen if the robot shown in Figure 1 moves the
arm to the left? We can all foresee that the tape dispenser
will move to the left, probably colliding with the banana.
Intelligent beings have the remarkable ability to effectively
interact with unseen objects by leveraging intuitive models of
their environment’s physics learned from experience [1], [2].
Predicting the effect of one’s actions is a cornerstone of intel-
ligent behavior and also enables reasoning about sequences
of actions needed to achieve desired goals. Most existing
methods for learning the dynamics of physical interactions
are based on high-capacity models, such as deep networks,
which can learn complex causal relationships directly from
raw sensor data. However, these data-driven methods often
suffer from poor sample complexity, requiring large amounts
of data to train and have weaker interpretability and ro-
bustness compared to model-based robotics approaches. In
contrast, most real-world robot interaction learning methods
require human supervision to collect data. Therefore, these
models are trained with small-scale, single-domain data,
leading to reduced generalization capabilities. Thus, the abil-
ity to learn dynamics models autonomously from physical
interaction provides an appealing avenue for improving a
robot’s understanding of its physical environment, as robots
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Fig. 1: What will happen when the robot arm moves left? Will
the tape dispenser collide with the banana? Hind4sight-Net learns
an unsupervised structured dynamics model which decomposes the
scene into objects and predicts their motion conditioned on an
action.

can collect virtually unlimited experience through their own
exploration.

Deep learning has enabled deep predictive models that
learn directly in the observation space, relating changes
in pixels directly to the applied actions [3]–[5]. However,
learning to predict physical phenomena from raw video
requires handling the high dimensionality of image pixels
and discards the knowledge about the structure of the world.
Therefore, we explicitly structure our network architecture
to decompose the scene into object parts and to predict
their dynamics, alleviating the need for predicting pixels.
Our formulation is inspired by SE3-Nets [6], [7], but relaxes
the requirement of ground-truth point-wise data associations.
This enables learning scene dynamics in the real-world
without external trackers.

In this paper, we propose a novel approach to learn dynam-
ics of the real-world and present a method that requires nei-
ther labeled data nor human supervision, enabling to improve
a robot’s understanding of its environment’s physics in a
lifelong learning manner. Our approach denoted Hind4sight-
Net jointly learns a forward and an inverse dynamics model
and decomposes the scene into salient object parts and
predicts their 3D motion. Our object-centric formulation
allows us to capture several desirable inductive biases that
help in learning more efficient and interpretable models -
a scene comprises of several objects, actions can affect
these objects, and the objects can, in turn, affect each other.
Thus, our network outputs action-conditioned 3D scene flow,
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object masks and 2D optical flow as emergent properties.
We develop a method that combines the flexibility of deep
networks with the advantages of model-based approaches,
by constraining the learning problem to a low-dimensional
interpretable space, as opposed to regressing pixels. Un-
like previous approaches [6]–[11], our method does not
require ground-truth point-wise data associations, typically
provided by a tracker, or a pre-trained perception network.
To learn from unlabeled real-world interaction data, we
enforce consistency of estimated 3D clouds, actions and 2D
images with observed ones. Our formulation leads to useful,
interpretable models that can be used for visuomotor control
and planning. We exemplify this, by using our dynamics
model for planning poke actions in both simulation and with
a real robot manipulator.

II. RELATED WORK

Our work is primarily concerned with learning intuitive
physics [1], [2]. The methodologies to study scene dynamics
fall into two paradigms: model-based and data-driven. In
order to plan towards a goal state, the model-based approach
requires an analytic physical model of the environment to
perform optimal control [12]. However, as many physical
properties such as mass and friction cannot be captured
easily, assumptions and approximations are often adopted
[3], [4], [13]–[15].

An alternative approach to explicitly modeling the en-
vironment via an analytical model is to learn an implicit
model of the world using interaction data. There exists a
large body of work for understanding intuitive physics from
visual cues using deep learning, such as predicting stability
of block towers [16], learning physic engines [11], [17], [18],
estimating object properties [19], [20] or object dynamics
from images [21]. In particular, recent works have looked at
mapping raw pixel images to low-dimensional embeddings
on top of which standard optimal control methods are ap-
plied [22], [23]. In contrast, we use a structured latent repre-
sentation and predict object masks. Related to our approach
Agrawal et al. [5] learn a joint forward and inverse model in
a feature space where RGB images are encoded, that can be
used for poking objects. In comparison, we use an object-
centric model that leverages explicit structural constraints
and attends to relevant parts of the scene. Several works
have shown promising results using deep video prediction
models for control, either by directly regressing to pixels [15]
or using intermediate flow representations [3], [4], [24].
However, these can typically only handle small motions
between frames, and need a large number of samples to
overcome this inductive bias.

Our work addresses learning structured scene dynamics
without human supervision, thus falling under the category
of self-supervised learning. Due to its ability to learn from
unlabeled data, self-supervised learning has been studied in
different sub-fields in AI, such as in computer vision [25]–
[27], machine learning [28] and natural language process-
ing [29]. Previous works on self-supervised learning in
robotics mainly focus on object segmentation [30]–[32], pose

Fig. 2: We let a robot interact with objects by randomly poking at
them to learn a structured dynamics model. Observational changes
in point clouds and images caused by applied actions constitute the
sole learning signals, enabling to improve a robot’s understanding
of its environment’s physics in a lifelong learning manner.

estimation [33], [34] or skill learning [35], [36]. Compared
to these approaches, we learn an object-centric structured
dynamics model without human supervision.

Most related to our approach is SE3-Nets [6], [7], a
forward model which uses point-wise data associations to
approximate 3D rigid object motions for constructing future
point clouds. In comparison, our approach is fully unsuper-
vised and therefore enables learning scene dynamics in the
real-world without the need of external trackers. To achieve
this, our approach adds more explicit structural constraints.
Concretely, we force the network to reason over the photo-
metric quality of frame reconstructions resulted from back-
projecting the predicted 3D scene flow. Besides combining
losses that operate on 3D point clouds and RGB images,
we integrate an inverse dynamics model to the network and
show that the interplay between both models leads to useful,
interpretable models that can be used for visuomotor control
and planning.

III. HIND4SIGHT-NET

In this section we describe the technical details of our
unsupervised structured dynamics model. The architecture
of our system is shown in Figure 3. Our dynamics model
consists of both a forward and an inverse model. A forward
model predicts the next world state ŝt+1 from the current
world state st and action ut, i.e., ŝt+1 = F (st, ut; θfwd),
and an inverse model estimates the action given the initial
state and the target state, i.e., ût = G(st, st+1; θinv), where
θfwd and θinv are the parameters of the functions F and
G. Predicting which action caused the scene to change
is a challenging task for the inverse model, as multiple
possible actions can transform the world from one state to
another. The inverse model guides the network to construct
informative features, which the forward model can then
predict and in turn regularize the feature space for the inverse
model [5]. Note that in this paper we consider a scenario in
which a robot pokes objects on a table and leverages the
hindsight from its own interactions to predict dynamics of
the scene.
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Fig. 3: Structure of Hind4sight-Net: we jointly learn forward and inverse scene dynamics models from unlabeled interaction data. The
forward model segments a 3D point cloud Pt of the scene into salient object parts mt and predicts their SE(3) motion under the effect
of an applied poking action ut. These are then fed into a differentiable “Transform layer” that generates the predicted next point cloud
P̂t+1. A “Projection layer” back-projects the predicted 3D scene flow into the 2D image plane to retrieve the optical flow ŵt. The inverse
model takes two consecutive 3D point clouds as input and reason over the poking action produced in the form of heat-maps denoting the
start Ât and end B̂t point of the poking action.

A. Forward Model: Object-centric 3D Motion

Our forward model is closely related to SE3-Nets [6], [7].
We take a raw point cloud Pt = (Xt, Yt, Zt) and an action
ut as inputs and decompose the scene into K objects, predict
their mask mk

t and estimate their motion as a 3D rigid body
transform [R, T ] ∈ SE(3) to generate the next point cloud
P̂t+1:

P̂t+1 =

K∑
k=1

mk
t (R

k
t Pt + T kt ) (1)

Note that for points of the scene that lie on the background
a mask is assigned as well. Thus, the network learns to
attend in which parts of the environment motion occurs. To
be more specific, for each point j in the point cloud, mkj

t

denotes the probability of the point belonging to the k-th
mask, indicating that each point may be assigned to more
than one motion mask. We define the poke action by a poke
position and direction. The robot selects a target 2D position
(ax, ay) on the plane and reaches it from angle aθ with
respect to the horizon. Hence the poke action vector ut is a
3-dimensional vector. Although SE3-Nets showed impressive
results, they require ground-truth point-wise data associations
as supervision. This means that an external tracking system
is needed for acquiring data associations of points in real-
world environments. Our approach relaxes this requirement
and can be trained without labeled data. Concretely, during
training we enforce the consistency of estimated 3D clouds,
2D images and actions with observed ones.

B. 3D Point Cloud Alignment Loss

Unlike SE3-Nets that relies on the known data association
between the predicted point cloud P̂t+1 and the target point
cloud Pt+1 to penalize prediction error, we use the Chamfer

distance (CD) between the two points sets to enforce geo-
metric consistency. This distance is a differentiable function
that takes as input two points sets Pt+1 and P̂t+1 and for
each point in each points set, it finds the nearest neighbor in
the other set and sums the squared distances up. Thus, the
output of the CD are two continuous distance transforms.
We define the distance transforms between the clouds in
both directions with Dxy

P̂ )P
= minx′,y′ ‖P̂ xyt+1 −P

x′y′

t+1 ‖22 and

Dxy

P )P̂
= minx′,y′ ‖P̂ x

′y′

t+1 − P
xy
t+1‖22 and sum them to define

the Chamfer distance loss:

LCD(P̂t+1, Pt+1) =
∑
x,y

(
Dxy

P̂ )P
+Dxy

P )P̂

)
(2)

C. Image Reconstruction Loss

As learning a dynamics model from scratch without any
label or supervision is an ill-posed problem, we reason over
the quality of the predicted object motions not only in 3D
but also on the image level to better constrain the learning
problem. By introducing this constraint, we assume that the
brightness of a pixel is not changed by its displacement.
Concretely, we back-project the predicted action-conditioned
3D scene flow into the 2D image plane resulting in 2D
optical flow between the two consecutive frames and use
backward warping to match pixels from frame It+1 to the
frame It resulting in Ît. Using known camera intrinsics we
project the action-conditioned 3D scene flow into the 2D
optical flow Uxyt = xt+1−x and V xyt = yt+1− y. Next, we
apply a differentiable inverse image warping and minimize
the photometric consistency error:

Lrec(It, Ît) =
∑
x,y

∥∥∥Ixyt − Îxyt ∥∥∥
1

(3)

where Îxyt = Ix
′y′

t+1 with x′ = x + Uxyt and y′ = y + V xyt .
Since image pixels are continuous and back-warped pixels
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Fig. 4: The main loss functions operate on observational changes and enable learning scene dynamics in the real-world without the
need of data associations provided by a tracker. The image reconstruction loss uses the predicted 2D flow to minimize a photometric
consistency error. The Chamfer Distance tries to enforce the geometric consistency between point clouds. The inverse model predicts
spatial distributions of the actions that caused the scene to change.

do not always coincide with pixel coordinates, we use
a differentiable bilinear sampling [37] mechanism which
interpolates four neighboring pixels of Îxyt to approximate
Ixyt .

D. Edge-aware Smoothness Loss
In the process of minimizing the photometric consistency

error the gradients are mainly derived from the pixel intensity
difference between the four neighbors of Îxyt and Ixyt . As a
consequence, this loss is noisy and would inhibit training
if the point is far from the current estimate or located in
a low-texture region. Thus, we introduce an edge-aware
smoothness loss term to measure the difference between
spatially neighbouring points in the flow field, adaptively
weighted by the image gradients:

Lfs =
∑
x,y

|∇Uxyt |e−|∇I
xy
t | + |∇V xyt |e−|∇I

xy
t |

(4)

where | · | denotes element-wise absolute value and ∇ is the
vector differential operator. By enforcing this regularization,
we assume that realistic flow fields are piecewise smooth
and have discontinuities at the boundaries of moving objects
which is a valid assumption for rigid bodies.

We found it also necessary to apply a similar regularization
to the distance transforms computed by the Chamfer Dis-
tance. As a nearest neighbor assignment is used to establish
a data association between the predicted and the observed
point clouds, this method is prone to spurious matches.
Concretely, “holes” in the predicted mask for the moving
object can be caused by small motions mislead the nearest
neighbor assignment to assume that there is no motion in
the overlapping region. We therefore regularize the distance
transforms calculated by the CD algorithm in the same
manner as our optical flow field to be piecewise smooth:

Lds =
∑
x,y

|∇Dxy

P )P̂
|e−|∇I

xy
t+1| + |∇Dxy

P̂ )P
|e−|∇I

xy
t+1|

(5)

E. Inverse Model
Our inverse model takes two consecutive raw point clouds

Pt and Pt+1 as input and predicts the corresponding poke

action ût between them through estimating two heatmaps,
Ât and B̂t, for the start and end positions of the poke
respectively. This helps us preserve the similarity of poke
actions which take place in close vicinity to each other and
ground the actions spatially. To collect training data without
human supervision, the robot discretizes the workspace into
a grid and marks the two grid cells in which the robot starts
and ends its action as keypoints. The objective of the inverse
model Linv is a sum of two losses. The term Lact is a cross
entropy loss on the predicted action heatmaps, while Lsim is
the L1 loss between the predicted ŝt+1 state embedding and
the ground-truth st+1 embedding (see Figure 3). This loss
acts as a regularizer between the forward and the inverse
model. The inverse model guides the network to construct
informative features, which the forward model can then
predict and in turn regularize the feature space for the inverse
model.

F. Full Model

Our full model combines all aforementioned objectives to
learn a dynamics model from unlabeled data. We abbreviate
the losses operating on the 2D image domains to L2D =
Lrec + Lfs and the ones operating on the 3D point clouds
as L3D = LCD + Lds.

L = λ1L3D + λ2L2D + λ3Linv (6)

G. Implementation Details

We adopt a Siamese architecture for the point cloud
encoders of our forward and inverse dynamics models. The
forward model is based on SE3-Nets [6] with an additional
“Projection Layer”. We use ADAM to optimize our model
with a learning rate of 10−4. We weight the main losses
with λ1 = 105, λ2 = 103 and λ3 = 1. We train our
model for 50 epochs with a mini-batch size of 16. The
whole training process of our model is unsupervised and does
not need any human annotations. We found that initializing
one out of K masks to predict all pixels as background
and moreover initializing SE(3) transformations to predict
identity transform results in faster convergence.
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Fig. 5: Objects from the KIT kitchen object models database [40]
used in simulation. The objects differ in geometry, size and texture
and have varying physical properties.

H. Model-Predictive Control

Given the learned dynamics model, we can leverage it to
find action sequences that lead to a desired goal. We use the
cross entropy method (CEM) to search for the best action
sequence [38], which is a population-based optimization
algorithm that infers a distribution over action sequences
that maximize the objective. At every iteration, CEM draws
J trajectories of length H from a Gaussian distribution,
where H is the planning horizon. We repeatedly evaluate
the sampled J candidate action sequences and re-fit the
belief to the top K action sequences. One advantage of
this stochastic optimization procedure is that it allows us to
ensure that actions stay within the distribution of actions the
model encountered during training. To evaluate a candidate
action sequence, we leverage both the 2D and 3D domains
our dynamics model has been trained on.

IV. EVALUATION

In this section, we evaluate the performance of our unsu-
pervised structured dynamics model on both simulated and
real-world datasets and demonstrate its applicability in a real-
world model-predictive control experiment. To the best of our
knowledge, there is no publicly available dataset for learning
and evaluating dynamics models in the RGB-D domain, as
most works consider only RGB images [3], [5], [39]. We
therefore evaluate our model on a physics engine and on
real interaction data recorded with a robot manipulator.

A. Poking Task Representation

We consider the scenario where a robot is in front of its
working arena and a collection of objects lie on top of the
arena. The robot collects data by randomly poking objects.
The observed scene dynamics are captured with a fixed RGB-
D camera. Concretely, before and after each action the depth
maps and color images of the scene are stored. Random
poking can lead to many poke actions being executed in
free space, slowing down the data collection of relevant
interaction data. To alleviate this problem, we provide the
robot with an observation of the scene without objects and
at each interaction perform a background subtraction that
discovers actionable parts of the scene. The working arena of
the robot is discretized into a 2D grid and at each interaction
the robot randomly chooses one occupied cell as the poke
target position and one free cell as the poke start position. We
define the poke action by a target 2D position on the arena
and a poke direction θ, corresponding to the angle between
start and target cells.

Fig. 6: Our real-world poking dataset consists of 34 objects different
from each other in shape, appearance, material, mass and friction.

B. Dataset

We evaluate our approach on both synthetic and real data.
For experiments on synthetic data, we use the Bullet physics
engine [41] to collect a dataset of poking interactions. We
pick four representative objects from the KIT kitchen object
models database [40], which differ in geometry, size and
texture. These objects are shown in Fig. 5. We record a
dataset of 200K interactions, with randomized object start
poses and poke actions. To simulate realistic real-world
conditions we also consider noise regarding depth and data
association. Concretely, we simulate the noise seen in real
depth sensors by adding gaussian noise with a standard
deviation (SD) of 1 cm and scaled the noise by the depth
(farther points get more noise). To simulate noise in the data
association produced by external tracking systems, we allow
for spurious ground-truth associations. Each point is allowed
to be randomly associated to any other point in a n × n
window around it, as long as their depth differences are no
larger than ±10cm.

For experiments on real data, we collect 40K of interaction
data with a KUKA LBR iiwa manipulator and a fixed Azure
Kinect RGB-D camera. We built an arena of styrofoam with
walls for preventing objects from falling down. At any given
time there were 3-7 objects randomly chosen from a set of
34 distinct objects present on the arena. The objects differed
from each other in shape, appearance, material, mass and
friction as shown in Fig. 6. Our robot can run autonomously
24/7 without any human intervention, enabling to improve
a robot’s understanding of its environments physics in a
lifelong learning manner.

C. Evaluation Protocol

For the quantitative evaluation of the learned structured
forward dynamics model, we leverage the Bullet physics
engine to access ground-truth action-conditioned scene flow.
Following SE3-Nets [6], [7], we report the Mean Squared
Error (MSE) between the predicted 3D scene flow and
ground-truth, averaged across points with non-zero ground-
truth flow. This metric takes into account errors in both the
mask and 3D motion prediction.
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Depth Noise
Model

SE3-Nets (Fully-Supervised) Hind4sight-Net (Unsupervised)
DA Noise, threshold = ±10cm 2D Loss 3D Loss 2D Loss + 3D Loss Full model0 9× 9 11× 11

No Noise 1.00± 0.37 1.68± 0.35 2.07± 0.37 1.86± 0.46 1.80± 0.49 1.52± 0.50 1.47± 0.49
Gaussian Noise, SD = 1cm 1.07± 0.58 1.94± 0.45 2.20± 0.41 1.93± 0.48 31.39± 24.08 1.78± 0.64 1.63± 0.47

TABLE I: Average per-point flow MSE in cm under different noise settings for the simulated dataset. Additionally, we analyze the influence
of the different losses of Hind4sight-Net.

D. Comparisons

The main baseline for our experiments on synthetic data
is the fully-supervised SE3-Nets [6], as it showed improved
performance over SE3-Pose-Nets [7]. To simulate real-world
conditions, we evaluate the performance of SE3-Nets also
on moderate settings of noise regarding depth and data
association. Thus we evaluate following models:
• SE3-Nets: The network from [6] which similarly to us

receives a point cloud and an action vector and predicts
the next point cloud by decomposing the scene into
masks and SE(3) transformations of attended objects.
This model is supervised by the point to point data as-
sociation of point clouds across two consecutive scenes.

• Hind4sight-Net: Our unsupervised structured dynamics
model, which fully exploits available data resources
and physically grounded structural constraints by si-
multaneously learning the forward and inverse models
and enforcing the consistency of estimated 3D clouds,
actions and 2D images with observed ones.

• No motion: This baseline always predicts zero motion.

E. Results on Modeling Scene Dynamics

We start off by evaluating our method on the scene dy-
namics recorded with the Bullet physics engine. To simulate
realistic real-world conditions we report our main results
on moderate settings of noise regarding depth and data
association. To reproduce noise in the data association, we
allow for spurious ground-truth associations in a 11×11 win-
dow. Quantitative results of the predicted action-conditioned
scene flow are reported in Table II. Our Hind4sight-Net
achieves the best 3D scene flow error compared to baselines
even though it fully-unsupervised and not directly trained
to predict 3D scene flow. Moreover, our network achieves
a large error reduction in comparison to the “No Motion”
baseline (12.6 cm per point).

Model Training Paradigm MSE (cm)
SE3-Nets [6] supervised 2.20

Hind4sight-Net unsupervised 1.63
No Motion x 12.6

TABLE II: Average per-point flow MSE (cm). Our Hind4sight-
Net achieves the best 3D scene flow error compared to baselines
even though it fully-unsupervised and not directly trained to predict
3D scene flow. The “No Motion” result quantifies the average
magnitude of motion in the dataset.

We also evaluate the performance of our implicit action-
conditioned 2D optical flow, achieved by projecting the 3D
scene flow into the image plane, by comparing it against

Hind4sight-Net FlowNet 2.0

Color Coding

Hind4sight-Net FlowNet 2.0

Hind4sight-Net FlowNet 2.0

Fig. 7: Visualization of the optical flow predicted by FlowNet
2.0 [42] and the implicit action-conditioned flow learned by our
model. Hind4sight-Net outperforms FlowNet 2.0 as it shows sharper
object masks, models collisions better and is less prone to visual
distractors such as shadows.

FlowNet 2.0 [42], a state of the art optical flow predic-
tion network. We outperform this strong baseline, despite
FlowNet 2.0 having access to two consecutive images as
input and having explicit optical flow supervision. Moreover,
we observe even better performance for real data, as FlowNet
2.0 is more prone to visual distractors such as shadows (not
present in the simulated dataset), see Figure 7.

Model Inputs AEE
FlowNet 2.0 [42] Images It and It+1 0.11
Hind4sight-Net Point Cloud Pt and Action ut 0.05

TABLE III: Average Endpoint Error. Our Hind4sight-Net achieves
the best 2D optical flow error compared to FlowNet 2.0 even though
it is not directly trained to predict 2D optical flow and has no optical
flow supervision during training.

F. Ablation Studies

To analyze the influence of our different building blocks on
the learned dynamics model, we conduct several experiments
on the simulated dataset (see Table I). Our results indicate
that using only a single domain loss is not informative
enough to learn an unsupervised dynamics model efficiently.
Specially when a realistic noise in the depth is considered,
using only the 3D loss leads to large errors due to spurious
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Fig. 8: Visualization of executed poking action sequences computed by cross entropy method (CEM) in simulation and real-world: Given
the initial configuration and the goal configuration, the arrow shows the sequence of action taken by the robot.

nearest-neighbor associations. Reasoning jointly over the 3D
and image domain improves significantly the results and
incorporating the action loss of the inverse model for the full
model, achieves the best result. We also evaluate the fully-
supervised SE3-Nets under a range of moderate depth and
data-association noise conditions and overall observe better
performance for our model.

G. Control Performance

To evaluate the effectiveness of the learned dynamics
model, we use the cross entropy method (CEM) to find poke
action sequences that lead to a desired goal on both simulated
and real data. We define the planning cost-function by a
combination of the 3D and 2D domains the network has
been trained on. Concretely, we use a combination of the
pixel distance, between user marked object points (one point
per object) and the Chamfer distance of the whole scene to
the goal scene. We use our implicit optical flow to predict
how a pixel will move to the next frame given a poke action.
The pixel distance has a high degree of robustness against
distractor objects and clutter, since the optimizer can ignore
the values of other pixels. However, we found incorporating
global reasoning in 3D space achieved best results, specially
to fine-tune the orientation of the target objects. This can be
seen as a registration method between a current point cloud
and a goal point cloud. We perform several experiments by
changing the number of objects that need to be moved to
reach the goal configuration. We report the average distance
of all objects to their respective goal configurations, see
Figure 9. We observe that in most cases we can reach the
goal configuration with around 10 poke actions. Moreover,
even for the challenging case of planning for three different
objects, the learned dynamics model allows to attend to the
relevant parts of the scene and successfully reach the goal
configuration, as shown in Figure 8. For simpler tasks with a
single object to be moved, we also observe implicit collision-

avoidance behavior to some extent, as shown in the last row
of Figure 8.
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Fig. 9: Quantitative results of planning with the learned dynamics
model in simulation with variable number of objects to be moved.

V. CONCLUSIONS AND DISCUSSION

In this paper, we presented a novel approach for learning
an “intuitive” and structured model of physics from unlabeled
robot interaction data. We showed that our formulation
enables learning scene dynamics in the real-world without
external trackers, human supervision or a pre-trained percep-
tion network. We demonstrated that the learned dynamics can
be used for visuomotor control and planning. In this work
we modeled actions as small pokes, which are likely to be
more predictable than large pushing actions. A downside of
this choice is that it becomes challenging to observe latent
physical properties such as mass and friction from object
motion. This is because with a poke action, changes in
object movements are mainly influenced by dynamics of the
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manipulator, less so from the object itself. Therefore, investi-
gating an adaptive curriculum learning setup to leverage push
actions of variable length and force might be interesting.

Going forward, a natural extension of this work is to try
to infer the depth maps directly from the image observations
in a self-supervised manner. This would allow to learn
structured dynamics model in broader range of applications.
Another promising direction for future work is to investigate
a tighter coupling of both the inverse and forward dynamics
model for planning.
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