
Robot Skill Adaptation
via Soft Actor-Critic Gaussian Mixture Models
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Abstract— A core challenge for an autonomous agent acting
in the real world is to adapt its repertoire of skills to cope with
its noisy perception and dynamics. To scale learning of skills
to long-horizon tasks, robots should be able to learn and later
refine their skills in a structured manner through trajectories
rather than making instantaneous decisions individually at
each time step. To this end, we propose the Soft Actor-
Critic Gaussian Mixture Model (SAC-GMM), a novel hybrid
approach that learns robot skills through a dynamical system
and adapts the learned skills in their own trajectory distribution
space through interactions with the environment. Our ap-
proach combines classical robotics techniques of learning from
demonstration with the deep reinforcement learning framework
and exploits their complementary nature. We show that our
method utilizes sensors solely available during the execution
of preliminarily learned skills to extract relevant features
that lead to faster skill refinement. Extensive evaluations in
both simulation and real-world environments demonstrate the
effectiveness of our method in refining robot skills by leveraging
physical interactions, high-dimensional sensory data, and sparse
task completion rewards. Videos, code, and pre-trained models
are available at http://sac-gmm.cs.uni-freiburg.de.

I. INTRODUCTION

Thinking ahead is a hallmark of human intelligence. From
early infancy, we form rich primitive object concepts through
our physical interactions with the real world and apply this
knowledge as an intuitive model of physics for reasoning
about physically plausible trajectories and adapting them to
suit our purposes [1]. This is at odds with most current deep
imitation and reinforcement learning paradigms for robot
sensorimotor control, which, despite recent progress [2]–[5],
are typically trained to make isolated decisions at each time
step of the trajectory. In fact, most existing methods for learn-
ing manipulation skills are end-to-end high-capacity models
that map directly from pixels to actions [6]–[8]. However,
although these approaches can capture complex relationships
and are flexible to adapt in face of noisy perception, they
require extensive amounts of data, and the trained agent is
typically bound to take a distinct decision at every time step.

Learning from demonstration [9] is the classical paradigm
to tackle the problem of representing skills with a trajectory-
space policy. In this context, dynamical systems have shown
to be a physically plausible motion generation mechanism
that provides a high level of reactivity and robustness
against perturbations in the environment [10]–[14]. Despite
the great success of dynamical systems in affording flexible
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Fig. 1: Soft Actor-Critic Gaussian Mixture Models learn and refine
real-world robot skills in the trajectory distribution space. While
the Gaussian Mixture Model (GMM) agent learns a skill with
few demonstrations and controls the robot with high-frequency F ,
the Soft Actor-Critic (SAC) agent affords to work with a lower
frequency and refines the skill via adapting GMM parameters by
leveraging physical interaction, high-dimensional sensory data, and
sparse rewards.

robotic systems for industry, where a high-precision state
of the environment is available, they are still of limited use
in more complex real-world robotics scenarios. The main
limitations of current dynamical systems in contrast to deep
sensorimotor learning methods are their incompetence in
handling raw high-dimensional sensory data such as images,
and their susceptibility to noise in the perception pipeline.

In this paper, we advocate for hybrid models in learning
robot skills: “Soft Actor-Critic Gaussian Mixture Models”
(SAC-GMMs, see Fig 1). SAC-GMMs learn and refine
robot skills in the real-world and present a hybrid model
that combines dynamical systems and deep reinforcement
learning in order to leverage their complementary nature.
More precisely, SAC-GMMs learn a trajectory-based Gaus-
sian mixture policy of skills from demonstrations and refine
it by physical interactions of a soft actor-critic agent with
the world. Our hybrid formulation allows the dynamical
system to utilize high-dimensional observation spaces and
cope with noise in demonstrations and sensory observations
while maintaining a reactive and robust trajectory-based pol-
icy when interacting with dynamic environments. We argue
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that maintaining this physically meaningful structure within
the reinforcement learning refinement will yield enhanced
performance and stability compared to residual corrections or
direct learning of desired end-effector velocities. The method
is simple, sample efficient and readily applicable in a variety
of robotics scenarios. We exemplify this, by using our hybrid
model for simulated peg insertion and power lever sliding
skills, and a real-world door-opening skill. We demonstrate
that SAC-GMM is able to successfully open a door in the
real world after half an hour of physical interaction.

The main contributions of this paper are: 1) a hybrid
model for learning and refining skills in trajectory distri-
bution space, 2) exploiting high-dimensional sensory inputs
obtainable solely during skill adaptation through physical
interaction, such as tactile images, gripper camera images,
and static camera depth maps to refine parameters of a
dynamical system, 3) mitigating amount of robot exploration
efforts for learning skills in sparse reward settings through a
dynamical system model learned from few demonstrations,
and 4) learning to refine two simulated and one real-world
robot manipulation skills.

II. RELATED WORK

Learning adaptive skill models has been a long-standing
goal in both robotics and machine learning. Our work builds
on prior research in this domain which falls into model-based
and data-driven paradigms and attempts to bridge the gap
between them.

Learning from demonstration [9] is the paradigm in which
the robot learns a new skill from demonstrations presented
by humans. Dynamical systems [11], [12] use these demon-
strations to provide an analytical description of robot motion
over time. There are different underlying representations of
dynamical systems, ranging from movement primitives [15]
to probabilistic approaches [16]. There exists a large body
of recent work proposing augmentations of dynamical sys-
tems, e. g., fitting of trajectories in a physically consistent
fashion [17], ensuring kinematic feasibility of generated tra-
jectories for a mobile robot [18], enabling dynamical systems
to generate contact forces [19], integrating non-geometric
features into action models [20], preventing mode collapse
via mixture density networks [21], using diffeomorphisms
to give rise to inherently stable dynamical system [22],
and relaxing the point-to-point constraint on demonstrated
trajectories [23]. Nonetheless, dynamical systems still suffer
from the curse of dimensionality and are ineffective at
learning from large or noisy datasets. In contrast, our skill
model leverages high-dimensional sensory measurements to
adapt its dynamical system and copes with noisy perception
and dynamics.

An alternative approach to explicitly modeling robot skills
via an analytical framework is to learn an implicit skill
model using the robot’s interaction data. These data-driven
approaches are trained by optimizing directly for skill suc-
cess. In particular, some recent works have proposed learning
robot skills such as grasping [24], pick-and-stow [25], and
part discovery [26] first in simulation, where interaction is

cheap and labeled, and then transferring the agent to the real
world. Another transfer learning framework adoption is to
learn a vision model from passive observations first and then
to leverage the learned representations for learning manipu-
lation skill models [27]. Further approaches attempt to learn
the real-world dynamics in 2D [28] or 3D [29], and then use
this model to perform specific skills such as pushing [30],
peg insertion [31], or ball bearing [32]. Recent reinforcement
learning (RL) works have proposed learning robot skills
using images of the goal [33] or learned representations from
unlabeled skill-related videos [34], [35] as the reward func-
tion. In general, these high-capacity deep neural networks are
not sample-efficient and require a large amount of interaction
data to enable a robot to learn complex skills. Moreover,
they ignore low-level analytical descriptions of skills and are
forced to make individual decisions at each time step. Com-
pared to these approaches, our structured skill model reasons
in trajectory space while still optimizing for skill success.

Our approach for learning adaptive skill models falls
under a broader category of hybrid models [36], [37]. These
approaches combine classical controllers or dynamical
system frameworks with RL and learn robot skills with a
fair amount of real-world interaction. More specifically, our
hybrid skill model (see Fig. 1) leverages both 1) a dynamical
system to provide an analytical description of a skill in
the trajectory space and 2) a deep reinforcement learning
framework to refine the skill via physical interactions and
compensate for noisy perception. In contrast to prior work
in this domain [38]–[40], our approach learns to adapt
the skill in the trajectory space instead of predicting a
residual action at each time step. We demonstrate that our
approach mitigates the exploration time needed to refine the
robot skill drastically. A further hybrid approach has been
introduced by Rey et al. [41]. In contrast to their work, we
use a higher dimensional observation for the reinforcement
learning refinement of the skill, while their focus is on
mathematical properties of the dynamical systems.

III. PROBLEM FORMULATION

We consider a motion to be driven by a dynamic system
governed by a set of first order differential equations defining
the dependency of the system velocity on the current state.
Following this approach, robot skills are directly defined in
trajectory space as a global map that specifies the required
motion for reaching a target from arbitrary start poses. We
are interested in using this structured model to enable a robot
to learn and adapt skills quickly in the real world. Our goal
is to first learn skills from a few demonstrations and later
refine them through the robot’s physical interactions in the
world.

For this, we consider robot skills as a set of trajectories
in 3D space. We denote a trajectory by Ξ = 〈ξ1, . . . , ξn〉,
where ξi ∈ Rd is the robot’s geometric pose. Moreover,
each execution of a robot skill induces a set of observations
O = 〈o1, . . . ,on〉 from the environment. Thus, a typical
robot skill is described by its 6-DOF (Degree-of-Freedom)
trajectory and co-occuring observations such as images,
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Fig. 2: Structure of SAC-GMM: Given a set of human demonstrations, the GMM agent learns an initial dynamical system parameterization
θ that provides an analytical description of the robot’s skill trajectory. After N interactions by the GMM agent with the environment
(working with frequency F ), the SAC agent receives a high-dimensional observation, robot state, and a sparse success reward from the
environment. It then refines the initial GMM agent’s trajectory parameters by ∆θ for the next N interactions to optimize for skill success.

depth maps, or tactile measurements. The observations
cannot be controlled directly by the robot but are reactions
of the environment to the geometric course of the trajectory.
Nevertheless, the robot has to adjust its geometric route in
response to these observations.

To learn a robot skill, we require a set of demonstrations
X = 〈Ξ1, . . . ,Ξj〉, where each demonstration is a trajectory
that exhibits the geometric route of the skill. Note that these
demonstrations can be shown either by a human performing
the skill or robot teleoperation. Our goal is to first learn
a skill model fθ(ξ) = ξ̇ that maps each robot pose to its
first derivative (velocity), such that it fulfills the following
desiderata: (1) it represents the skill in trajectory distribution
space, and (2) f is a parametric function. The latter ensures
that we can later refine our skill model by adapting its
parameters θ. Note that this initial learning step does not
include the high-dimensional observations as i) these might
not be easy to capture in demonstrations and ii) they cannot
be directly included in the parameterization.

We then aim to refine the previously learned skill directly
in the parameterized trajectory space. The skill refinement
policy πφ(ξ,o) = ∆θ, builds on the robot pose and the
robot’s high-dimensional observations while performing the
skill in a sparse task completion reward setup.

IV. SAC-GMM

We propose the hybrid approach Soft Actor-Critic Gaus-
sian Mixture Models (SAC-GMM) consisting of two phases.
In the first, we learn a dynamical system parameterization in
form of a Gaussian mixture model from a few demonstra-
tions. In the second, we refine this dynamical system with the
soft actor-critic algorithm through physical interactions with
the world. The architecture of our hybrid model is shown in
Figure 2.

A. Dynamical System: Gaussian Mixture Model Agent

Dynamical systems afford an analytical representation of a
motion’s progression over time, and accordingly, they enable

the robot to generate trajectories while being robust in the
face of perturbations.We formulate a robot skill as a control
law driven by an autonomous dynamical system, defined by
the robot pose ξ:

ξ̇ = fθ(ξ) + ε, (1)

where fθ is the robot skill model, a parametric, non-linear,
steady, and continuously differentiable function, and ε is a
zero-mean additive Gaussian noise. From a machine learning
perspective, learning the noise-free estimate of f from data
is a regression problem and can be addressed by a mixture of
Gaussians. Given a set of reference demonstrations X for a
robot skill, we parametrize Eq. (1) through Gaussian Mixture
Regression (GMR) [16]. We first estimate the joint probabil-
ity density P(ξ̇, ξ) of the robot pose and its corresponding
first-order derivative by a Gaussian mixture. Thereby, we
parametrize the robot skill model f by θ = {πk,µk,Σk}Kk=1,
where πk are the priors (or mixing weights), µk the means
and Σk the covariances of the k Gaussian functions.

By using this estimated joint probability density function,
we employ Gaussian mixture regression (GMR) to retrieve ξ̇
given ξ as the conditional distribution P(ξ̇ | ξ). This way
our skill model can reproduce the demonstrated skill by
estimating the next velocity at the current robot pose and
thus generate a trajectory by updating the pose ξ with the
generated velocity ξ̇ scaled by a time step and proceeding
iteratively. For detailed insights on using GMM encoded
dynamic system for imitation learning we refer the reader
to the extensively available literature [11], [12], [15]–[17].

B. Dynamical System Adaptation: Soft Actor-Critic Agent

Having learned the skill model fθ, we can now leverage
robot interactions with the world to explore and refine the
initial model. We formulate this refinement as a reinforce-
ment learning problem in which the agent has to modify the
learned skill in the trajectory space and has only access to
sparse rewards. In RL, the goal is to learn a policy πφ in a
partially observable Markov decision process, consisting of
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an observation space O, a state space S and an action space
A. In our skill refinement scenario, the agent receives high-
dimensional sensory measurements such as RGB images,
tactile measurements, or depth maps which are encoded to
a latent representation z by an autoencoder. Together with
the robot pose ξ, these form our continuous state space.
The action space is also continuous and consists of the
desired adaptation in the skill trajectory parameters ∆θ.
Moreover, the environment emits a sparse reward only if the
robot executes the skill effectively. Namely, if st, at and zt
define the robot’s state, action, and latent representation of
observation respectively at time step t, then

st := {ξt, zt}, at := {∆πk,∆µk,∆Σk}Kk=1, (2)

and consequently

∆θ = πφ(at | st), (3)

where πφ is the robot skill refinement policy. We use
ρπφ(st,at) to denote the state-action marginal of the tra-
jectory distribution induced by the policy πφ. The robot has
to learn this policy from its interactions with the world, such
that it maximizes the expected total reward of the refined
skill trajectory. Our particular choice for the reinforcement
learning framework to learn the skill refinement policy is
the soft actor-critic (SAC) algorithm [5]. SAC is an off-
policy actor-critic method that, in addition to maximizing
the expected total reward, aims to maximize the entropy of
the stochastic policy. In doing so, SAC encourages robot ex-
ploration and avoids converging to non-optimal deterministic
policies. Moreover, SAC exhibits good sample efficiency and
stability, necessary ingredients for quick skill adaptation in
the real world. Therefore, the objective for an optimal skill
refinement policy is

J(πφ) =

T∑
t=0

γtE(st,at)∼ρπφ [r(st,at) + αH(πφ(·|st))] ,

where α is the temperature parameter that determines the
relative importance of the entropy term against the reward
and regulates the stochasticity of the policy. Our SAC agent
stores a collection of {st,ot,at, rt, st+1,ot+1}Ti=1 transition
tuples in a replay buffer D, and concurrently learns an
autoencoder AEω , a policy πφ and two Q-functions Qψ1 and
Qψ2 (to prevent overly optimistic value estimates) and their
target networks. More concretely, we use the autoencoder
AEω to learn a low-dimensional latent representation of the
robot’s high-dimensional observations. We adopt a similar
strategy to the Contractive Autoencoders [42] and enforce
an L2 penalty on the learned representation to encourage
robust features. For training the autoencoder, actor, and
critic networks, SAC randomly samples a batch from the
replay buffer and performs stochastic gradient descent on
minimizing the following loss objectives for autoencoder,
critic, and actor respectively:

Lr(ω,D) = Eot∼D
[

log pω(ot|zt) + λz||zt||2
]
,

Lc(ψi,D) = E(st,at)∼D
[
(Qψi(st,at)−Qtar(st,at))

2
]
,

La(φ,D) = E st∼D
at∼πφ

[
α log πφ(at|st)−min

i=1,2
Qψi(st,at)

]
,

where Qtar is the target for the Q functions and is computed
using the immediate reward, the value estimate of target Q
network and an entropy regularization term.

C. Full Model

Figure 2 shows how our hybrid model learns and re-
fines a robot skill. The GMM agent is fitted on the pro-
vided demonstrations and represents a dynamical system,
controlling the motion in the trajectory space. After each
N interaction steps with the world driven by the GMM
encoded dynamics, the SAC agent receives the current state
st consisting of the latent observation zt and the robot state
ξt, and additionally a reward rt for the previous step. It then
generates an action at := {∆πk,∆µk,∆Σk}Kk=1 according
to the current st. Note that with the latent observation zt the
state st contains more information than the data the original
GMM agent was trained on. The SAC agent’s action output
{∆πk,∆µk,∆Σk}Kk=1 is then used to adapt the original
GMM for the next N interactions with the environment.
The SAC agent optimizes πφ(at | st) for skill success
using ADAM to optimize the autoencoder, critics, and actor
networks. The learning rate for the autoencoder is 3× 10−5,
and for critics and actor is 3 × 10−4. The observations
that the autoencoder receives are 64 × 64 pixels. In all our
experiments, we use N = 32 and K = 3. While updating
GMM parameters, we ensure that mixing weights sum to one
and covariance matrices stay positive semi-definite [43]. At
inference time, the procedure remains the same. The robot
interacts with the environment based on the GMM dynamic
system encoding, while after each N steps, the SAC agent
receives information about the current state and skill progress
and adapts the original GMM agent accordingly.

V. EXPERIMENTAL EVALUATION

We evaluate SAC-GMM for learning robot skills in both
simulated and real-world environments. The goals of these
experiments are to investigate: (i) whether our hybrid model
is effective in performing skills in realistic noisy environ-
ments, (ii) if exploiting high-dimensional data boosts the
dynamical system adaptation, and (iii) how refining robot
skills in trajectory space compares with alternative explo-
ration policies in terms of accuracy and exploration budget.

A. Experimental Setup

We evaluate our approach in both simulated and real-world
environments. We investigate two robot skills in simulation:
Peg Insertion, and Power Lever Sliding. The environments
are simulated with PyBullet and are shown in Figure 3. For
the peg insertion skill, we design a cylindrical peg and its cor-
responding circular hole with 50 mm and 56 mm diameters,
respectively. The robot receives a success reward whenever
the peg is inserted correctly in the hole. We recognize the
importance of the sense of touch in fitting a peg smoothly in
a hole. Hence, during the skill adaptation phase, we provide
the robot with vision-based tactile sensors [44], [45] on both
fingers. For the power lever sliding skill, we design a lever
with a relative height of 50 mm to the base. The robot is
rewarded whenever it grasps the lever accurately and slides
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Fig. 3: Left: Simulated peg insertion scenario; Right: Simulated
power lever sliding scenario

it to the end, such that the light is turned on. For this skill,
we provide the robot with static depth perception during the
skill refinement to facilitate accurate lever pose estimation.
In each demonstration as well as training and test episodes,
we randomly change the relative position of the robot to
the hole and lever. Moreover, to simulate realistic real-world
conditions, we also consider noise regarding the detected
position of the hole and lever. Namely, in both environments,
we add Gaussian noise with a standard deviation of 1 cm in
the target pose’s x, y, and z dimensions. For both skills, we
collect 20 demonstrations by teleoperating the robot in the
simulation.

For the real-world experiment, we investigate a door
opening skill, and place our KUKA iiwa manipulator in
front of a miniature door, see Figure 4. We attach an
ArUco marker on the backside of the door to detect when
it was successfully opened and grant a reward accordingly.
Moreover, to enable our robot to run autonomously without
any human intervention, we equip our door with a door
closing mechanism. Thus, the door shuts when the robot
releases the door handle and starts a new interaction episode.
We provide our robot with an Intel SR300 camera mounted
on the gripper for an RGB eye-in-hand view during the skill
adaptation phase. We use OpenPose [46] to track the human
hand and collect 5 human demonstrations of the door opening
skill. Naturally, due to the difference in it’s geometry, it is
not ideal for the robot to exactly reproduce the observed
human hand poses and a task dependent offset to correct
this difference would be required for ideal performance of
the GMM. However, our approach can also cope with this
additional source of noise. For the real-world experiments
the initial GMM model is fitted using LPV-DS [17] while
in simulation we rely on SEDS [11]. While these dynamic
system encodings guarantee stability and convergence, our
performed modification does not mathematically maintain
these guarantees. However, since the adaptions are small,
we did not face any issues with diverging or unstable
trajectories in unseen starting configurations. All reported
failure cases stem from lacking precision of the motions.

B. Evaluation Protocol

We compare our skill model against the following models:
GMM: This baseline corresponds to the same dynamical
system that we learn with the provided demonstrations in
the first step of our approach. However, it is not able to
explore or leverage high-dimensional observations to refine
its performance.

Fig. 4: Real-world door opening. While skill refinement, the robot
gets a reward when it opens the door. Wrist-mounted camera
provides high-dimensional observations during task execution.

SAC: We employ the soft actor-critic agent [5] to explore
and learn the skills. We initialize the replay buffer of the
SAC agent with the demonstrations of skills. This baseline
employs the same SAC structure that we use in SAC-GMM,
including the autoencoder for high-dimensional observations
and the network architecture. However, this baseline does not
have access to a dynamical system, and consequently, does
not reason on the trajectory level.
Res-GMM: Analogous to our approach, this baseline first
learns a GMM agent using the demonstrations and then
employs a SAC agent for skill refinement. In contrast to
our approach,this SAC agent acts at each time step (instead
of each N step), and instead of predicting change in tra-
jectory parameters, it predicts a residual velocity which is
summed up with the GMM agent’s predicted velocity. This
baseline is inspired by recent approaches in the Residual
RL domain [38]–[40]. We do not replicate these approaches
directly as we want to evaluate the policy refinement and not
the choice of underlying dynamical system in which these
recent approaches differ.

For the quantitative evaluation of skill models, we employ
them to perform the skill 10 times at each evaluation step.
We report the average accuracy of each skill model over
these episodes in our plots.

C. Experiments in Simulation

We start by evaluating our method on the peg insertion and
power lever sliding skills in simulation. Quantitative results
of the average success rate of each skill model over 100
trials per five different random seeds are reported in Table I.
Our SAC-GMM successfully performs the peg insertion and
lever sliding skills with an average final success rate of 86%
and 81% respectively. It achieves significantly higher success
rates than the GMM baseline, proving its effectiveness in
refining the robot skills through physical interaction. Fig. 5a
shows the success rate of all skill models during training for

Model
Task Peg Insertion Lever Sliding

GMM 20% 54%
SAC 0% 0%

Res-GMM 30% 62%
SAC-GMM 86% 81%

TABLE I: Our SAC-GMM outperforms baseline skill models
significantly in both robot skills by refining the initial dynamical
systems (GMM) substantially.
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(c) Real-World Door Opening

Fig. 5: (a) SAC-GMM vs. baseline models for the peg insertion skill, (b) SAC-GMM exploits high-dimensional data (tactile measurements
here) to cope better with noisy perception (c) SAC-GMM learns to open a real door after half an hour of physical interactions.

the peg insertion skill. The SAC baseline which uses skill
demonstrations as initialization for its replay buffer, performs
poorly and cannot learn the robot skills in the sparse reward
setting. Though the Res-GMM skill model which adds a
residual velocity to the GMM at each time step achieves a
notable success rate of 30%, it is much slower in skill adap-
tation than SAC-GMM and suffers from a higher variance.
This is caused by Res-GMM’s inability to reason about skill
refinement on the trajectory level and its obligation to take a
residual corrective action at each time step of the trajectory.

To analyze the influence of noise in the perception
pipeline and the efficacy of SAC-GMM in exploiting high-
dimensional sensory data, we conduct several experiments
on the simulated environments (see Table II). We observe
that SAC-GMM can fully leverage high-dimensional data
such as tactile measurements and depth maps in all scenarios
to achieve a superior skill success rate. Fig. 5b shows the
success rate of SAC-GMM with and without having access
to the tactile sensors [44] during refinement of the peg
insertion skill in the noisy setup. We find that SAC-GMM
utilizes the high-dimensional observation to deal better with
noise and learn the skill faster. We observe that the pure
SAC model which does not utilize dynamical systems and
accordingly does not reason in the trajectory space cannot
learn robot skills in sparse reward settings. We further
analyze the SAC skill model in the shaped reward settings.
The results in Table III show how SAC-GMM stands out
in terms of performance and exploration budget. SAC-GMM
outperforms SAC even though it only requires sparse rewards
and a third of exploratory interaction steps in the world.

D. Real-World Door Opening

Fig. 5c reports the results for the door opening skill in
the real world. We find that, although the initial dynamical
system (the GMM agent fitted on human demonstrations)
enables the robot to reach the door handle, the robot misses

Model
Task

Peg Insertion Lever Sliding
No With No With

Noise Noise Noise Noise
No With No With No With No With

Tactile Tactile Tactile Tactile Depth Depth Depth Depth
GMM 20% x 10% x 54% x 39% x
SAC 0% 0% 0% 0% 0% 0% 0% 0%

Res-GMM 24% 30% 26% 23% 49% 62% 29% 38%
SAC-GMM 44% 86% 33% 56% 68% 81% 42% 52%

TABLE II: The average success rate of skill models over 100 trials
per five different random seeds, under various noise and sensors
settings for the simulated robot skills.

Model Reward Interactions Peg Insertion Lever Sliding
SAC Dense 60K 60% 30%

SAC-GMM Sparse 20K 86% 81%

TABLE III: SAC-GMM significantly outperforms SAC, even
though SAC has access to shaped rewards and takes three times
more exploratory interaction steps in the world.

the proper position to apply its force and can only open
the door with a 10% success rate. This failure is due
to the robot’s noisy perception and dynamics. Our SAC-
GMM exploits the wrist-mounted camera RGB images and
sparse door opening rewards and achieves a 90% success
rate after only half an hour of physical interactions (∼100
episodes) with the door. The SAC baseline fails to learn the
skill and the Res-GMM model performs poorly, as adding
residual velocities at each time step results in non-smooth
trajectories. Videos of these experiments are available at
http://sac-gmm.cs.uni-freiburg.de.

VI. CONCLUSIONS

In this work, we present “Soft Actor-Critic Gaussian
Mixture Models” as a new framework for learning robot
skills. This hybrid model leverages reinforcement learning
to refine robot skills represented via dynamical systems in
their trajectory distribution space and exploits the natural
synergy between data-driven and analytical frameworks. Ex-
tensive experiments carried out in both simulation and real-
world settings, demonstrate that our proposed skill model:
1) learns to refine robot skills through physical interactions
in realistic noisy environments, 2) exploits high-dimensional
sensory inputs available during skill refinement to cope better
with noise, and 3) performs robot skills significantly better
than comparable alternatives considering the performance
accuracy and exploration costs.

An interesting extension of our work is to investigate
transferring skills learned in one environment to new envi-
ronments, where the visual appearance of the overall setting
will differ considerably while the goals of the skills remain
similar (e. g., transfer the skill of door opening in one room to
other rooms), and refining skills in new environments. While
for the initial dynamic system stability and convergence
guarantees can be formulated, the modifications on the model
performed online by our SAC agent do not formally abide
by these guarantees. Even though we did not experience any
issues with divergence or instabilities, further adjustments as
suggested by Rey et al. [41] could be included to guarantee
convergence and stability.
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