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Abstract. A long-standing challenge for a robotic manipulation system operating
in real-world scenarios is adapting and generalizing its acquired motor skills to
unseen environments. We tackle this challenge employing hybrid skill models
that integrate imitation and reinforcement paradigms, to explore how the learning
and adaptation of a skill, along with its core grounding in the scene through
a learned keypoint, can facilitate such generalization. To that end, we develop
Keypoint Integrated Soft Actor-Critic Gaussian Mixture Models (KIS-GMM)
approach that learns to predict the reference of a dynamical system within the
scene as a 3D keypoint, leveraging visual observations obtained by the robot’s
physical interactions during skill learning. Through conducting comprehensive
evaluations in both simulated and real-world environments, we show that our
method enables a robot to gain a significant zero-shot generalization to novel
environments and to refine skills in the target environments faster than learning
from scratch. Importantly, this is achieved without the need for new ground truth
data. Moreover, our method effectively copes with scene displacements.

1 Introduction
Robot skill generalization remains a long-standing challenge in the field of robotic ma-
nipulation, mainly due to the stochastic nature and inherent variability of unstructured
real-world environments. For effective and autonomous operation, a robot must excel
not only in acquiring new motor skills, but also in adapting and generalizing these
skills to unseen and evolving contexts. However, this necessity often stands in contrast
with the common practice of learning robot skills in imitation and reinforcement
learning settings, which typically confine a robot to operate optimally within the rigid
boundaries of its training environment. Such methods frequently stumble when faced
with novel environments where the distribution of observations diverges from the one
encountered during training. Moreover, the lack of adaptability intrinsic to most robot
skill models imposes a significant constraint, hindering the robot’s capacity to refine its
learned skills within the target environment.

Numerous efforts have been made to address the need for generalizable and adaptive
robot skills, yet predominantly addressed them as separate challenges. On the one hand,
attempts to construct generalizable robot skills have primarily focused on enabling
robots to learn object-centric and task-specific visual representations, fostering a higher
readiness for their transferability to diverse yet structurally similar environments [1–3].
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Fig. 1. KIS-GMM employs a hybrid model to acquire adaptive and generalizable robot skills.
Initiating in a source environment (illustrated on the left), where the robot has access to few skill
demonstrations and a pivotal keypoint (b∗) of the skill in the scene, the Gaussian Mixture Model
(GMM) agent learns a dynamical system from these demonstrations and controls the robot at high-
frequency F. The Soft Actor-Critic (SAC) and Keypoint (KEY) agents, operating at lower frequen-
cies, respectively learn to refine skills for adaptability and predict a 3D keypoint for generalization
to novel environments. In transitioning to a target environment (illustrated on the right), where nei-
ther demonstrations nor ground-truth keypoints are available, KIS-GMM effectively predicts the
essential keypoint (b̂∗) for grounding the skill in the novel scene. This framework allows the seam-
less execution of skills, initially learned in a source environment, within unseen target settings.

However, the lack of adaptability in these methods hinders performance refinement
when initial generalizations fail. On the other hand, endeavors to create adaptive robot
skills adopt a strategy that confines the refinement of a learned skill policy exclusively
to its initial training environment [4–6]. Nonetheless, while both pursuits are crucial,
there has been limited exploration into the potential synergy of these two key aspects.

In this paper, we step towards closing this gap by proposing the Keypoint-Integrated
Soft Actor-Critic Gaussian Mixture Models (KIS-GMM, see Figure 1). KIS-GMMs
employ a hybrid skill model that begins by learning a trajectory-based Gaussian
mixture dynamical system from demonstrations. This learned skill is subsequently
refined through physical interactions of a soft actor-critic reinforcement learning
agent within its environment. During this refinement phase, KIS-GMMs harness the
robot’s observations to predict a 3D keypoint corresponding to the dynamical system’s
reference point in the scene, empowering it to generalize to structurally similar but
previously unseen environments. This is achieved by transforming the motion model
to the reference frame given by the predicted keypoint in new settings. Through
comprehensive evaluations, we demonstrate that our KIS-GMM equips a robot with the
ability for remarkable zero-shot generalization in unseen environments. It expedites skill
refinement in the target environment, outpacing the learning-from-scratch approach, and
does so without the need for the new environment’s ground truth data. Additionally, our
model effectively handles scene displacements. We showcase KIS-GMM’s capability
to successfully open four visually distinct doors and drawers in the real world, having
been initially trained on just one of each, respectively.
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2 Related Work

A fundamental challenge for autonomous agents in unstructured real-world scenarios is
to adapt and generalize their skill set to manipulate objects in dynamic, unfamiliar envi-
ronments [7]. For skill generalization, the focus is on where to apply a previously learned
skill in a new, unseen environment. In contrast, skill adaptation emphasizes how to refine
the robot’s skill for optimal performance. Extensive research in robotics and computer
vision has delved deeply into addressing either adaptability or generalization challenges.

Robot Skill Generalization: A core objective of machine learning is to distill
abstract information from limited training data that can be generalized to unseen ob-
servations, often leveraging similarities in the training data to formulate an inductive
bias [8]. In recent years, deep learning has facilitated the zero-shot and few-shot gen-
eralization of robotic skills within an imitation learning paradigm [1, 9–14]. In robot
skill learning, a common approach for incorporating inductive bias is through learning
the visual representation of data. Various methods exist to derive such generalizable
visual representations. This includes generative models like Variational Autoencoders
(VAEs) [15] and Generative Adversarial Networks (GANs) [16] or object-centric mod-
els such as video prediction [17, 18], image or point cloud segmentation [19–23], and
keypoint detection [2, 3, 24–26] networks. While robot skills using these generalization
techniques can manipulate objects in novel environments, they often lack an adaptation
mechanism for failed generalizations. In contrast, our skill model refines its keypoint
prediction in response to sub-optimal generalizations in new scenes.

Robot Skill Adaptation: While robot skill adaptation techniques have traditionally
leaned on end-to-end deep reinforcement learning [27] and policy search [28], there is
a growing interest toward hybrid skill models aiming for better sample efficiency [4, 5].
These models begin by learning robot motion policies from supervised data and later
refine them in the environment through reinforcement learning. While some approaches
overlook the intrinsic policy structure during adaptation, either by optimizing policy
parameters [29, 30] or adding residual action at each time step [31–33], others preserve
the geometric structure of the initial policy [23, 6]. In our previous study [4], we
introduced a framework to learn robot skills using Gaussian Mixture Models [34–36]
and subsequently adapt them in their trajectory distribution space using a Soft
Actor-Critic agent [37] that interacts with the environment. While these approaches can
adapt robot policies and enhance skill performance in the initial training environment,
they struggle to generalize in new settings with different visual appearances, even if the
skill goals remain similar.

3 Problem Formulation
We consider the motion of a robot to be driven by a dynamical system regulated by a set
of first-order differential equations, conditioning the robot’s velocity on the current and
target states [34]. Through this framework, we define a robot skill as a trajectory map, in-
dicating the requisite motion to reach a target state from any starting state. Our goal is first
to master a skill in one environment and subsequently generalize its application to unseen
environments. This generalization is achieved by transferring the dynamical system’s ref-
erence point, while offering the flexibility to adapt the skill in the new domain if needed.

To this end, we regard robot skills as 3D trajectories. We represent a trajectory
by 𝚵 = ⟨b1, . . . , b𝑛⟩, where b𝑖 ∈ R𝑑 is the robot’s geometric pose. Importantly,
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each b𝑛 can exemplify a dynamical system’s reference point, represented by b∗.
Furthermore, each rollout of a robot skill prompts a collection of observations, denoted
as O = ⟨o1, . . . , o𝑛⟩, captured from the environment through the robot’s wrist camera.
To learn a generalizable adaptive robot skill, we first need a series of demonstrations
taken from one single environment, represented as X = ⟨𝚵1, . . . ,𝚵 𝑗⟩, with each
demonstration exemplifying the geometric course of the respective skill. Our initial goal
is to learn a parametric skill model, denoted by 𝑓\ (b−b∗) = ¤b, which, conditioned on the
dynamical system’s reference point, derives the robot’s next desired velocity given the
current pose. Subsequently, we aim to master the learned skill in the source environment
by adapting its trajectory parameters \ through a refinement policy 𝜋𝜙 (b, o) = Δ\,
considering the robot’s poses and observations in a sparse task completion reward setup.

Seeking to generalize our skill model to structurally similar but unseen environments,
our approach involves training a 3D keypoint detector, represented as𝐾𝜔 (o) = b̂∗, during
the skill refinement phase in the source environment. The keypoint detector leverages
the wrist camera observations to predict the dynamical system’s reference point. By
transferring this representation to unseen environments, the robot can operate in novel
settings. If the skill’s performance in the target environment proves unsatisfactory, we
retain the capability to refine both the skill and the keypoint detector specifically for that
environment, utilizing sparse task completion rewards garnered within this novel context.

4 KIS-GMM

We introduce the Keypoint Integrated Soft Actor-Critic Gaussian Mixture Models
(KIS-GMM), a robot learning framework specifically crafted for fostering adaptive and
generalizable robot skills. This framework is segmented into two distinct phases. In
the first phase, a robot skill is acquired by learning a parameterized dynamical system
from a few demonstrations within a single source environment. This stage masters the
skill not only by adapting dynamical system parameters through physical interactions,
high-dimensional sensory data, and sparse rewards but also by deriving a pivotal
keypoint crucial for grounding the skill in the scene. In the second phase, the dynamical
system is generalized to unseen environments that share structural similarities to the
source environment by transferring the learned keypoint, conducting any necessary
refinements to either the skill policy or keypoint detection if required.

4.1 Mastery of a Robot Skill in a Source Environment

We employ the SAC-GMM hybrid algorithm [4], a fusion of dynamical systems and
deep reinforcement learning, for an adaptive formulation of robot skills. Initial learning
of a parametrized dynamical system stems from a mixture of Gaussians, derived from a
handful of demonstrations (GMM agent). The Soft Actor-Critic framework (SAC agent)
then exploits robot interactions with the source environment to refine this dynamical
system further. Provided with the current state - including the latent observation and
the robot state - and a reward for the previous action, the SAC agent adapts the original
GMM for the following interactions. For detailed insights into SAC-GMM, refer to our
prior work [4].

We develop a 3D keypoint detector (KEY agent), that builds upon the SAC-GMM
algorithm. Our keypoint detection approach draws inspiration from and resembles the
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Fig. 2. KIS-GMM learns to adapt a robot skill and generalize it to unseen environments. Adaptation
is achieved through parameter refinements (Δ\) utilizing physical interactions and sparse rewards.
Generalization is facilitated by transferring a learned keypoint (b̂∗) to novel environments.

kPAM framework [24]. During the skill refinement phase within the source environ-
ment, the Key agent utilizes the wrist camera’s observations to predict the 3D position of
the dynamical system’s reference point in the frame of the wrist camera, represented as
b∗ = (𝑥𝑐, 𝑦𝑐, 𝑧𝑐). For clarity, within the source environment, the ground truth keypoint
is designated as a specific point located on the surface of the object that is integral to the
relevant skill. For example, in the case of door and drawer opening skills, this keypoint is
strategically positioned on the handles. Our KEY agent employs image encoding to gen-
erate a 2D heatmap, facilitating the determination of the keypoint’s coordinates within
the camera’s frame. Concurrently, a depth map is produced to capture the depth value
of the corresponding keypoint. Together, these processes result in the determination of
b̂∗ = (𝑥𝑐, 𝑦𝑐, 𝑧𝑐). Moreover, a keypoint presence probability evaluates the uncertainty
regarding the keypoint’s presence within the camera’s frame. Using the ground truth
keypoint of the dynamical system, we train the Keypoint detector with average Euclidean
distance (L𝐸𝐷) and the keypoint presence measure via binary cross entropy loss (L𝐾𝑃):

L𝐸𝐷 (𝜔) =
1
𝑁

𝑁∑︁
𝑖=0

√︃
(b̂∗
𝑖
− b∗)2, L𝐾𝑃 (𝜔) = − 1

𝑁

𝑁∑︁
𝑖=0

[𝑦𝑖 log(𝑦𝑖) + (1− 𝑦𝑖) log(1− 𝑦𝑖)] .

To ensure that the keypoint detector effectively learns the crucial features associated with
the ground truth keypoint, we employ image augmentation techniques during the training
process. Specifically, we randomly obscure portions of the image pixels where the key-
point pixel is absent, enhancing the model’s recognition of essential features contributing
to the keypoint. During inference, we maintain a running average of the predicted key-
points for which the keypoint presence measure exceeds a predetermined threshold.

4.2 Generalization and Adaptation of a Robot Skill to Unseen Environments

The ability of our skill model to learn the dynamical system’s reference keypoint enables
the transfer of this task-specific representation to structurally similar, yet previously
unseen environments. Consequently, when faced with a new environment, our model
is capable of grounding the skill in the new scene using the predicted keypoint. If
performance in a target environment falls short of expectations, our model leverages
sparse task completion rewards from that environment to fine-tune both the SAC and
KEY agents. Since access to the ground truth reference point is unavailable in new
environments, we adopt the running average of the predicted keypoints from the last three
successful trajectories as a pseudo-label, enabling further refinement of the KEY agent.
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Fig. 3. The top row displays four simulated CALVIN environments, while the second and third
rows present four real-world door and drawer setups respectively. In all cases, robot skills are
trained in source environment A and then generalized to environments B, C, and D.

5 Experimental Evaluation
We evaluate the effectiveness of KIS-GMM in acquiring adaptable and generalizable
robot skills within simulated and real-world environments. Our experiments aim to inves-
tigate: (i) the generalization ability of our robot skill model to structurally similar yet un-
seen environments, (ii) the time efficiency of refining a skill in a target environment ver-
sus learning it from scratch, and (iii) our model’s capacity to handle scene displacements.
5.1 Experimental Setup
We assess our approach in both simulated and real-world settings. In the simulation, we
conduct our experiments within the CALVIN manipulation environments [38]. CALVIN
provides four distinct environments, engineered to test the generalization of robot skills
in structurally similar contexts. Each environment varies in texture and the positioning
of static elements like drawers and buttons, see the first row of Figure 3. In CALVIN, We
pursue the mastery of two distinct robot skills - Drawer Opening and Button Pushing.

In the real-world experiment, we examine Door Opening and Drawer Opening
skills. We utilize our 7-DOF Franka Emika Panda robot arm, equipped with a parallel
gripper, to interact with four distinct doors and drawers. These vary in attributes like
color, texture, handle design, and placement, as depicted in the second and third rows of
Figure 3. We obtain the robot’s wrist camera observations using a FRAMOS Industrial
Depth Camera D435e mounted on the gripper. We affix ArUco markers to doors and
drawers, allowing us to identify when they are opened successfully and provide a
corresponding reward. Additionally, to facilitate autonomous robot operation without
human intervention, our doors and drawers are fitted with closing mechanisms. As a
result, the doors and drawers close automatically when the robot lets go of the handle,
initiating a new interaction episode.

During every training and test episode, the robot’s end effector’s starting position is
randomly sampled from a Gaussian distribution. Additionally, we add a uniform noise
distribution to the skill’s reference point in the scene. For all simulated and real-world se-
tups, robot skills are trained within the source environment A. Subsequently, we assess the
generalization and adaptability of these learned skills within environments B, C, and D.
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5.2 Evaluation Protocol
We compare our KIS-GMM against the following baselines:

– GMM: This baseline utilizes the same dynamical system learned from demonstra-
tions in our approach. However, it lacks adaptability and awareness of the dynamical
system’s reference point in the target environments.

– SAC-GMM (w/ GT) [4]: This skill model utilizes robot interactions and observa-
tions for adaptability and refinement of the GMM baseline. Additionally, it benefits
from access to ground-truth reference points in the target environments, which aids
its performance in these contexts.

– SAC-GMM: This baseline is similar to the previous one but lacks access to ground
truth in the target environments, making it a closer representation of real-world
scenarios.

– KEY-GMM: Building on the GMM baseline, this model integrates a keypoint
detector to predict the dynamical system’s reference point in target environments.
However, it still lacks adaptability.

All quantitative results represent the mean success rate of each skill model over 100
trials, computed across three different random seeds.

5.3 Experiments in Simulation

We begin by assessing our approach with the Drawer Opening and Button Pushing
skills in CALVIN environments. Table 1 reports the quantitative results representing the
accuracy with which each skill model generalizes to unseen target environments. Our
KIS-GMM is not only effective in achieving notable zero-shot generalization to unseen
environments, but it is also capable of refining its performance in target environments.
Remarkably, it accomplishes this refinement without requiring access to target environ-
ments’ ground truth data. As a result, KIS-GMM achieves an accuracy exceeding 90%
across all environments for both assessed skills. Upon investigating the performance
of the SAC-GMM baselines, we find that while they efficiently refine the initial GMM
model in source environments and can generalize to unseen environments given access
to ground truth data, they fail in the more realistic scenario where access to such data is
unavailable. Furthermore, while the KEY-GMM models exhibit results that come close

Model

Robot
Skill

Drawer Opening Button Pushing
Source Target Source Target

A B C D A B C D
GMM 73% 5% 4% 5% 88% 5% 6% 6%
SAC-GMM (w/ GT) 96% 60% 96% 93% 95% 39% 66% 84%
SAC-GMM 96% 6% 8% 9% 95% 9% 14% 16%
KEY-GMM 67% 42% 60% 61% 94% 40% 58% 79%
KIS-GMM (Zero-Shot) 95% 52% 94% 81% 96% 33% 57% 80%
KIS-GMM (Refined) x 93% 94% 93% x 97% 94% 95%

Table 1. Superior performance of KIS-GMM over baseline models in generalizing and adapting
Drawer Opening and Button Pushing skills, initially mastered in environment A, to target
environements B, C and D.
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(a) Drawer Opening in Environment B
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(b) Button Pushing in Environment B
Fig. 4. KIS-GMM swiftly refines both robot skills in the target environment B, outpacing learning
the skills from scratch, without even requiring ground truth reference points.

to matching the zero-shot variations of KIS-GMM, they lack the capability to refine
their performance. This often culminates in them achieving sub-optimal accuracy rates.

As Table 1 illustrates, the zero-shot generalization of skills to environment B can
lead to subpar results, largely due to significant table texture changes. In contrast to KEY-
GMM, our adaptive skill model demonstrates the capacity to refine its performance in the
target environment when zero-shot generalization doesn’t meet expectations. As depicted
in Figure 2, the comparative timelines for skill refinement in a new domain versus master-
ing the skill from the ground up reveal a distinct advantage for our model. For both robot
skills assessed, KIS-GMM refines the skill significantly faster than the time it would take
to learn it from scratch (approximately four times quicker), importantly, without requir-
ing the ground truth reference point of the dynamical system in the target environment.

Our subsequent experiment investigates the adaptability of various skill models to
scene displacements occurring between the training and evaluation phases. Specifically,
we manipulate the relative positioning of the robot and tables and delineate three tiers
of displacement difficulty for adaptation: “Easy” signifies displacements from 0 to 10
centimeters, “Medium” represents displacements from 10 to 20 centimeters, and “Hard”
encompasses displacements from 20 to 30 centimeters. All displacements are randomly
sampled from a uniform distribution. As indicated in Table 2, the adaptive SAC-GMM
model, while outperforming the GMM baseline in “Easy” displacement scenarios,
falls short in managing the more challenging “Medium” and “Hard” scenarios. This
limitation primarily stems from these models’ inability to ground their motion models to
the displaced scene by predicting reference keypoints. Both KEY-GMM and KIS-GMM
skill models demonstrate a capability to handle displacement noise effectively due to
their training in detecting the 3D keypoint corresponding to the dynamical system’s
reference point within the environment. Consequently, their performance remains
robust despite considerable displacements between the training and evaluation stages.

Model

Robot
Skill

Drawer Opening / Environment A Button Pushing / Environment A
Noise Noisy Noise Noisy
Free Easy Medium Hard Free Easy Medium Hard

GMM 73% 23% 5% 5% 88% 35% 5% 1%
SAC-GMM 96% 64% 3% 2% 95% 92% 25% 3%
KEY-GMM 67% 72% 65% 65% 89% 93% 90% 92%
KIS-GMM 95% 97% 94% 97% 96% 96% 92% 95%

Table 2. KIS-GMM is effective in coping with scene displacements between training and
evaluation stages, by employing a 3D keypoint detector for grounding its dynamical system.
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Model

Robot
Skill

Real World Door Opening Real World Drawer Opening
Source Target Source Target

A B C D A B C D
GMM 56% 11% 9% 5% 67% 6% 17% 8%
SAC-GMM 93% 5% 13% 7% 96% 6% 19% 15%
KEY-GMM 49% 44% 55% 23% 65% 59% 52% 34%
KIS-GMM (Zero-Shot) 93% 84% 88% 41% 94% 82% 89% 86%
KIS-GMM (Refined) x x x 83% x x x x

Table 3. KIS-GMM effectively masters the task of opening four distinct doors and drawers in real-
world settings, after being trained initially on just a single door and drawer (source environment A).

5.4 Experiments in Real-World

Table 3 presents the accuracy results of the Door Opening and Drawer Opening skill
models as they generalize to previously unseen target settings. For both of these skills,
the refinement phase spanned roughly five hours of physical interactions, equating to
approximately 1,000 episodes, during which the SAC and KEY agents were actively
trained. These results echo the outcomes observed in the simulated environments, un-
derscoring the robustness and general applicability of our findings. KIS-GMM demon-
strates remarkable zero-shot generalization and adaptability in the real-world setting,
outperforming all baseline models. GMM and SAC-GMM models, lacking awareness
of the dynamical system’s reference point in target environments, struggle to anchor
the skill to these new contexts, leading to an inability to generalize the learned skill
effectively. Additionally, though the KEY-GMM models can generalize robot skills to
unfamiliar settings, their inability to adapt these skills often leads to subpar performance.
Our KIS-GMM model consistently achieves an accuracy rate of over 80% across all en-
vironments for both evaluated skills, with the sole exception of the Door Opening skill
in environment D. Notably, while our KEY agent adeptly identifies the door handle
and anchors the skill within the scene, the door handle in environment D is designed
with a slippery surface, inherently altering its point of maximum leverage compared to
other environments. Recognizing this nuance, we undertook further refinement of the
door opening skill model specifically for environment D. After approximately an hour
of refinement (∼200 episodes), the accuracy of our model increased to 83%.

6 Conclusions
In conclusion, our novel KIS-GMM framework promotes robot skills that are both
adaptable and generalizable, emphasizing their mutual importance for superior perfor-
mance across diverse scenarios. Using the robot’s observations from the skill refinement
phase, our model learns to identify a 3D keypoint representation that grounds the
skill’s dynamical system in a novel scene. Comprehensive experiments in simulation
and real-world highlight the efficacy of our proposed skill model in several key areas:
1) generalizing robot skills to unseen environments and subsequently adapting them
within these new domains, 2) reducing skill refinement time in a target domain over
learning from scratch, even without requiring ground truth data, and 3) handling scene
displacement between training and evaluation stages. A compelling extension of our
research would be to explore enhancing the sample efficiency of our skill model even
further. This could be achieved by incorporating multiple keypoints that compactly
define the robot’s task, and by granting the refinement agent access to such keypoints.
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