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Abstract— This paper addresses the problem of road scene
segmentation in conventional RGB images by exploiting recent
advances in semantic segmentation via convolutional neural
networks (CNNs). Segmentation networks are very large and
do not currently run at interactive frame rates. To make this
technique applicable to robotics we propose several architecture
refinements that provide the best trade-off between segmenta-
tion quality and runtime. This is achieved by a new mapping
between classes and filters at the expansion side of the network.
The network is trained end-to-end and yields precise road/lane
predictions at the original input resolution in roughly 50ms.
Compared to the state of the art, the network achieves top
accuracies on the KITTI dataset for road and lane segmentation
while providing a 20× speed-up. We demonstrate that the
improved efficiency is not due to the road segmentation task.
Also on segmentation datasets with larger scene complexity, the
accuracy does not suffer from the large speed-up.

I. INTRODUCTION

Road detection plays a crucial role in autonomous driving
and intelligent transportation systems. Solutions to this
problem are envisioned to reduce accidents and traffic and
improve fuel efficiency. Thanks to so-called up-convolutional
networks [7], [11], deep learning has become applicable also
for segmentation problems. In contrast to usual classification
Convolutional Neural Networks (CNNs), which contract
the high-resolution input to a low-resolution output, up-
convolutional networks take an abstract, low-resolution input
and predict a high-resolution output, such as full-size images.

While these network architectures have dramatically in-
creased the quality of semantic segmentation [11], [14], they
are significantly slower than typical classification networks.
The forward pass through these state-of-the-art networks
requires between 150 and 229ms, which makes it impossible
to use them at interactive frame rates in a robotics context.

In this paper, we focus on improving the efficiency
of segmentation with a deep network by modifying the
architecture in such a way that it is significantly faster,
requires less memory, and still achieves the same accuracy as
previous architectures. The key modification we propose is a
new distribution of parameters at the up-convolutional part of
the network. This modification saves lots of parameters, which
improves the training time and leads to interactive frame rates
on regular GPUs and makes this class of networks capable
of running on low-power mobile GPUs.

We demonstrate the power of the proposed architecture in a
visual road/lane segmentation task. Typical challenges in this
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Fig. 1: The four different lane/road segmentation tasks of
the KITTI benchmark. The correct segmentation is shown in
green, while the false negative and false positive detections
are shown in red and blue, respectively.

task are illumination issues, such as shadows and reflections,
dynamic background and non-trivial variation in appearance.
Deep learning is predestined to deal with such challenges,
which is why the state-of-the-art approaches are based on
convolutional networks. However, they rely on patch training
[4], [12]. This is suboptimal, because decisions are made on
only a relatively small local patch. Moreover, a network must
be run on many overlapping patches, which is inefficient. In
contrast, the proposed architecture, which builds upon the
work of Long et al. [11] and Oliveira et al. [14], works on the
whole image and exploits all available context. Moreover, a
single forward pass is necessary to segment the whole image,
which makes the approach potentially more efficient than
patch-based approaches.

We test our network on the KITTI-Road dataset [8]. The
results show that the proposed technique achieves state-of-
the-art performance with the lowest computational runtime
of all top methods. We also performed tests to measure the
robustness of the network to scale variations and compared
our network with architectures from the same class [11], [14].
For both sets of tests we outperform the compared techniques,
in terms of computational performance and accuracy.

II. RELATED WORK

Road segmentation has been attracting attention from
the robotics and computer vision community for many
decades. Several methods using a variety of sensors have
been developed. Two seminal works are by Yu et al. [3]
and Aly et al. [2]. Yu et al. [3] present an approach that
localizes roads using the watershed algorithm. Aly et al. [2]
use the Hough transformation to identify lane markings and
to localize the road area.



Monocular, vision based road segmentation is usually built
upon learning methods. The first such attempts are limited
to independently classify regions or pixels. These methods
ignore the global properties provided by the whole image
and typically misclassify regions with similar appearance.
Global methods using Conditional Random Fields (CRF) [15],
[19], Boosting Algorithms [18] and hierarchical approaches
[13] were proposed to address this issue. Wu et al. [19]
propose a CRF based approach for image road detection
and an additional CRF to fuse the image segmentation with
Light Detector And Range (LIDAR). Bergasa et al. [15]
also employ a CRF approach with a miniaturized image
calculated from superpixels. CRFs present local inference
limitations because this class of methods only allow the direct
influence of adjacent regions. Other methods like [13], [18]
make use of hand-crafted features and hierarchical classifiers.
The hierarchical road segmentation is performed by specific
classifiers for each hierarchical level and uses the previous
classification results as features for the next step.

Above methods dominated road and lane segmentation
until recently. The unprecedented results obtained by CNNs
for classification [9], [17] and segmentation [11] make CNNs
interesting for almost all perception problems. Consequently,
CNNs have been applied also to road segmentation [1], [4],
[12]. Lopez et al. [1] introduce a road scene segmentation
approach that learns a classifier based on hand-crafted
features, creating the training samples for a CNN network.
The network learns specific domain features based on the
machine-generated annotations. Denzler et al. [4] introduce
convolutional patch networks, which are CNNs designed
to patch segmentation, allowing pixel-wise labeling. The
technique also explicitly incorporates spatial information
of the patch to the network, allowing incorporation of a
spatial prior to the network. Mohan [12] presents a CNN
architecture in combination with deconvolutions. He proposed
a multi-patch technique that learns region-specific features,
each patch region is used to train a separate network. This
method currently provides the best results on the KITTI
benchmark. While being less deep than our architecture, the
proposed deconvolution network is computational costly and
is not able to provide interactive frame rates.

In contrast to deconvolution networks, the so-called fully
convolutional network (FCN) developed by Long et al. [11]
allows training the network end-to-end for semantic segmen-
tation tasks. This more elegant approach also led to better
performance and provides the state-of-the-art performance in
generic semantic segmentation. The approach replaces the
fully connected layers of a deep classification network, e.g.
VGG [17], by convolution layers that produce coarse score
maps. Successive up-convolutional refinements allows them
to increase the resolution of these score maps. There have
been some recent extensions of Long et al. [11]. Chen et
al. [5] use a fully connected CRF to refine the segmentation
maps obtained from [11]. Oliveira et al. [14] applied a similar
approach to human part segmentation and proposed several
improvements with regard to over-fitting and segmentation
of occluded parts in highly cluttered environments. While

being much more efficient than patch based approaches, these
previous works still do not achieve interactive frame rates.
In this paper, we improve the efficiency of the network
architecture to provide considerable speed-ups while keeping
or even improving the accuracy of the results.

III. METHODOLOGY

A. Problem Definition

Road segmentation associates each pixel of an input image
to one of two classes: road and non-road, i.e., it is a binary
segmentation problem. The network can be easily modified to
tackle multi-label problems by adding more output channels,
yet in the context of road segmentation this is not necessary.

We approach the problem with a CNN that is trained end-
to-end to predict a map of class labels. The output of the
network are scores for each of the learned categories. We
represent our architecture as one model f(x, γ) that maps an
image to the target segmentation. The model is described by
the network parameters γ and is learned by minimizing its
error output for an example xi given an output ground-truth
label yi:

γ̂ = argmin
γ

n∑
i=1

L (f (xi, γ) , yi) , (1)

where n is the training set and L is the cross-entropy
(softmax ) loss, which converts a score aK for class K into a
posterior class probability PK ∈ [0, 1]. When running the final
network, the softmax is replaced by the argmax function to
provide a single output class label.

B. Architecture

The architecture is based on the recently proposed fully
convolutional networks [11], [14], i.e., the network has a
contractive part, similar to a classification network, and
a corresponding up-convolutional part that expands the
representation to a high resolution segmentation.

Our modified architecture is shown in Fig. 2. The contrac-
tive network layer parameters are initialized using the VGG
classification network [17]. Each refinement at the expansive
layer has a corresponding layer in the contractive part with
the same resolution. The output of the contractive part of
the network is a low resolution feature map, from which
the up-convolutional network must derive the high resolution
segmentation. Each up-convolutional layer upsamples the
input by a factor of 2 via bilinear interpolation. After each
upsampling operation a ReLU is used to better deal with
the vanishing gradient problem. The upsampled filters after
passing through the ReLU serve as input to a successive con-
volution layer. One characteristic of the proposed expansive
part is the inclusion of dropout after the first refinement layer
to avoid overfitting.

The expansive network manages to produce high quality
output given the coarse representation provided by the
contraction side. The output of the network has the resolution
of the input image. A detailed specification of the individual
network layers is given in Table I.
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Fig. 2: Proposed architecture. Up-convolutional layers have size equal to C ∗Ncl, where Ncl stands for number of classes
and C for the scalar factor of filters augmentation. We call the network part up to the first upsampling layer the contractive
side of the network and the following portion the expansive network side.

name kernel size stride pad output size

data - - - 500 × 500 × 3
conv1_1 3 × 3 1 10 518 × 518 × 64
conv1_2 3 × 3 1 1 518 × 518 × 64
pool1 2 × 2 2 0 259 × 259 × 64
conv2_1 3 × 3 1 1 259 × 259 × 128
conv2_2 3 × 3 1 1 259 × 259 × 128
pool2 2 × 2 2 0 130 × 130 × 128
conv3_1 3 × 3 1 1 130 × 130 × 256
conv3_2 3 × 3 1 1 130 × 130 × 256
conv3_3 3 × 3 1 1 130 × 130 × 256
pool3 2 × 2 2 0 65 × 65 × 256
conv4_1 3 × 3 1 1 65 × 65 × 512
conv4_2 3 × 3 1 1 65 × 65 × 512
conv4_3 3 × 3 1 1 65 × 65 × 512
pool4 2 × 2 2 0 33 × 33 × 512
conv5_1 3 × 3 1 1 33 × 33 × 512
conv5_2 3 × 3 1 1 33 × 33 × 512
conv5_3 3 × 3 1 1 33 × 33 × 512
pool5 2 × 2 2 0 17 × 17 × 512
FC-conv 3 × 3 1 0 15 × 15 × 1024
FC-conv2 1 × 1 1 0 15 × 15 × 1024
conv-Ncl 1 × 1 1 0 1 × 1 × Ncl

Up-conv1 4 × 4 2 0 40× 40× CNcl

Up-conv2 4 × 4 2 0 82× 82× CNcl

Up-conv3 4 × 4 2 0 166×166×CNcl

Up-conv4 4 × 4 2 0 294×294×CNcl

Up-conv5 4 × 4 2 0 590× 590×Ncl

output - - - 500× 500 × Ncl

TABLE I: Our architecture in more detail. The Up-conv layers
refer to each refinement step. For brevity reasons ReLUs,
dropout and some layers from the up-convolution step are
omitted from the table.

C. Optimizing the Use of Parameters

The main motivation behind the proposed architecture was
the need to design a network for road and lane segmentation
that is efficient in terms of memory and runtime. To meet
these requirements we optimized the number of network
parameters.

1) Parameter reduction: The fully convolutional networks
in Long et al. and Oliveira et al. [11], [14] use the VGG-16
classification network as basis for the contraction side of the

network. This network has 4096 filters with 7x7 spatial size.
The large number of filter of large size is mainly responsible
for the computational load.

To address this problem, we reduced the number of
parameters by reducing the number of FC-conv filters from
4096 to 1024. In addition, we reduce the size of the filters
from 7 × 7 to 3 × 3. The proposed reduction of network
parameters makes our approach more efficient than the
previously proposed dense segmentation architectures. From
such a reduction, one must expect a significant drop in
classification accuracy. However, we use some of the saved
parameters at another part of the network to keep the high
accuracy and even improve it compared to the baseline
network.

2) New refinement to improve system accuracy: In order to
make our network capable of producing accurate segmentation
masks, after the substantial reduction in the FC-conv layer,
we must strengthen other parts of the network. In particular,
we increase the width of the up-convolutional side of the
network. Previously our network has a 1− to− 1 mapping,
each refinement has the same number of filters and classes
(Ncl). Such configuration have as main drawback limiting
the discriminative power of such architectures. We propose
a new distribution of parameters, based on the U-nets [16],
to overcome this drawback. U-nets have a variable number
of filters, which are the same between the contraction and
expansion side. Similar architecture was trained, however
presented prohibitive time performance. In order to provide
more parameters to the expansive part without hurting the
computational time we proposed a similar approach that use
multiple filters per class like U-net, but without the consid-
erable increase of the network parameters. For this purpose
we use a scalar C, which is empirically selected to multiply
the number of filters. Such approach presented minimal time
footprint and proved to make our new architecture more
robust to scale.

While the new architecture has C ∗Ncl filters, two parts of
the network kept the same number of filters when compared
to the classes. These parts are at the convolutional layer



between the contraction and expansion part of the network
(conv-Ncl) and at the last layer of the architecture. The first
layer’s purpose is to maintain the network efficiency, while
the last one has a goal of making the network calculate loss
over only the useful classes. Figure 3 shows such changes.

Ncl C*Ncl Loss
Contraction Expansion

Fig. 3: Description of the new architecture weight distribution.
The expansive side increases its parameter size by a factor of
C. Only the convolutional layers between the contraction and
expansive side and before the loss continue with Ncl filters.

D. Data Augmentation

Data augmentation is needed for road and lane segmenta-
tion due to the small number of training examples. To this
effect, we employ a series of data transformations to the
original data. In particular, we implemented:

• Scaling: scale the image by a factor between 0.7 and
1.4;

• Color: Add a value between −0.1 and 0.1 to the hue
channel of the HSV representation.

For the specific application of road and lane segmentation,
rotation and cropping transformations are undesirable, since
the network is expected to learn spatial priors of the road.
Rotation and cropping can hampers learning such priors.

E. Network Training

Training is performed in a multi-stage fashion. We ini-
tialized the contraction part of the network with the VGG
architecture [17]. We also modified the network hyperparam-
eters. We reduced the padding of the first convolutional layer
from 100 to 10 pixels (slightly faster training), use Xavier
initialization, higher learning rate, from 1e − 10 to 1e − 9
and lower momentum 0.90 instead of 0.99. We also changed
the fixed learning rate (Lr) by a poly learning policy

Lr = L (1− i/max i)
p
, (2)

where L is the base learning rate, i is the learning step
and p is the power index. The new policy converges faster
than the fixed learning rate policy. On average we need half
the number of iterations (300k iterations vs 600k iterations)
to obtain the same results.

The network is trained by backpropagation using stochastic
gradient descent (SGD) with momentum. Each minibatch
consists of just one image. The training is done one refinement
stage at a time and each refinement takes one day. Thus,
training the whole network took 5 days on a single GPU.

IV. EXPERIMENTS

We evaluated the performance of the optimized architecture
on real driving data from the KITTI benchmark dataset.
We present a series of evaluations in terms of runtime,
accuracy, and scale robustness. Additionally, we compare

the optimized architecture to the non-optimized baseline on
generic segmentation problems without the specialization on
road segmentation. The implementation was based on the
publicly available Caffe [10] deep learning toolbox, and all
experiments were carried out with a system containing an
NVIDIA Titan X GPU.

A. KITTI Road/Lane Dataset

The KITTI Visual Benchmark Suite [8] is a dataset
designed to benchmark optical flow, odometry data, object
detection, and road/lane detection. The road dataset consists
of 600 frames of 375×1242 pixels and constitutes the main
benchmark dataset for road and lane segmentation. The data
was acquired in five different days.

The dataset has three different categories of road scenes:
single-lane road with markings (UM), single-lane road without
markings (UU), and multi-lane road with markings (UMM).
In this paper, we deal with road and ego-lane detection.
We do not differentiate between the road categories, but
the ego-lane problem is trained separately. The dataset
provides ground truth for training and online evaluation for
the testing1. The KITTI online evaluation system allows
for anonymous submission of results, thereby some of the
top ranked methodologies do not have a corresponding
publication. Additionally the evaluation system restricts the
number of submissions, making the evaluation at multiple
resolutions not feasible.

1) Road Detection: Road segmentation for KITTI dataset
is divided into four benchmark outputs: UM, UU, UMM
and URBAN ROAD. URBAN ROAD is the category that
summarizes all three different road scene categories. Table II
shows our results for road segmentation. The individual
methods are ranked according to their pixel-wise maximum
F-measure on the Bird’s-eye view space. The other provided
measurements are: Average Precision (AP), Precision (PRE),
Recall (REC), False Positive Rate (FPR) and False Negative
Rate (FNR).

TABLE II: Results for the road KITTI dataset.

Benchmark MaxF AP PRE REC FPR FNR
UM 92.20% 88.85% 92.57% 91.83% 3.36% 8.17%

UMM 95.52% 92.86% 95.37% 95.67% 5.10% 4.33%
UU 92.65% 89.20% 92.85% 92.45% 2.32% 7.55%

URBAN 93.83% 90.47% 94.00% 93.67% 3.29% 6.33%

The single-lane with markings category (UM) is formed by
images taken from a marked urban two-way road and has 95
images for training and 96 images for testing. Our approach
ranks second for this category, as seen in Table III. While
all top results for this category report processing times of
about 2 seconds, our architecture has an average runtime of
83 milliseconds. This makes it the only approach among the
top performing methods that is capable of interactive frame
rates.

For the single-lane road without markings (UU) we have 98
images for training and 100 images for testing. Our method
ranks first and second for this set; see Table IV. The resolution

1 http://www.cvlibs.net/datasets/kitti/eval_road.php
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TABLE III: Results on UM road KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
DDN [12] 93.65% 88.55% 94.28% 93.03% 2.57% 6.97% 2s

Ours 92.20% 88.85% 92.57% 91.83% 3.36% 8.17% 83ms
CNN1 91.73% 92.08% 91.10% 92.36% 4.11% 7.64% 2s
CNN 91.22% 91.35% 91.22% 91.23% 4.00% 8.77% 2s

TABLE IV: Results on UU road KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
Ours 92.65% 89.20% 92.85% 92.45% 2.32% 7.55% 83ms

Ours-Low 91.89% 89.44% 92.59% 91.20% 2.38% 8.80% 52ms
DDN [12] 91.76% 86.84% 93.06% 90.50% 2.20% 9.50% 2s

CNN1 89.70% 90.61% 89.41% 89.99% 3.47% 10.01% 2s

TABLE V: Results on UMM road KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
Ours 95.52% 92.86% 95.37% 95.67% 5.10% 4.33% 83ms

DDN [12] 94.17% 92.70% 96.73% 91.74% 3.41% 8.26% 2s
FCN_LC 94.09% 90.26% 94.05% 94.13% 6.55% 5.87% 30ms

Ours-Low 93.89% 92.62% 94.57% 93.22% 5.89% 6.78% 52ms

TABLE VI: Results on URBAN_ROAD KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
Ours 93.83% 90.47% 94.00% 93.67% 3.29% 6.33% 83ms
DDN 93.43% 89.67% 95.09% 91.82% 2.61% 8.18% 2s

Ours-Low 92.39% 90.24% 93.03% 91.76% 3.79% 8.24% 52ms
CNN1 91.98% 92.44% 91.08% 92.89% 5.01% 7.11% 2s

TABLE VII: Results on UM lane KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
Ours 89.88% 87.52% 92.01% 87.84% 1.34% 12.16% 83ms
ANM 89.11% 81.11% 88.68% 89.54% 2.01% 10.46% 60ms

PCA-Lane-S 87.01% 74.16% 87.31% 86.70% 2.22% 13.30% 30ms
S 85.15% 76.52% 88.61% 81.95% 1.85% 18.05% 100ms

used for most of the experiments was 500× 500 but we also
tested with a 300× 300 resolution. More tests on the impact
of resolution will be discussed in Section IV-A.3.

The third setting is composed of images taken from the
urban multi-lane marked road (UMM), which has 96 images
for training and 94 for testing. Results are shown at Table V,
where the proposed network compares favorably to all existing
techniques, too. For this scenario a CNN method (FCN_LC)
presents faster processing times, yet the reported accuracy is
inferior in all metrics.

The final metric of the KITTI evaluation benchmark
is one that combines all three experimental settings (UR-
BAN_ROAD). Table VI presents our results and the best
results available. The proposed network achieves the highest
accuracy while its runtime is smallest among all top perform-
ing methods. Figure 4 illustrates some obtained segmentations
between our architecture and the top two results. We consider
the top URBAN_ROAD techniques for comparison, since
this metric can provide a better overall measurement of
how well a method behaves. The proposed architecture
shows low occurrences of false positive predictions and sharp
segmentation of edges, while keeping an interactive frame
rate capability.

2) Lane Detection: Lane detection is a challenging task
due to low inter-class variability. Without context, the ego-
lane is hard to distinguish from other asphalt parts of the
road. The KITTI dataset uses single-lane road marked images
to segment lanes. Table VII shows our results. In contrast
to road detection, there are methods with runtimes in the
millisecond range. The proposed network, which is the only
one among the top techniques that was not specially designed
for this task, achieves the best accuracy. Figure 5 presents
some qualitative results comparing with the 3 best approaches.
The proposed architecture visually exhibits much better lane
segmentations when compared to the next best approaches.

3) Performance Tests: Since the runtime depends much
on the hardware and resolution, we present results on various
GPUs and at different resolutions. We tested on six desktop
GPUs and two mobile ones; see Table VIII. Even on older
GPUs, such as the GTX 680, the architecture achieves more

TABLE VIII: Runtime depending on the GPU.

GPU Forward Pass Time (ms)
TK1 1440
TX1 599

GTX 680 97.4
K-40 108

GTX TITAN 96.8
GTX 970 66.4
GTX 980 51

GTX TITAN X 52.2

TABLE IX: Runtime depending on the resolution.

Resolution Forward Pass Time (ms)
150× 150 30
200× 200 35.6
300× 300 52.2
500× 500 83

than 10 frames per second and fits into the GPU memory.
The tests reveal that the network is as fast on a GTX 980 as
on a GTX TITAN X.

We further extended our experiments to modern low power
mobile GPUs. In our experiments we tested the proposed
architecture on two mobile GPUs, Tk1 and Tx1, respectively.
Our network is capable of running at speeds faster than
one frame per second in the TX1 and, to the best of our
knowledge, is the first up-convolutional network capable of
local processing in low power mobile GPUs.

We also modified the resolution. For this experiment we
used a machine with a TITAN X GPU and tested inputs
ranging from 150×150 to 500×500; see Table IX. As to be
expected, higher resolutions increase the runtime. However,
even at a 500 × 500 resolution, our system is still more
efficient than any top result for road detection.

B. Range Experiments

We explicitly test how the network behaves when exposed
to multiple scales. The KITTI dataset does not provide any
specific data for measuring range robustness. Thus, we tested
our architecture on a dataset from Oliveira et al. [14] designed
to measure scale in the context of human part segmentation.
The same testing methodology was employed: the network
was trained on the PASCAL parts dataset [6] and tested on
the range data. In order to deal with the additional classes
in this task, we added the corresponding number of output
channels to the network.

The dataset has two persons on distances ranging from
0.8 m to 6.0 m, capturing images every 20 cm. Figure 6



(a) Ours
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Fig. 4: Segmentation results for road segmentation extracted from the KITTI benchmark. The proposed architecture shows
low occurrences of false positive predictions and sharp segmentation of edges. Green correspond to correct segmentation, red
to false negative and blue to false positive detections.

Fig. 5: Lane predictions on the KITTI dataset compared with the 3 next best approaches. Top Left: Our approach, Top Right:
ANN, Botton Left: PCA-Lane-S, Botton Right: S. In the images green is correct segmentation, red false negative detection
and blue positive detection.

presents our results and compares it to Oliveira et al. [14].
The new architecture consistently performs better than the
baseline, specially for longer distances. The smaller filters
3 × 3 at the last two layers of the contraction side of the
network provide a smaller field of view and present a gain
for longer distances. For distances beyond 4 meters, our
architecture largely outperforms the current state of the art.

C. Impact of Parameter Reduction and New Refinement

In order to analyze the impact of parameter reduction
and the new mapping of the expansion side we perform
experiments with each of these settings. We incrementally
tested each of them and also compared to other fully
convolutional networks. Based on the restriction in the number
of submissions to the KITTI dataset, we use the PASCAL
Parts dataset [6] with 4 body parts. PASCAL parts provides
a more complex multi-label scenario and allows testing the
general purpose capabilities of the proposed architecture.

Table X shows our results compared to other fully con-

volutional networks. Although our network is much faster,
we obtained state of the art results. This demonstrates that
the network provides not only a very efficient solution for
road and lane segmentation, but it is generally applicable
for segmentation problems at high frame rates. Additionally
we also quantify the impact of parameter reduction, new
refinement and the complete architecture. As expected, the
reduction of parameters results in a decrease of quality in the
segmentation, however such reduction speed-up the network
4.8 times when compared to our base network. The addition of
the new refinement parameter distribution raises our network
results by 4.25 mean IOU percentage points, yet makes
the network slower. The full architecture, which includes
all the previous settings and the reduction of parameters
between the contraction and expansive side only increases a
few milliseconds the forward pass, when compared to our
fastest result. The full architecture yields state of the art
results and comes with a computation requirement close to
the lowest tested configuration.



TABLE X: Results on the PASCAL dataset with 4 body parts.

IOU
Method Head Torso Arms Legs All Time

FCN [11] 70.74 60.62 48.44 50.38 57.35 150ms
Up-Conv [14] 83.24 79.41 73.73 76.52 78.23 229ms
Ours - Parameter reduction 82.61 78.78 72.83 74.84 77.00 47.3ms
Ours - New refinement 84.67 82.30 77.56 79.62 81.25 53ms
Ours - Full architecture 84.86 82.90 78.35 80.95 81.92 48.7ms
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Fig. 6: Range segmentation results. The proposed approach
consistently performs better than the baseline, specially for
longer distances.

V. CONCLUSION AND FUTURE WORK

We presented a near real-time deep learning methodology
for road and lane segmentation using up-convolutional net-
works. The main motivation behind this new architecture was
the need to design an approach for road and lane segmentation,
which is efficient in terms of memory and runtime. For that we
proposed a modification of the architecture that saves many
parameters in one part of the network and introduces only few
new parameter in another part. This new distribution not only
speeds up the network by the overall reduction of parameters
but also produces better segmentations by having more filters
at the expansion side of the network. The experiments showed
that the proposed technique advances the state of the art
for road and lane segmentation on the KITTI dataset also
presenting speed gains of more than 20 times when compared
to the previous top road segmentation results. We also showed
the network keeps its advantage with regard to speed and
segmentation accuracy when applied to a different semantic
segmentation problem.

Future works will include investigating the potential gain of
incorporating other sensors to the architecture and approaches
to deal with network data fusion and three dimensional road
segmentation. We also aim to investigate training even smaller
architectures by model compression to further improve the
system frame rates. Aspects related to robustness to different
seasons can be explored to provide reliable road segmentation
in all weather situations.
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