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Abstract— Robust localization in dense urban scenarios us-
ing a low-cost sensor setup and sparse HD maps is highly
relevant for the current advances in autonomous driving, but
remains a challenging topic in research. We present a novel
monocular localization approach based on a sliding-window
pose graph that leverages predicted uncertainties for increased
precision and robustness against challenging scenarios and per-
frame failures. To this end, we propose an efficient multi-task
uncertainty-aware perception module, which covers semantic
segmentation, as well as bounding box detection, to enable the
localization of vehicles in sparse maps, containing only lane
borders and traffic lights. Further, we design differentiable
cost maps that are directly generated from the estimated
uncertainties. This opens up the possibility to minimize the
reprojection loss of amorphous map elements in an association-
free and uncertainty-aware manner. Extensive evaluation on
the Lyft 5 dataset shows that, despite the sparsity of the
map, our approach enables robust and accurate 6D localization
in challenging urban scenarios using only monocular camera
images and vehicle odometry.

I. INTRODUCTION

Despite recent developments in the field of autonomous
driving, HD maps remain an indispensable component in
modern systems as they provide detailed information on
the road infrastructure enabling various applications such
as motion planning and enhanced perception. However, to
utilize HD maps, it is necessary to accurately determine
the vehicle pose within the map. To solve this localization
task, high precision systems generally employ RTK-GNSS
systems with integrated IMUs or vehicle odometry in a
probabilistic fusion scheme [1], [2]. However, the high cost
of equipment and limitations in dense urban environments
render these methods limited to research and data generation.
Therefore, most deployed autonomous vehicles utilize an
HD map that stores information about the environmental
elements like lane topology, traffic signs, and traffic lights to
localize. With the availability of this information, landmark-
based localization has gained interest. Such methods consist
of a perception module to extract the necessary features
from the sensor readings and continuously match them to
the available map elements to constrain the vehicle pose [3],
[4].

Supported by the extensive research and advances in
deep learning, the perception modules in modern systems
typically consist of a convolutional neural network (CNN) to
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extract the necessary features from the environment [5], [6].
Although state-of-the-art CNN architectures can provide a
holistic understanding of the environment utilizing sensors
such as cameras [7], [8] and LiDARs [9], most CNNs are not
capable of providing reliable uncertainty estimate related to
their predictions. The softmax operation is often employed,
which overestimates the predictive probability of a network.
This can compromise a localization algorithm’s robustness
and accuracy.

The task of uncertainty estimation with deep learning
extends the standard neural network-based methods to ad-
ditionally predict the associated uncertainty or confidence
in the prediction. Popular uncertainty estimation methods
primarily utilize the sampling-based methods [10], which
are computation and time-intensive. While the research for
sampling-free methods is gaining interest, current approaches
focus on predicting the uncertainties for a single task like
classification [11] or regression [12]. In contrast, an overall
perception system of autonomous vehicles consists of various
tasks, like segmentation and detection.

In this paper, we aim to solve the localization problem in
challenging urban scenarios with a low-cost sensor setup and
extremely sparse HD maps containing only lane borders and
traffic lights. We present a novel monocular camera-based
localization system that leverages the uncertainty estimations
of our proposed multi-task perception module. Our novel
perception module simultaneously predicts the uncertainties
associated with semantics of the lane and with bounding box
parameters of the traffic lights in a single pass.

The main contributions of this paper are: 1) a novel
pose graph localization system robust in challenging sce-
narios by exploiting predicted uncertainties, 2) a multi-task
uncertainty-aware perception module capable of simultane-
ously predicting semantic and regression uncertainties in a
sampling free fashion, 3) a novel association-free and differ-
entiable cost map generation module guided by prediction
uncertainties.

We demonstrate the performance gain by incorporating
uncertainties in our localization method by evaluating on the
challenging Lyft 5 dataset [13].

II. RELATED WORK

A. Localization

Recent works on localization mainly differ between the
utilized map elements, the employed sensor setup, and
the perception module. GNSS-based approaches fuse short-
term accurate proprioceptive sensor information, e.g. vehicle



Fig. 1. Overview of our method. The input image is fed into a multi-head uncertainty-aware network with separate semantic (blue) and detector
heads (green) to predict semantic and bounding box uncertainties together with their respective tasks. The predicted semantic probabilities, derived from
uncertainties, are used to extract lane borders in the post-processing step. A distance transform is applied to these boundaries, followed by weighting
with semantic probabilities to create a cost map. Traffic lights are matched to their corresponding detections by the map matcher. Finally, both perception
constraints are set up and fed into the pose graph optimization along with odometry constraints for robust localization.

odometry or IMU, with long-term accurate GNSS informa-
tion in a tightly coupled manner [1], [2]. However, the limi-
tations of GNSS systems in dense urban scenarios affect the
reliability of these methods. Other methods employ LiDAR
maps for accurate localization [3], [4], but the reliance on
the costly sensor or memory-intensive dense LiDAR maps
impacts the scalability of such methods. Other approaches
include specialized methods for extracting landmarks such
as poles [14], [15], lane markings [5], [2], and facades [15].
Although being accurate, these methods require specialized
detectors and mapping procedures for reliable localization.

Hence, deep learning-based methods have gained impor-
tance to render the localization flexible and scalable with the
availability of additional data. Radwan et al. [16] propose to
use a fully learning-based visual localization method that pre-
dicts the pose difference between consecutive images and the
global pose of each frame. Pauls et al. [6] introduces a hybrid
monocular localization method combining the advantages of
deep learning and classical approaches. However, they use a
pre-implemented network without adaptations according to
the needs of localization tasks and the method is unaware of
the inherent network uncertainties, rendering it unreliable in
challenging environments.

B. Uncertainty Estimation

Uncertainties are classified into aleatoric (data) uncertainty
to quantify the noise in data and epistemic (model) un-
certainty to quantify uncertainty in model prediction due
to lack of training data or insufficient knowledge of the
model [17]. While it is possible to derive data uncertainty
from data statistics or learn it with a network, it is harder to
predict epistemic uncertainty due to the intractability of exact
Bayesian inference for neural networks. To this end, most
methods employ the popular sampling-based Monte Carlo
(MC) dropout technique [10] and Bayesian neural networks
(BNNs). For example, methods such as [18], [19], and [20],

[21] employ modified versions of MC dropout to predict per
pixel semantic and bounding box regression uncertainties,
respectively.

The sampling-based approaches require multiple passes
through a network or the predictions from multiple networks,
rendering such approaches not fit for real-time applications.
On the other hand, the sampling-free methods focus on
predicting uncertainties in a single pass. In bounding box
uncertainty estimation, approaches such as [22], [23] gener-
ally predict the aleatoric uncertainty for each of the bounding
box parameters using a modified loss function by taking an
extra variance term into account.

Sensoy et al. [11] introduce a sampling-free method called
deep evidential learning to quantify the classification uncer-
tainty by making the network collect evidence to predict
higher-order prior distribution parameters. In this context, ev-
idence denotes the magnitude of support the network predicts
in favor of classifying a sample to a particular class. Capellier
et al. [24] utilizes evidential deep learning to filter the
object detections based on the uncertainty estimate for object
classification in LiDAR point clouds. The approach in [12]
proposes evidential deep learning for the task of monocular
depth estimation, which is a regression task. Liu et al. [25]
proposes to regress uncertainties related to control estimation
in autonomous driving using evidential deep learning. These
approaches show the strength of evidential deep learning by
providing comparable or superior results to most sampling-
based methods. Hence we utilize evidential deep learning to
simultaneously predict semantic segmentation and bounding
box detection uncertainties in a single pass.

III. TECHNICAL APPROACH

Our localization method consists of an uncertainty-aware
perception module, a differentiable cost-map generator,
a map matcher and a pose graph optimization module
(see Fig. 1). The perception module incorporates a semantic



head for spatially unconstrained map elements, i.e. driveable
areas, and a bounding box detection head for map elements
with a finite extent like traffic lights.

The segmentation outputs are processed along with the
estimated uncertainties to create a differentiable cost-map in
the image plane which, in combination with the correspond-
ing map elements, provides the lateral constraints for the
camera pose from lane borders. The detection head detects
traffic lights represented as bounding boxes together with the
uncertainties associated with each parameter.

In the next step, the map matcher associates each poten-
tially visible traffic light from the map with its counterpart
from the detection module. The bounding boxes and the
reprojections of potentially visible traffic lights serve as the
inputs to compute the cost term. Traffic light constraints are
set up based on these associations to penalize the point-to-
point pixel distance between the instances and the reprojected
traffic lights.

In the final step, the sliding-window pose graph optimiza-
tion problem combines the constraints from the traffic lights
and lane borders with odometry constraints to robustify the
method and overcome per-frame failures in the perception
module. In the end, optimization provides the most recent
pose p∗ as the localization result.

A. Perception Module

We use a convolutional neural network for the perception
module. The architecture consists of a shared EfficientNet-
B3 [26] backbone with a feature pyramid network on
top [27]. The backbone learns features at multiple scales,
utilized by separate semantic and detection heads.

1) Uncertainty-Aware Semantic Segmentation Head: Our
semantic segmentation head is a modified version of the se-
mantic head proposed in [7], which takes features at multiple
scales and upscales them to a common scale followed by
concatenation. We modify the semantic head by replacing
the softmax at the end of the network with ReLU, which
serves as an evidence signal of the model.

The evidential deep learning method proposes to estimate
high order conjugate priors over the network output distri-
bution to estimate the classification uncertainties [11]. We
use the Dirichlet distribution as the prior for multinomial
classification prediction per pixel, which is parameterized by
N parameters α = [α1, .., αN ] and the network is trained to
predict αi for each class i of total N classes. For semantic
segmentation, the network predicts α for every pixel of the
image.

We utilize the sum of squares form of the loss L(ζ)i to
penalize the misclassified pixels and the Kullback-Leibler
(KL) divergence loss LKL

i to predict high uncertainties for
low evidence predictions for pixel i, as described by [11].
Moreover, as our application is semantic segmentation, we
formulate the overall semantic loss as

Lsem =

W∑
w=1

H∑
h=1

L(ζ)w,h + λs

W∑
w=1

H∑
h=1

LKL
w,h, (1)

where W and H are the width and height of the image,
respectively, and λs is the annealing coefficient. We use λs =
min(1.0, t/4), where t is the ratio of the current iteration
number and the total iterations per epoch.

2) Uncertainty-Aware Object Detection Head: For the
detection head, we use a modified Faster-RCNN network to
predict the class, bounding box parameters, and additional
three parameters required for uncertainty estimation. We
define the bounding box by the parameters (xmin, ymin, xmax
and ymax). Hence, the estimation of the bounding boxes is
formulated as a regression problem. The aim is to estimate
the mean µ and the associated variance σ2 for each of the
four bounding box parameters.

As proposed by [12], we utilize Normal-Inverse-Gamma
(NIG) distribution as conjugate prior for evidential regression
learning. NIG is defined by four parameters, γ, α, β and υ.
To this end, we extend the Faster-RCNN [28] network to
have four separate branches to predict these parameters, as
depicted in Fig. 1. In this formulation the mean value µ is
given by γ. The associated aleatoric uncertainty is calculated
as Ua = β/(α − 1) and the epistemic uncertainty as Ue =
Ua/υ.

We train our object detection head with the negative log-
likelihood loss LNLL for maximizing the model evidence
or correct predictions and a regularizer term for penalizing
errors scaled by the evidence LR [12]. With the addition of
the common objectness score loss Los and the object proposal
loss Lop [28], the total detection loss is defined as:

Ldet = LNLL + λdetLR + Los + Lop (2)

The authors of [12] suggest using the scaling factor λdet =
0.01 for the task of depth regression. However, the network
tends to predict overconfident estimations with this value for
the task of bounding box regression. Thus we have used
λdet = 0.04.

Finally, the overall loss is defined as L = Lsem + λLdet,
where we use a scaling factor of λ = 15, since Lsem and
Ldet have different scales.

B. Differentiable Cost Map Generation

The availability of lane topologies for many roads in
HD maps makes their usage highly relevant for the task
of localization in autonomous driving [29]. This task is
composed of detecting the lane borders and matching them
to their counterparts in the HD map. As such, we want to
detect any consistent longitudinal feature on the road as lane
borders, such as lane markings, road boundaries, and parking
zones.

The semantic head of our network provides segmentation
for direct drivable and alternative drivable areas on the road
with associated uncertainty values. Due to our well-calibrated
uncertainty predictions (see Section IV-B) the probability
map Ps consistently yields high uncertainty values for
continuous longitudinal distortions on and off the road.
Thus, for extracting the aforementioned longitudinal features,
we simply threshold the uncertainty map Iunc with Otsu’s
method that maximizes the separability of the uncertainty
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Fig. 2. Comparison of the predicted probabilities (upper) and borders
extracted using probabilities (lower) between a simple softmax (left) and
our uncertainty-aware semantic segmentation (right). Light areas represent
high and dark regions represent low probability. The softmax tends to over-
estimate the probabilities for all regions, whereas our calibrated probability
estimation assigns low values to non-lane areas and leads to better border
estimations.

values [30] and mask out all non-lane classes to obtain the
fully segmented lane borders. The result is an image Ilb
containing only the lane borders depicted by boundaries in
Fig. 2.

We optimize an error metric to constrain the vehicle pose
to penalize the mismatch between the extracted lane borders
and the lane topology map, reprojected onto the image. How-
ever, any direct association between the detected lane border
pixels and reprojected map elements will be imperfect, since
lane borders do not constrain in the longitudinal direction.
To overcome this challenge, we apply a distance transform
on the detected lane borders as proposed in [6]. The distance
transform yields a cost-map Cs with each pixel containing
the euclidean distance to the closest lane border in pixel
space.

In the final step, we overlay Cs with the weighted prob-
ability map and apply a bi-cubic interpolation to obtain the
final differentiable cost map Cunc. The probabilities show
a smooth transition from the lane segments towards the
approximate centerline of segmented lane borders yielding
nonzero gradients that is beneficial for optimization. This
allows for considering the uncertainties of the perception
module throughout the whole extent of the lane borders.

C. Map Matching

The map matching step aims to associate the potentially
visible set of reprojected map elements Xtl, the traffic
lights, to the detections provided by the detection head
of our perception module. First, we compute the per-pixel
distance between each reprojected traffic light center and
each detected bounding box center. This distance serves as a
quality measure for each potential association. Second, due
to the reliability of the map, the reprojected traffic lights
are associated with the closest detections. Thus, even an
erroneous pose yields correct associations as minor errors
have almost no impact on the position of reprojections in
the image plane for distant regions. Our perception module
is capable of detecting traffic lights from a far distance of
approximately 50m. Hence, we apply the map matching as

early as possible and keep the correct initial associations until
the vehicle moves past the traffic lights under consideration.

D. Sliding-Window Pose Graph Optimization

Due to the missing redundancy of map elements and
the potential per-frame failures in the perception module in
highly challenging scenarios, we choose to design a robust
sliding-window pose graph optimization method [31]. This
method optimizes N poses simultaneously, constrained by
the detected features and the corresponding map elements.
In order to obtain the final state vector p∗, we optimize the
cost function J = Jo + J lb + J tl, accounting for the lane
borders (lb), traffic lights (tl) and the odometry (o):

p∗ = arg min
p

∑
i∈{lb,tl,o}

N∑
k=1

J i
(
pk, z

i
k,m

)
, (3)

where zi
k are the detections of the measurement class i

for pose pk and m is the semantic HD map. This cost
function can be further split into its error terms eik and the
corresponding information matrix Ωi

k.

p∗ =arg min
p

∑
i∈{lb,tl}

N∑
k=1

ρ
(
ei,Tk (pk)Ωi

ke
i
k (pk)

)

+

N−1∑
k=1

(
eo,Tk

(
pk,pk+1

)
Ωo

ke
o
k

(
pk,pk+1

))
,

(4)

where ρ(x) = log(1+x) denotes the Cauchy function, which
robustifies the method by remapping the loss values via a
logarithmic projection and effectively lowers the impact of
outliers in the optimization.

The error term related to the lane borders, elbk , is obtained
by reprojecting the potentially visible map elements directly
into the uncertainty cost map Cunc, using the forward
pinhole camera model fcam and the pose pk:

elbk = Cunc

(
fcam

(
p−1k X lb

))
, (5)

where X lb denotes the set of all lane border point positions
under consideration.

The second error term, etlk , directly penalizes the pixel
distance between the bounding box and the associated traffic
light points:

etlk = Xbb
k − fcam

(
p−1k Xtl

)
, (6)

where Xbb denotes the pixel positions of the set of traffic
lights detected in frame k represented as bounding boxes
(bb). Due to the finite extents of traffic lights, a direct
association is possible and no additional cost map has
to be generated. This error term is differentiable and can
directly be incorporated into the optimization problem. The
probabilities estimated by our uncertainty-aware perception
module are considered in the information matrix.
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Fig. 3. Reprojected map elements based on our localization results in three different scenarios. Despite occlusions and challenging intersections, our
method yields accurate localization results even with a small set of lane borders or traffic lights. The semantics of lanes and bounding boxes are predicted
by the perception network. The width of bounding boxes represents the variance predicted for the corresponding edge (best viewed at x4 zoom scale).
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Fig. 4. Calibration plot for the estimated semantic and detection uncer-
tainties. For semantic segmentation, it shows the accuracy vs. the predicted
probability (blue), and for detection, it shows the mRMSE vs. the mVar
metric (green). Both uncertainty estimations follow the calibration line (red)
in close vicinity, signifying well-calibrated uncertainty estimations.

Finally, any displacement on consecutive poses pk and
pk+1 imposed by the optimizer that deviates from the
odometry ∆k→k+1 is penalized by

eok
(
pk,pk+1

)
= p−1k pk+1 −∆meas

k→k+1. (7)

With the final cost function being set up, we can now localize
the vehicle within the map by optimizing this overall cost.
Alternatively, this method can be executed in a single frame
setting by dropping the odometry constraints. This, however,
is only done for evaluation purposes (see Sec. IV-C).

IV. EXPERIMENTAL EVALUATION

A. Dataset

For evaluating our localization system, we explore the
Lyft5 [13] dataset, which provides 6D localization ground
truth and a semantic HD map containing the lane topologies
and the sparse instance elements, like traffic lights. Example
images are given in Fig. 3. However, the scenes are only
about 25 seconds long, and the odometry information is also
missing. Thus, we order and stitch the scenes together using
ground truth poses to create a long continuous sequence with
a length of 2.6 km and in a highly populated and challenging
urban area. We create the odometry by utilizing the ground
truth poses to predict noisy odometry signals according to the
velocity-based motion model. The accuracy obtained by the
emulated odometry is equally or less precise than modern
car odometry systems evident from the longitudinal drift
presented in Fig. 5.

We train our perception network on the bdd100k
dataset [32], containing 70,000 images for training and
10,000 images for validation. We train the semantic head
to predict the direct drivable area and alternative driveable
area as introduced in [32]. Similarly, the detection head is
trained to predict bounding boxes for the traffic light class. To
evaluate the performance of our uncertainty estimation, we
utilize the validation set, which the network never used either
during training or for uncertainty calibration. Please note
that the network never utilized any data from the Lyft5 [13]
dataset during training.

B. Uncertainty Estimation

We evaluate the performance of the semantic segmentation
uncertainty estimation to make sure that they are well-
calibrated. We report the values of the Expected Calibra-
tion Error (ECE). For calculating this metric, the predicted
probability axis is divided into J equally spaced bins, and for
each bin the average accuracy acc(Bj) and average predicted
confidence conf(Bj) are computed. Then the ECE is given
as

ECE =

J∑
j=1

nj
N
|acc(Bj)− conf(Bj)| , (8)

where nj is the number of samples in bin j and N is the total
number of samples. The ECE value depicts the deviation
from the optimal calibration line. We achieve an ECE of
5.3%. For bounding box detection, we utilize the Expected
Normalized Calibration Error (ENCE) [33] which is similar
to the ECE. As bounding box detection is a regression task,
ENCE reflects the relation between the predicted variance
and the Root Mean Square Error (RMSE). The detector
achieves an ENCE value of 11.5% which is reasonable in
comparison to the value of 8.5% for [34] reported by [33]
on the KITTI dataset. Note that the lower value signifies
better performance in both tasks.

In addition, we show the calibration plot of the accuracy
vs. the predicted probability, for semantic segmentation and
predicted mean-variance (mVar) per bin vs. (mRMSE) per
bin [33] for bounding box detection, see Fig. 4. The desired
result is a response that is close to the y = x line. We observe
that both tasks follow the calibration line in close vicinity
and hence provide meaningful and usable uncertainties.



TABLE I
SINGLE IMAGE LOCALIZATION SUCCESS RATE (S.R.) AND MEAN

TRANSLATIONAL AND ROTATIONAL ERRORS IN PERCENT, METERS OR

DEGREES.

δ(m) δ(◦) s.r. lat z yaw pitch roll

±0.5 ±2.5
D 52 0.26 0.33 1.17 1.27 1.19
D+ 78 0.24 0.23 1.05 1.00 0.97

±0.75 ±5.0
D 49 0.26 0.42 1.21 1.61 1.63
D+ 68 0.24 0.33 1.04 1.38 1.25

±1.0 ±7.5
D 45 0.25 0.51 1.21 2.19 2.25
D+ 57 0.24 0.41 1.00 1.80 1.41

C. Single Image Localization

To showcase how uncertainties help to improve the accu-
racy and reliability of the localization method, we evaluate
our approach by using a single frame for localization. First,
we add translational and a rotational noise, sampled from
three different settings of a uniform distribution, onto the
ground truth pose to obtain a distorted pose. Second, we
initialize the localizer with this distorted pose and relocalize
the camera within the lane using the lateral constraints. Here,
we omit the odometry constraints to cancel out their impact
on the localization result.

We compare two settings, one with the distance transform
directly applied on the predicted lane classes without utiliz-
ing the uncertainties (D), and the other using the uncertainties
for segmenting all lane/road borders (D+). The results are
reported in Table I. In addition to the translational and
rotational accuracy, we also report the localization success
rate (s.r.). We define a success as a final lateral error below
0.5m and a yaw angle error below 2.5◦, which is sufficient
to initialize a localization system. Only successful cases con-
tribute to accuracy evaluation. We do not report longitudinal
pose errors, since this direction is not constrained by the
lanes in single images.

Our uncertainty-based method outperforms the method
operating directly on the semantic outputs for every single
measure. While the lateral errors show comparable results,
we observe that the additional redundancy given by the
uncertainty-based method resolves ambiguities w.r.t. the
height error and the rotational error. Our method also shows
a much higher success rate, proving the robustness towards
localization errors.

D. Pose Graph Localization

We evaluate our pose graph localization approach on the
Lyft 5 dataset, which presents challenging urban scenarios
with parking zones, occluded lane borders, and a large num-
ber of intersections, where lane borders are barely marked
out, see Fig. 3. The mean lateral and yaw errors of 0.19 m and
1.3◦, presented in Table II, show that our method can keep up
with the state of the art, which yields errors in the range of
0.1 - 0.3 m and 1 - 2◦, respectively [3], [35], [36]. However,
these aforementioned methods either utilize a precise LiDAR
sensor or memory-intensive maps.

Though our method is laterally accurate on average, com-
plex intersections, and highly populated scenes can degrade

TABLE II
POSE GRAPH LOCALIZATION RESULTS IN METERS OR DEGREES

RELATIVE TO THE REFERENCE PROVIDED BY LYFT 5.

lon lat z yaw pitch roll

RMSE 0.61 0.25 0.28 1.30 0.59 0.63
MAE 0.45 0.19 0.17 1.01 0.45 0.42

Fig. 5. Lateral, longitudinal and yaw errors for our pose graph localization
throughout the whole test sequence.

the performance due to missing features at intersections and
frequent occlusions through parked cars and heavy traffic,
see Fig. 5 (top). However, our method is able to track the
pose even when only a small subset of lane borders is visible.

In contrast, the longitudinal pose tends to drift in long
driving sequences due to the sparsity of longitudinal cues,
see Fig. 5 (middle). It is noticeable that even from large
initial errors, the longitudinal pose converges very fast to
feasible solutions as soon as traffic lights, or lane features
that can break the symmetry in the longitudinal direction,
appear. Though relying only on a small set of traffic lights
for constraining the longitudinal pose, our localizer manages
to keep the mean longitudinal error impressively small by
only using constraints in the image plane.

V. CONCLUSION

In this work, we proposed a novel monocular localization
system that incorporates predicted uncertainties into a pose
graph optimization framework. The uncertainties help to
attain robustness in challenging urban scenarios using only
sparse map features. As a crucial part of our approach, we
presented a novel multi-task uncertainty estimation method
that demonstrated the capability to simultaneously learn
meaningful uncertainties for semantic segmentation and ob-
ject detection in a single pass. Even though we only use
a camera and a sparse map, we demonstrate through our
experiments that our approach performs on par with methods
that utilize expensive sensor setups or dense maps.
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[31] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[32] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2636–2645.

[33] D. Levi, L. Gispan, N. Giladi, and E. Fetaya, “Evaluating and
calibrating uncertainty prediction in regression tasks,” arXiv preprint
arXiv:1905.11659, 2019.

[34] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for
deep learning using calibrated regression,” in International Conference
on Machine Learning. PMLR, 2018, pp. 2796–2804.

[35] Y. Zhang, L. Wang, X. Jiang, Y. Zeng, and Y. Dai, “An efficient lidar-
based localization method for self-driving cars in dynamic environ-
ments,” Robotica, pp. 1–18, 2021.

[36] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong, “Locnet: Global
localization in 3d point clouds for mobile vehicles,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 728–733.


