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Automatic Target-Less Camera-LiDAR Calibration
From Motion and Deep Point Correspondences

Kürsat Petek1∗, Niclas Vödisch1∗, Johannes Meyer1, Daniele Cattaneo1, Abhinav Valada1, Wolfram Burgard2

Abstract—Sensor setups of robotic platforms commonly in-
clude both camera and LiDAR as they provide complementary in-
formation. However, fusing these two modalities typically requires
a highly accurate calibration between them. In this paper, we
propose MDPCalib which is a novel method for camera-LiDAR
calibration that requires neither human supervision nor any
specific target objects. Instead, we utilize sensor motion estimates
from visual and LiDAR odometry as well as deep learning-based
2D-pixel-to-3D-point correspondences that are obtained without
in-domain retraining. We represent camera-LiDAR calibration
as an optimization problem and minimize the costs induced by
constraints from sensor motion and point correspondences. In
extensive experiments, we demonstrate that our approach yields
highly accurate extrinsic calibration parameters and is robust to
random initialization. Additionally, our approach generalizes to a
wide range of sensor setups, which we demonstrate by employing
it on various robotic platforms including a self-driving perception
car, a quadruped robot, and a UAV. To make our calibration
method publicly accessible, we release the code on our project
website at http://calibration.cs.uni-freiburg.de.

Index Terms—Calibration and Identification; Deep Learning
Methods; Sensor Fusion

I. INTRODUCTION

SENSOR fusion for robotic systems has been extensively
investigated [1], [2] as it promises to efficiently combine

complementary information from different modalities, e.g.,
to increase robustness in case of sensor failures [3] and
towards weather conditions [4]. However, the effectiveness of
fusion approaches depends heavily on the extrinsic calibration
between the sensors such as cameras and LiDAR.

Due to the importance of the task, camera-LiDAR cali-
bration has been widely studied by the research community.
Previously proposed methods can generally be classified into
target-based and target-less approaches. Approaches of the
first category often rely on artificial patterns such as checker-
boards [5], [6] and require manual labor or another kind of
human supervision to associate 2D points from the image
space with 3D points in the LiDAR point cloud [7]. While a
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1 Kürsat Petek, Niclas Vödisch, Johannes Meyer, Daniele Cattaneo, and
Abhinav Valada are with the Department of Computer Science, University
of Freiburg, Germany.
2 Wolfram Burgard is with the Department of Engineering, University of
Technology Nuremberg, Germany.
Digital Object Identifier (DOI): 10.1109/LRA.2024.3468090

LiDAR

Sensor motion alignment

Point correspondences Calibration result

1

2

Camera

Fig. 1. Our proposed method, called MDPCalib, for camera-LiDAR cali-
bration comprises two steps: We first initialize the extrinsic parameters by
aligning the motion of both sensors. Afterward, we refine the calibration
results by leveraging deep learning-based 2D-to-3D point correspondences.

substantial effort has gone into the detection of the target and
the automation of the matching process [8], [9], calibration
often still needs special data collection. Some target-less
calibration methods intend to overcome this problem, e.g., by
inferring the extrinsic transform from the sensor motion [10] or
by matching vision-based structure-from-motion models with
accumulated point clouds from the LiDAR [11]. Although
these approaches are generally more widely applicable as they
enable sensor calibration from normal robot operation, they
often still require an initial set of parameters.

In this work, we propose the novel MDPCalib to eliminate
this drawback by fully automating the calibration procedure.
Given recorded data from normal robot operation, we employ
visual and LiDAR odometry to generate two paths that can be
aligned via non-linear optimization for coarse sensor registra-
tion. Afterward, we use the coarse parameters to initialize a
learning-based 2D-to-3D point correspondence algorithm that
outputs dense matches between the image and the point cloud
spaces. In the final step, we jointly optimize with respect
to both sensor motion and point correspondence, thereby
effectively fusing the complementary information. Robust loss
functions account for outlying observations from either source.
In summary, the main contributions are:

1) We introduce MDPCalib for automatic target-less
camera-LiDAR calibration that requires neither human
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initialization nor special data recording.
2) We propose to formulate extrinsic calibration as an

optimization problem constrained by sensor motion and
deep learning-based point correspondences.

3) We extensively demonstrate the general applicability of
MDPCalib to both public and in-house datasets.

4) We release our code along with a detailed user guide on
http://calibration.cs.uni-freiburg.de.

II. RELATED WORK

Methods for extrinsic camera-LiDAR calibration can gen-
erally be categorized into target-based and target-less ap-
proaches. While the former have been well investigated for
several years, recent advances in deep learning have enabled
the rise of target-less calibration removing the need for explicit
target objects. In this section, we present an overview of
approaches from both categories.
Target-Based Calibration: Inspired by the estimation of
camera parameters with a checkerboard pattern [12],
Zhang et al. [6] were the first to propose using a similar
target also for extrinsic calibration between a camera and a
LiDAR. Since then, many different styles of patterns have
been described to further optimize this calibration procedure
both in terms of accuracy and applicability. For instance,
Dhall et al. [5] exploit ArUco markers with known sizes to
get accurate estimates of the corner points of the pattern in
3D, which are then registered to the corner point detected by
the LiDAR using the ICP algorithm. Similarly, Kim et al. [9]
fit points on a checkerboard detected by a camera to the
corresponding plane in the LiDAR point cloud. However, not
all target-based approaches rely on a checkerboard pattern or
its variants to establish point correspondences. For example,
both Velas et al. [13] and Guindel et al. [8] utilize wooden
boards with holes to obtain point correspondences.

Similar to our method, Ou et al. [14] propose to formulate
camera-LiDAR registration as a graph optimization problem.
In particular, their method first extracts corner points in both
modalities to perform an initial calibration obtained by a
perspective-n-point (PnP) algorithm. This allows reprojecting
the LiDAR points onto the image plane and computing the
reprojection error, which is then used as a cost term in the
graph-based formulation that can be efficiently solved using
graph optimization methods [15].
Target-Less Calibration: Target-less calibration aims at per-
forming camera-LiDAR registration without specifically de-
signed target objects. For robotics, this opens an avenue
for flexible and potentially online recalibration and enables
applications to large fleets by reducing human supervision.

Correspondence-based methods replace the artificial targets
with patterns that can be perceived in structured environ-
ments such as urban areas. For instance, Yuan et al. [16]
and Yin et al. [17] match edges obtained from both images
and LiDAR point clouds. Tu et al. [11] extract features
of structure-from-motion (SfM) points of camera data and
LiDAR points, followed by optimizing these correspondences
jointly with camera intrinsics as well as camera and LiDAR

poses. Koide et al. [18] build on the commonly used normal-
ized information distance that poses a distance metric between
the image and projected LiDAR points to measure the amount
of mutual information. Finally, Caselitz et al. [19] propose
a method for determining the pose of an RGB camera with
respect to a 3D point cloud generated from LiDAR data by
matching geometric clues. On the other hand, correspondence-
free methods often rely on leveraging output data of auxiliary
tasks such as monocular depth prediction [20], [21] or sensor
motion estimation [10], [17], [22]. Both Zhang et al. [10] and
Yin et al. [17] match trajectories from visual and LiDAR
odometry and obtain extrinsic parameters via optimization.
The latter then utilize these parameters to initialize an edge-
driven refinement stage. Finally, a more direct approach is
enabled by exploiting deep learning-based correspondences
between RGB images and LiDAR point clouds. Both Reg-
Net [23] and CMRNext [24] involve training multiple CNNs
on varying levels of decalibration and employ these net-
works during test time in a hierarchical manner. In detail,
CMRNext frames the point-to-pixel matching problem as an
optical flow estimation task. Building upon this approach,
LCCNet [25] proposes the construction of a cost volume that
stores matching costs. However, as it predicts the 6-DoF rigid-
body transformation, it suffers from a high dependency on the
training setup and is thus less generalizable.

In our proposed method, we combine the advantages of both
correspondence-free and correspondence-based approaches by
performing coarse initialization based on sensor motion fol-
lowed by fine registration incorporating deep learning-based
point correspondences [24]. Particularly, in contrast to previ-
ous works [17], we utilize robust cost functions and jointly
optimize with respect to both sensor motion and point corre-
spondences, accounting for their complimentary information
and increasing robustness towards outlying observations.

III. TECHNICAL APPROACH

In this section, we present our MDPCalib approach for
automatic target-less camera-LiDAR calibration. As illustrated
in Fig. 2, MDPCalib comprises two consecutive steps by
combining a coarse initialization from sensor motion with
a fine-tuning stage that takes learning-based correspondences
between image pixels and LiDAR points into account. We first
provide the relevant mathematical background, then introduce
the general problem formulation, and finally give a detailed
description of both registration steps.

A. Mathematical Preliminaries

We interpret camera-LiDAR calibration as an optimization
problem that determines the most likely transformation be-
tween the coordinate frames of a camera and a LiDAR given
a set of sensor measurements. Mathematically, this can be
represented by a conditional probability distribution:

P (x | x0, z0:k) , (1)

where x denotes the state vector with an initial guess x0 and
z0:k refers to a set of observations, i.e., sensor data. Instead
of calculating the exact probability distribution, we perform
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Fig. 2. Our proposed method for camera-LiDAR calibration processes two input streams of RGB images and 3D point clouds. The first step comprises a
coarse registration based on sensor motion estimated with visual and LiDAR odometry. These motion estimates yield time-synchronized matches serving as
constraints in an optimization problem. Given the obtained initial calibration parameters, a neural network is used to find 2D pixel to 3D point correspondences
that result in additional constraints. The second step consists of joint optimization with respect to both sensor motion and point correspondences yielding the
overall extrinsic calibration parameters.

maximum a posteriori (MAP) estimation assuming Gaussian
distributions and independent and identically distributed mea-
surements. This yields the optimal state x∗:

x∗ = argmax
x

P (x | x0, z0:k) . (2)

In practice, we solve for x∗ by optimizing a robustified non-
linear squares problem of the form:

x∗ = argmin
x

∑
i
ρi
(
∥fi(x, zi)∥22

)
(3a)

= argmin
x

∑
i
ρi
(
ei(x, zi)

TΩiei(x, zi)
)
, (3b)

where ρi denotes the robustifier and fi refers to a cost function
applied to observation zi. For efficiency, we compute the
squared Frobenius norm ∥·∥22 via vector multiplication of the
induced error vectors ei ∈ Rd×1 with a diagonal weighting
matrix Ωi ∈ Rd×d. We utilize the Cauchy loss as robustifier
due to its high tolerance to outliers in the observations [26],
resulting in a significant increase in calibration accuracy.

To obtain the MAP estimate x∗, we leverage an optimization
formulation [15] with a single state x and multiple constraints
defined by the error terms ei. In particular, we define the
state x as the calibration parameters Tcalib and decompose
the sum into three error types:

Tcalib
final = argmin

Tcalib

k−1∑
i=0

. . .︸ ︷︷ ︸
Jrot

+

2k−1∑
i=k

. . .︸ ︷︷ ︸
J trans

+

2k+m∑
i=2k

. . .︸ ︷︷ ︸
Jcorr

, (4)

with k observations for sensor motion with rotational and
translational costs Jrot and J trans and m observations for
the point correspondences cost Jcorr .

B. Coarse Registration

During the first step of MDPCalib, we perform coarse
camera-LiDAR calibration by matching sensor motion. In
particular, we use both vision- and LiDAR-based odometry
to obtain poses Pcam

0:k and Plidar
0:k capturing oriented positions

of the camera and the LiDAR, respectively. To estimate the
camera poses, we employ ORB-SLAM3 [27]. In contrast to

deep learning-based methods [28], [29], classical feature-based
tracking approaches such as ORB-SLAM3 are more robust
towards detecting lost tracks, which would lead to inconsistent
constraints in the optimization problem. For the LiDAR, we
perform consecutive scan matching using an adapted version
of FAST-LIO2 [30] without the measurements of an inertial
measurement unit (IMU). If not already done during the
post-processing of the sensor output, the LiDAR scans are
undistorted before being matched. Given time-synchronized
sensor measurements, we now interpolate the poses of the
LiDAR such that we obtain pose pairs of both sensors at
each image timestamp. As detailed in Sec. III-D, we further
transform the nearest point cloud to the same timestamp using
the estimated LiDAR odometry as this data will be processed
during the fine-tuning stage. Subsequently, we compute the
pose difference between two consecutive poses yielding ho-
mogeneous transforms Tsensor

i with sensor ∈ {cam, lidar}.
Using these transforms, we solve the following equation to
find the extrinsic calibration parameters Tcalib :

TcamTcalib = TcalibTlidar . (5)

As derived by Shiu et al. [31], such an equation can be
decomposed into solving for the rotational and translational
components separately:

RcamRcalib = RcalibRlidar , (6a)

Rcamtcalib + s tcam = Rcalibtlidar + tcalib . (6b)

R ∈ R3×3 denotes a rotation matrix and t ∈ R3×1 is a trans-
lation vector. Since ORB-SLAM3 does not produce metrically
aware odometry estimates, we add a scaling factor s. Next, we
apply Eq. (5) to all paired pose differences

(
Tcam

i ,Tlidar
i

)
with i = [1, k] and define Jrot and J trans as follows:

Jrot =
∑

i
ρi
(
eTi,rotΩrotei,rot

)
, (7a)

J trans =
∑

i
ρi
(
eTi,transΩtransei,trans

)
, (7b)
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Fig. 3. In the fine-tuning stage, we employ CMRNext [24] to find 2D pixel to
3D point correspondences. First, a LiDAR point is projected onto the image
space using the coarse calibration parameters. Second, CMRNext predicts a
2D offset to correct the projection. Finally, during optimization, the calibration
parameters are adjusted to match the corrected projection.

with error functions erot and etrans induced by Eq. (6a) and
Eq. (6b), respectively:

ei,rot =
[(
RcalibRlidar

i

)−1 (
Rcam

i Rcalib
)
− I

]
vec

, (8a)

ei,trans = (Rcam
i − I) tcalib + si t

cam
i −Rcalibtlidari , (8b)

where I denotes the identity matrix. We further define the
operator [·]vec that reshapes a matrix M ∈ Rd×d to Rd2×1 by
stacking its columns. Note that we use the same information
matrices Ωrot and Ωtrans for all data pairs. In Fig. 4, we refer
to the tuple of both error functions as odometry constraints.
Finally, we perform MAP estimation using the combined
sensor motion cost Jmot to obtain the initial calibration
parameters Tcalib

init and scaling factors s1:k*:

Tcalib
init = argmin

Tcalib

Jrot + J trans = argmin
Tcalib

Jmot . (9)

C. Fine Registration

The second step of MDPCalib extends the coarse regis-
tration from sensor motion with matching correspondences
between image pixels and LiDAR points. In contrast to prior
works [17], [22], we propose to perform joint optimization
with respect to both constraints explicitly exploiting their
complementary information. We demonstrate the superiority of
this design in Sec. IV-C. As shown in Fig. 2, we construct input
triplets comprising an image Imgcamj , a synchronized point
cloud Pcl lidarj (see Sec. III-D), and the calibration parameters
Tcalib

init from coarse registration. This data is fed to the deep
learning-based CMRNext [24] that is able to register a camera
frame to a 3D point cloud. We select CMRNext due to its
generalizability to new scenes and sensor models. We illustrate
the detailed steps in Fig. 3: First, a 3D point is projected to
a 2D pixel coordinate based on the provided initial guess.
Second, CMRNext estimates an offset to correct the initial
guess. This enhancement step is performed iteratively with
network weights trained for decreasing offsets. Formally,

pcmr
j = CMRNext

(
plidarj , Imgcamj ,Tcalib

init

)
, (10)

*We omit these in the optimization equations to improve readability.
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Fig. 4. We interpolate the poses from LiDAR odometry to the timestamps
of the camera poses and further project the point cloud of the nearest
neighbor to the same time to yield synchronized image-point cloud pairs. The
odometry poses are then used to align the sensor motion, whereas the sensor
measurements are fed to CMRNext [24] to obtain point correspondences.

with point plidarj ∈ Pcl lidarj . Third, we define a error func-
tion ecorr that attempts to gradually alter the calibration
parameters Tcalib such that the direct 3D-to-2D projection
approaches the estimate of CMRNext:

ej,corr = proj (plidarj ,K,Tcalib)− pcmr
j , (11)

where K denotes the camera matrix. This error function,
referred to as point correspondence constraints in Fig. 4, is
then plugged in the corresponding cost function Jcorr :

Jcorr =
∑

j
ρi
(
eTj,corrΩcorrej,corr

)
, (12)

with Ωcorr denoting the information matrix for all j. As
indicated in Eq. (4), we do not add an error term for every
image-point cloud pair. For instance, we do not apply Jcorr

for all plidarj ∈ Pcl lidarj but only to a subset reducing the
number of partially redundant constraints in the optimization
problem. Finally, we repeat the process of MAP estimation to
obtain the overall calibration parameters Tcalib

final :

Tcalib
final = argmin

Tcalib

Jmot + Jcorr . (13)

D. Pose Synchronization
As noted in Sec. III-B, we interpolate camera and LiDAR

poses to the same timestamp to yield synchronized sensor
motion pairs. We further assume the usage of a global-
shutter camera, i.e., all pixels are captured simultaneously.
Since shifting a point cloud from one timestamp to another
is significantly easier than simulating an image to be taken at
a different time, we use the timestamps of the camera data as
the reference. Next, we identify the two LiDAR measurements
recorded before and after the image was taken, shown in Fig. 4.
Based on the corresponding poses from LiDAR odometry, we
compute an intermediate pose via linear and spherical linear
interpolation for the translation and rotation components,
respectively. Finally, we project the point cloud of the nearest
neighbor to the same timestamp to obtain synchronized image-
point cloud pairs that are used as input to CMRNext [24].

IV. EXPERIMENTAL EVALUATION

In this section, we extensively evaluate our proposed
MDPCalib approach for various robotic platforms and provide
a comparison with previous methods. We further analyze the
effects of several parameters of our method.



PETEK et al.: AUTOMATIC TARGET-LESS CAMERA-LIDAR CALIBRATION FROM MOTION AND DEEP POINT CORRESPONDENCES 5

Fig. 5. We calibrate the sensors on three in-house robotic platforms including
a self-driving perception car, a quadruped robot, and a UAV.

A. Robotic Platforms

We apply our method to a diverse set of sensor setups on
four robotic platforms including the public KITTI dataset [32]
as well as three in-house configurations. In the supplementary
material, we provide further results on the Argoverse 2 [33]
dataset.
KITTI Dataset: We extensively evaluate our method on the
publicly available KITTI dataset [32]. In detail, we utilize the
rectified images and undistorted point clouds of sequence 00
of the odometry benchmark as data from the left camera of
the other sequences was seen during the training of CM-
RNext [24]. The vehicle is equipped with two RGB cameras
Point Grey Flea 2 and one LiDAR of type Velodyne HDL-64E.
Sensor data is captured at 10Hz.
In-House Robots: We further employ our method to three
in-house datasets that were not seen during the training of
CMRNext [24] and include new sensor models. Each robot,
shown in Fig. 5, is equipped with one Ouster OS-1 LiDAR
with 128 channels and different cameras. In detail, our vehicle
is equipped with four FLIR Blackfly 2353C, the quadruped
robot includes five AVT cameras, and the UAV uses a FLIR
Blackfly S. The sensors on all robots capture data at 10Hz.
The LiDAR is time synchronized via PTP, whereas the images
are stamped on arrival. To compute the calibration error, we
obtain reference parameters using manually selected camera-
LiDAR point correspondences [7].

B. Main Results

We measure the calibration error as the difference between
the calibration parameters produced by MDPCalib and the
provided or manually obtained parameters. Throughout this
section, we report both the magnitude of the rotation and
translation errors as well as the errors of the individual axes.
In detail, we compute the errors as follows:

Et = ||t− t̂||2 , (14a)

m = q ∗ q̂−1 , (14b)

ER = atan2
(√

m2
x +m2

y +m2
z,mw

)
, (14c)

where t and t̂ are ground truth and predicted translation
parameters, q and q̂ denote the corresponding parameters of

the rotation R as quaternions. Finally, ∗ and −1 are the
multiplicative and inverse operations for quaternions.

For KITTI, we compare our MDPCalib approach to several
classical [11], [17] and learning-based [20], [21], [24], [25],
[34], [35] baselines in Tab. I. If the authors released the cor-
responding code, we reproduce the calibration results for both
the left and the right camera. Besides our MDPCalib, only the
method by Yin et al. [17] is initialization-free. For the others,
we follow the original sampling ranges. Note that the repro-
duced metrics of the learning-based approaches correspond
to median calibration over multiple frames. For our method,
we utilize 1,000 sensor motion constraints and 5% randomly
sampled correspondences from each of the 100 image-point
cloud pairs. Although all baselines are outperformed by our
approach, they generally yield accurate results for calibrating
the LiDAR to the left camera. However, it is paramount to
emphasize that all learning-based methods incorporate sam-
ples of the left camera in their training data. Therefore, we
also calibrate the right camera measuring the capability to
generalize. Except for CMRNext, all baselines suffer from a
substantial performance drop. Nonetheless, MDPCalib yields
the smallest error demonstrating that our joint optimization
further increases robustness to unseen sensor configuration.

We confirm this observation by employing MDPCalib, CM-
RNext [24], and the method by Koide et al. [18] to three in-
house robotic platforms. To account for the missing hardware
time synchronization between camera and LiDAR, we only
utilize static frames for computing point correspondences.
As shown in Tab. II, MDPCalib yields significantly smaller
calibration errors on the vehicle and the quadruped robot. For
the UAV, we hypothesize that point cloud undistortion is more
challenging due to less constrained motion resulting in less
accurate odometry and hence larger errors.

We report our calibration parameters for KITTI in the sup-
plementary material. We show qualitative results by projecting
the point clouds onto the images in Fig. 10 and provide
further visualizations in the complementary video. Notably, the
projections based on our calibration are still highly accurate
at the maximum distance of 80m.

C. Ablation Studies

We extensively analyze the sensitivity of MDPCalib to-
wards several design choices and adjustable parameters by
conducting various ablation studies on the KITTI dataset [32].
In particular, we present results for calibrating the right
RGB camera based on sequence 00. If not explicitly stated
otherwise, we utilize 1,000 odometry poses and 5% of the
point correspondences from 100 image-point cloud pairs. In
Figs. 6 to 9, we visualize the mean and standard deviation
of three runs. To improve readability, we add small offsets to
the x-values. For convenience, we provide the raw numerical
metrics in the supplementary material.
Components Analysis: We analyze the impact of the calibration
stages and the components of the optimization problem in
Tab. III. Although the initialization-free coarse registration
step based on sensor motion reduces the rotation error to
sub-degree accuracy, the translation parameters suffer from
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TABLE I
CALIBRATION ERROR ON THE KITTI DATASET

Left camera Right camera
Magnitude Translation [cm] Rotation [°] Magnitude Translation [cm] Rotation [°]

Method Initial range Et [cm] ER [°] x y z roll pitch yaw Et [cm] ER [°] x y z roll pitch yaw

Tu et al.† [11] ±0.20m / ±2◦ 4.40 0.16 – – – – – – – – – – – – – –
Yin et al.† [17] – 5.91 0.16 2.90 4.90 1.60 0.08 0.09 0.10 – – – – – – – –
Borer et al.† [21] ±0.25m / ±1◦ 9.51 0.18 9.40 1.30 0.60 0.18 0.03 0.03 – – – – – – – –
CalibDepth† [20] ±1.5m / ±20◦ 1.17 0.12 1.31 1.02 1.17 0.06 0.23 0.08 – – – – – – – –
CMRNet [34] ±1.5m / ±20◦ 1.57 0.10 1.06 0.74 0.34 0.03 0.01 0.08 52.92 1.49 1.59 52.87 0.36 0.04 0.02 1.49
RGGNet [35] ±0.3m / ±20◦ 11.49 1.29 8.14 2.79 3.97 0.35 0.74 0.64 23.52 3.87 18.03 5.55 6.06 0.51 3.38, 1.48
LCCNet [25] ±1.5m / ±20◦ 1.01 0.12 0.26 0.36 0.35 0.02 0.11 0.03 52.51 1.47 52.48 0.26 0.74 0.01 1.47 0.03
CMRNext [24] ±1.5m / ±20◦ 1.89 0.08 1.12 0.83 0.79 0.04 0.04 0.04 7.07 0.23 2.17 5.78 0.94 0.05 0.05 0.20

MDPCalib (ours) – 0.18 0.06 0.07 0.16 0.01 0.02 0.04 0.04 2.94 0.14 0.66 2.78 0.49 0.03 0.05 0.13

We provide results based on data from sequence 00 of the KITTI odometry benchmark [32]. Unlike many other works, we evaluate our approach
and previous methods for both cameras. Bold and underlined values indicate the best and second-best scores, respectively. †: These methods did not
release (English-speaking) code preventing reproducing results for both cameras.

TABLE II
CALIBRATION ERROR ON IN-HOUSE ROBOTIC PLATFORMS

Magnitude Translation [cm] Rotation [°]
Platform Method Et [cm] ER [°] x y z roll pitch yaw

Vehicle
Koide et al. [18] 9.76 0.27 9.24 0.63 3.06 0.07 0.18 0.19
CMRNext [24] 12.20 0.90 1.35 10.83 3.60 0.45 0.82 0.38
MDPCalib (ours) 4.50 0.27 4.04 1.71 1.03 0.00 0.19 0.18

Quadruped
Koide et al. [18] 16.21 1.34 2.10 15.61 3.84 1.07 0.67 0.44
CMRNext [24] 23.95 1.36 3.73 16.07 15.05 0.40 0.85 0.32
MDPCalib (ours) 9.54 0.38 1.27 2.70 9.06 0.31 0.19 0.10

UAV
Koide et al. [18] 1.65 0.36 1.56 0.08 0.50 0.16 0.17 0.28
CMRNext [24] 12.47 0.97 1.17 5.31 6.83 0.27 0.34 0.36
MDPCalib (ours) 5.12 0.51 4.19 0.59 2.88 0.15 0.13 0.30

We obtain reference calibration parameters to compute the errors by using
manually selected camera-LiDAR point correspondences [7]. Neither our
MDPCalib nor the method by Koide et al. [18] requires an initial guess.
Bold and underlined values indicate the best and second-best scores.

a lack of observability. For reference, we provide the error
of the median calibration parameters when running PnP on
100% of the predicted point correspondences. In Tab. III, we
refer to this as CMRNext [24]. In MDPCalib, we instead
process a subset of the correspondences as constraints in the
optimization formulation, which further reduces the errors. In
the bottom two rows, we demonstrate the efficacy of the key
ingredients of MDPCalib. First, we show that utilizing the
Cauchy loss [26] to robustify the cost functions significantly
improves the results by reducing the effect of outliers in the
observations. Second, while previous works [22], [17] only
proposed to utilize sensor motion to initialize a subsequent
correspondence-based calibration scheme, we incorporate both
constraints in the refinement stage leveraging their comple-
mentary information. Our experiment clearly underlines the
positive impact of joint optimization with respect to both
sensor motion and point correspondences.
Runtime Analysis: We discuss the runtime of our method
with respect to the number of both motion-based and point
correspondences-based constraints. We conduct these experi-
ments on a machine with an AMD Ryzen Threadripper PRO
3975WX CPU with 128GB and an NVIDIA A6000 GPU with
48GB. In Fig. 6 and Fig. 7, we visualize the runtime versus the
number of poses and the relative number of correspondences,
respectively. As can be seen in both studies, the runtime scales
approximately linearly, whereas the errors decrease. We further
observe an optimal configuration, after which the runtime
continues to increase without major impacts on the accuracy.

TABLE III
COMPONENTS ANALYSIS

Magnitude Translation [cm] Rotation [°]
Component Et [cm] ER [°] x y z roll pitch yaw

Coarse registration 39.37 0.51 18.11 3.57 34.77 0.38 0.33 0.09
+ CMRNext [24] 6.26 0.28 0.31 6.25 0.00 0.01 0.00 0.28

Fine registration:
Point constraints 5.89 0.21 0.78 5.81 0.50 0.04 0.06 0.19
+ Cauchy robustifier 3.42 0.16 0.35 3.38 0.37 0.02 0.05 0.15
+ Motion constraints 2.94 0.14 0.66 2.78 0.49 0.03 0.05 0.13

The last line highlighted in gray corresponds to our proposed MDPCalib.
CMRNext denotes the errors of the median calibration parameters when
running PnP on 100% of the predicted point correspondences after initial-
ization with the coarse registration. Bold and underlined values indicate
the best and second-best scores, respectively.

Number of Poses: In this study, we evaluate the effect of the
number of poses from visual and LiDAR odometry on the
calibration error, i.e., the length of the required data recording.
In Fig. 6, we show the translation and rotation errors for an
increasing number of poses. Although it generally holds that
adding more motion constraints to the optimization problem
results in more accurate calibration parameters, we observe
that the error converges.
Number of Point Correspondences: Next, we repeat a similar
study for the number of constraints induced by the point
correspondences. For KITTI data, we measure an average of
20,000 correspondences per image-point cloud pair, i.e., our
default setting of utilizing 5% generates approximately 1,000
constraints. In Fig. 7, we keep a fixed number of 100 pairs and
vary the relative number of constraints. Fewer correspondences
result in higher calibration errors. We confirm this observation
in a second experiment visualized in Fig. 8, where we utilize
5% of the point correspondences but reduce the number of
image-point cloud pairs. Note that the errors converge towards
a lower limit in both experimental setups. Finally, we address
the following question: Given a fixed number of correspon-
dences, and hence runtime, is it preferable to increase the
number of image-point cloud pairs or the relative amount of
correspondences per pair? In Fig. 9, we plot the calibration
errors for a stable number of point correspondences, i.e., when
decreasing the number of pairs with respect to the default
setting, we increase the relative number of correspondences by
the respective amount. The experiment shows that a smaller
number of correspondences from a more diverse set of data
pairs is preferable.
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Fig. 6. For the point correspondence constraints, we use 5% correspondences
per image-point cloud pair from a total of 100 pairs.
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Fig. 7. For the motion constraints, we use 1,000 matched poses. Per image-
point cloud pair, we select 5% of the correspondences.

V. CONCLUSION

In this paper, we proposed MDPCalib, a novel method
for the extrinsic calibration between camera and LiDAR
sensors in an automated manner without the need for ded-
icated calibration targets. Our approach utilizes non-linear
optimization to obtain the calibration parameters by aligning
sensor motions from visual and LiDAR odometry and lever-
aging deep learning-based correspondences between 2D pixels
and 3D points. In contrast to most previous learning-based
methods, our approach generalizes to sensor configurations
that differ from the training setup. Importantly, MDPCalib
does not require accurate parameters for initialization. In
practical experiments carried out on diverse robotic platforms,
we demonstrated the efficacy of our method and provided
detailed evaluations of several design choices. Future versions
of our approach could incorporate constraints for multiple
cameras and LiDARs and include intrinsic calibration in the
optimization problem. Due to its unsupervised procedure,
MDPCalib could further be extended to online calibration.
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In this supplementary material, we report results on the
Argoverse 2 [33] dataset, release calibration parameters for
the KITTI dataset [32], and provide more detailed numbers
for our ablation studies.

S-I. RESULTS ON ARGOVERSE 2

In this section, we provide results on the Argoverse 2 [33]
dataset. In contrast to the KITTI odometry benchmark, Argo-
verse 2 contains many short sequences lasting only 15-30s,
which is too short for our method to be applied. Furthermore,
since the ground truth extrinsic calibration is not consistent
between all sequences, we collect sequences that share the
same set of ground truth parameters and combine them in
a larger sequence with small gaps in between that can be
detected by our method via the lost-track feature of ORB-
SLAM3 [27]. In particular, in this experiment, we utilize se-
quence 05fb81ab-5e46-3f63-a59f-82fc66d5a477
as the reference sequence. Note that CMRNext [24] has not
been trained on the Argoverse 2 [33] dataset, therefore, allow-
ing us to use sequences from the train split for evaluation.
In Tab. S-I, we report the calibration error for both stereo
cameras of CMRNext [24] and our method MDPCalib.

S-II. KITTI CALIBRATION PARAMETERS

To foster future research towards camera-LiDAR sensor
fusion, we release the calibration parameters that we obtained
with our method for sequence 00 of the KITTI dataset [32]. In
detail, we provide the rotation matrices and translation vectors
for projecting the LiDAR point cloud into the image.
Left RGB Camera:

R =

−1.2619e−4 −9.9997e−1 −8.2230e−3
−7.8537e−3 8.2238e−3 −9.9994e−1
9.9997e−1 −6.1602e−5 −7.8545e−3


t =

[
5.1090e−2 −5.5873e−2 −2.9575e−1

]T
Right RGB Camera:

R =

−1.8202e−3 −9.9996e−1 −8.2416e−3
−8.2823e−3 8.2564e−3 −9.9993e−1
9.9996e−1 −1.7518e−3 −8.2970e−3


t =

[
−4.5166e−1 −4.8448e−2 −2.8787e−1

]T
∗ Equal contribution.
1 Department of Computer Science, University of Freiburg, Germany.
2 Department of Eng., University of Technology Nuremberg, Germany.

TABLE S-I
CALIBRATION ERROR ON THE ARGOVERSE 2 DATASET

Stereo left camera
Magnitude Translation [cm] Rotation [°]

Method Et [cm] ER [°] x y z roll pitch yaw

CMRNext [24] 17.31 0.35 10.52 10.82 8.47 0.01 0.30 0.18
MDPCalib (ours) 9.48 0.18 7.86 5.03 1.70 0.04 0.15 0.09

Stereo right camera
Magnitude Translation [cm] Rotation [°]

Method Et [cm] ER [°] x y z roll pitch yaw

CMRNext [24] 31.27 0.36 29.15 9.92 5.44 0.14 0.29 0.15
MDPCalib (ours) 22.90 0.21 20.88 8.86 3.17 0.01 0.17 0.12

We use sequence 05fb81ab-5e46-3f63-a59f-82fc66d5a477
and sequences with the same set of ground truth calibration parameters.
Bold values denote the best score per metric.

S-III. ABLATION STUDIES

In this section, we provide the numerical values that are used
to generate the figures in the main manuscript. Throughout
the tables, we highlight the parameters that correspond to our
overall setting in gray. For the magnitude errors Et and ER,
we report the mean and standard deviation of three runs. For
the errors of the individual axes, we report only the mean.
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TABLE S-II
NUMBER OF POSES

Pose Magnitude Translation [cm] Rotation [°] Time [s]
count Et [cm] ER [°] x y z roll pitch yaw

1000 2.94±0.13 0.14±0.00 0.66 2.78 0.49 0.03 0.05 0.13 3402
800 3.14±0.07 0.14±0.01 0.53 3.04 0.42 0.02 0.05 0.13 3011
600 3.42±0.10 0.15±0.00 0.08 3.39 0.36 0.02 0.05 0.14 1303
400 4.08±0.39 0.17±0.01 0.17 4.06 0.28 0.01 0.04 0.16 729
200 3.52±0.44 0.15±0.02 0.68 3.44 0.23 0.02 0.04 0.14 355

This table corresponds to Fig. 6. For the point correspondence constraints,
we use 5% correspondences per image-point cloud pair from 100 pairs.

TABLE S-III
RELATIVE NUMBER OF POINT CORRESPONDENCES

Corr. Magnitude Translation [cm] Rotation [°] Time [s]
count Et [cm] ER [°] x y z roll pitch yaw

5% 2.94±0.13 0.14±0.00 0.66 2.78 0.49 0.03 0.05 0.13 3402
4% 3.17±0.03 0.14±0.00 0.39 3.12 0.34 0.01 0.04 0.13 2939
3% 3.44±0.31 0.15±0.02 0.50 3.36 0.43 0.02 0.05 0.14 2558
2% 3.44±1.06 0.15±0.04 0.19 3.42 0.34 0.01 0.04 0.08 1153
1% 3.64±0.51 0.15±0.02 0.18 3.59 0.31 0.02 0.05 0.14 808

This table corresponds to Fig. 7. For the motion constraints, we use 1,000
poses. We extract correspondences from 100 image-point cloud pairs.

TABLE S-IV
NUMBER OF IMAGE-POINT CLOUD PAIRS

Pair Magnitude Translation [cm] Rotation [°] Time [s]
count Et [cm] ER [°] x y z roll pitch yaw

100 2.94±0.13 0.14±0.00 0.66 2.78 0.49 0.03 0.05 0.13 3402
80 2.87±0.33 0.13±0.01 0.43 2.78 0.41 0.02 0.05 0.12 2760
60 2.99±0.52 0.13±0.02 0.10 2.96 0.32 0.02 0.05 0.12 2386
40 4.43±0.91 0.17±0.04 0.60 4.35 0.49 0.01 0.05 0.16 1745
20 3.80±1.48 0.16±0.04 0.69 3.60 0.12 0.01 0.05 0.15 902

This table corresponds to Fig. 8. For the motion constraints, we use 1,000
poses. Per image-point cloud pair, we select 5% of the correspondences.

TABLE S-V
PAIR DIVERSITY VS. RELATIVE CORRESPONDENCES

Pair / Corr. Magnitude Translation [cm] Rotation [°] Time [s]
count Et [cm] ER [°] x y z roll pitch yaw

100 / 5.0% 2.94±0.13 0.14±0.00 0.66 2.78 0.49 0.03 0.05 0.13 3402
80 / 6.25% 3.32±0.65 0.14±0.01 0.58 3.24 0.31 0.01 0.05 0.13 3054
60 / 8.33% 3.46±0.88 0.14±0.02 0.21 3.41 0.34 0.02 0.04 0.13 3696
40 / 12.5% 3.38±0.41 0.14±0.02 0.38 3.32 0.41 0.02 0.05 0.13 3904
20 / 25.0% 3.96±0.49 0.18±0.02 0.89 3.80 0.41 0.02 0.06 0.16 4451

This table corresponds to Fig. 9. For the motion constraints, we use 1,000
poses. We vary the pose count and the relative number of correspondences
to obtain an approximately constant absolute number of correspondences.
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