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Abstract—Whenever mobile robots are used in real world
applications, the ability to learn an accurate model of the
environment and to localize itself based on such a model are
important prerequisites for reliable operation. Whereas these
problems have been successfully solved in the past for most
indoor tasks, in which the robot is assumed to operate on a at
surface, such approaches are likely to fail in combined indoor
and outdoor environments in which the three-dimensional
structure of the world needs to be considered. In this paper,
we consider the problem of localizing a vehicle that operates
in 3D indoor as well as outdoor settings. Our approach is
entirely probabilistic and does not rely on GPS information.
It is based on so-called multi-level surface maps which are
an extension of the well-known elevation maps. In addition to
that, we present a technique that allows the robot to actively
explore the environment. This algorithm applies a decision-
theoretic approach and considers the uncertainty in the model
to determine the next action to be executed. In practical
experiments, we illustrate the properties as well as advantages
of our approach compared to other techniques.

I. INTRODUCTION
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space, however, such approaches are not directly apgicabl
The size of occupancy grid maps in 3D, for example,
prevents the robot from exploring an environment largentha
a few hundred square meters.

The contribution of this paper are solutions to the local-
ization and to the autonomous exploration problem in three-
dimensional, combined outdoor and indoor environments.
Both technigues use multi-level surface maps to provide
an appropriate model of the environment. The MCL-based
localization technique does not require GPS information
and uses only proximity data from a laser range nder as
well as odometry information. Our exploration technique
extents existing exploration approaches used in 2D to the
three-dimensional space. It selects actions that reduee th
uncertainty of the robot about the world. It does so by
reasoning about potential measurements that can be othtaine
when selecting an action. Our approach is able to deal
with negative obstacles like, for example, abysms, which is
a problem of robots exploring a three-dimensional world.

Robots that are able to acquire an accurate model of theikperiments carried out in simulation and on a real robot
environment and to localize themselves based on suchshow the effectiveness of our techniques.

model are regarded as ful lling a major precondition of yrul
autonomous mobile vehicles.

Il. RELATED WORK

The problem of mobile robot localization with range sen- The problem of localizing a mobile robot in indoor and
sors in outdoor environments arises whenever GPS signalstdoor environments with range sensors or cameras has

are missing due to occlusions caused by buildings, bridges,

been studied intensively in the past. In indoor environment

trees. Furthermore, in case of combined outdoor and indobtonte-Carlo localization (MCL) [5] is one of the current
environments, relying on GPS information will obviouslystate-of-the-art approaches. Outdoors, Adansal. [1] ex-

lead to failure in the pose estimate. In such situations,

taact prede ned features from range scanners and apply a

mobile robot typically has to estimate its position in theparticle lter for localization. Davison and Kita [4] utitie a
environment using its exteroceptive sensors and a map of tkalman lter for vision-based localization with point faaes
environment. However, when a robot attempts to perceive itB1 non- at surfaces. Recently, Agrawal and Konolige [2]

environment to localize itself, the choice of the directmin presented an approach to robot localization in outdoor ter-
the perception can substantially in uence the accuracyef t rains based on feature points that are tracked across frames
position estimate. The localization task requires a givap m in stereo images. Lingemarat al. [15] recently described a

of the environment. In case such a model is not available, hethod for fast localization in in- and outdoor environnsent
has to be learned by the robot. This problem is also known 8heir system operates on raw data sets, which results in
autonomous exploration. So far, most approaches to mobiteige memory requirements. Additionally, they apply a scan-
robot exploration assume that the robot lives in a planenatching routine for localization, which does not facti#a
They typically focus on generating motion commands thaglobal localization. To reduce the memory requirements of
minimize the time needed to cover the whole terrain [13Jputdoor terrain representations, several researchergedpp
[24]. A frequently used technique is to build an occupancglevation maps [3], [12], [14], [17]. A probabilistic apch

grid map since it can model unknown locations ef ciently.to localize a planetary rover in such elevation maps has been
The robot seeks to reduce the number of unobserved cetlescribed by Olson [16]. In this system, elevation maps were
or the uncertainty in the grid map. In the three-dimensionauf cient to robustly localize the vehicle, mainly because



the number of vertical and overhanging objects is neglggibl # @, 4
in environments like on Mars. However, environments on 4
earth contain many objects like buildings or trees whichehav
vertical or even overhanging surfaces. To address thig,ssu
we use multi-level surface (MLS) maps [22] to represent, 4.

. h . ; . Standard elevation map (left) which is not able to espnt the
the environment in this paper. MLS maps discretize thenderpass under the bridge correctly, and multi-level serfmap (right)

environment into cells and store for each cell a list of pagch that correctly represents the height of the vertical objemtd is able to

representing the individual layer in the environment agl wef"°9¢! multiple levels.

as vertical structures.

So far, most approaches to mobile robot exploration agiscrete grid the height of the surface in the corresponding
sume that the robot lives in a plane. They typically focugrea. In contrast to elevation maps, MLS maps allow us
on generating motion commands that minimize the timgy store multiple surfaces in each cell. Each surface is
needed to cover the whole terrain [13], [24]. A frequentlyiepresented by a Gaussian with the mean elevation and its
used technique is to build an occupancy grid map since jjincertainty . In the remainder of this paper, these surfaces
can model unknown locations ef ciently. The robot seeksyre referred to as patches. This representation enables a
to reduce the number of unobserved cells or the uncertaingyopile robot to model environments with structures like
in the grid map [24], [18]. In the three-dimensional spacepridges, underpasses, buildings, or mines. They also enabl
however, such approaches are not directly applicable. Thge robot to represent vertical structures by storing aaart
size of occupancy grid maps in 3D, for example, prevenigepth value for each patch. Figure 1 shows two example
the robot from exploring an environment larger than a fewnhaps from the same environment. The left image shows that
hundred square meters. it is not possible to represent an underpass , overhangithg an

Whaite and Ferrie [23] presented an exploration approagfgrtical objects correctly using elevation maps. On theoth
in 3D that uses the entropy to measure the uncertainty fhnd the right image illustrates the ability of the MLS map

the geometric structure of objects that are scanned Wilpproach to represent all these structures correctly.
a laser range sensor. In contrast to the work described

here, they use a fully parametric representation of the ob- V- GPSFREELOCALIZATION USING MLS MAPS

jects and the size of the object to model is bounded by In this chapter, we assume that the robot already has a

the range of the manipulator. Surmaen al. [20] extract multi-level surface map available for localization. In text

horizontal planes from a 3D point cloud and construct &hapter, we then present a technique to autonomously learn

polygon with detected lines (obstacles) and unseen limes (f a MLS map.

space connecting detected lines). They sample candidatelo estimate the pose = (x;y;z;";# ) of the robot in

viewpoints within this polygon and use 2D ray-casting tdts environment, we consider probabilistic localizatianich

estimate the expected information gain. In contrast to, thifollows the recursive Bayesian lItering scheme. The keyside

our approach uses an extension of 3D elevation maps aatithis approach is to maintain a probability densix: j

3D ray-casting to select the next viewpoint. Galez-Bdios Z1:t;Uo:t 1) Of the robot's locationx; at timet given all

and Latombe [9] also build a polygonal map by mergingbservations; up to timet and all control inputsig 1

safe regions. Similar to our approach, they sample carelidatp to timet 1. This posterior is updated as follows:

poses in the visibility range of frontiers to unknown area. (Xt j 214 Uo —

But unlike in our approach, they build 2D maps and do not Pt J #1:t Yot 2

consider the uncertainty reduction in the known parts of the p(z: j Xt) p(Xt jue 15X 1) p(x¢ 1) dx¢ 1:(1)

map. Fournieet al. [8] present an 3D exploration approach

utilizing an octree structure to represent the environmeriiere, is a normalization constant ensuring tha(ix, j

However, it is unclear if the presented approach is able #u:t;Uot 1) Sums up to one over alk;. The terms

explore on multiple levels. to be described in Eqn. (1) are therediction model
The contribution of this paper are techniques for auP(Xt j Ut 1;Xt 1) and thesensor modeb(z; j x;). One ma-

tonomously learning MLS maps with a mobile robot basedPr contribution of this paper is an appropriate computatio

on laser range nder and odometry only. We furthermor@f these models in the case that an MLS map is given.

describe how a robot can utilize such a model to track its own For the implementation of the described lItering scheme,

pose and to globally localize itself. Our approach does nat€ use a sample-based approach which is commonly known

rely on GPS information and thus allows a robot to operatés Monte Carlo localization[5]. Monte-Carlo localization

in combined indoor and outdoor scenarios. is a variant of particle Itering [6] where each particle
corresponds to a possible robot pose and has an assigned
I1l. 3D M ODEL OF THEENVIRONMENT weightw; . The belief updaterom Eqn. (1) is performed by

Our exploration system uses multi-level surface mapge following two alternating steps:
(MLS maps) as proposed by Triebetl al. [22]. MLS maps 1) In theprediction step, we draw for each particle with
use a two-dimensional grid structure that stores different  weightw; a new particle according te; and to the
elevation values. In particular, they store in each cell of a prediction modebp(X; j U; 1;Xt 1).
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I I T T T 1 the MLS map. In the end point model, the probability;; (zx j x) only
depends on the distanc¥ between the end point of tHeth laser beam

Fig. 2. Application of our prediction model to a series of 2D ot and the closest obstacle in the map.

vectors (black). They are rotated to estimate the 3D motionovedred).

The dashed line indicates the tolerance interval foraimordinate.

B. Endpoint Sensor Model for MLS Maps

_ _ o In our sensor model, we treat each beam independently
2) In the correction step, a new observation, is inte- and determine the likelihood of a whole laser scan by

grated. This is done by assigning a new weightto  factorizing over all beams. Thus, we have
each particle according to the sensor mauiel j x;).

. % .
pzix)=  pjx) )

k=1
whereK is the number of beams in each laser measurement

The prediction modeb(x; j Uy 1;X; 1) we use is based Z- In Egn. (2) and in the following, we drop the index
on an approach introduced by Eliazetr al. [7]. It reects t for convenience. Our sensor mode(z* j x) is based
systematic errors such as drift, as well as the uncertainty PN an approach that has been introduced by Thrun [21] as
the execution of an action = (Xy;Yu; u), Where(Xy;yu) likelihood elds (LF) or end point modelln particular, we
is the translation and, the rotation angle. To incorporate formulate the sensor mod@(z* j x) for each particular
this 2D motion into our 3D map we proceed as follows. Firstt€am as a mixture of three different distributions:
we ok_)tain a possiblg o.utconiex\,;y\,; v) of the action by. DX i X)= it paie (25 ] X)+
applying the probabilistic model. Then, we adapt the motion K Ko oon.
vectorv = (Xy;Yy) to the shape of the 3D surface traversed rand Prand (27 ] X) + max Pmax (27 ] X); (3)
by the robot. This surface is obtained from the given MLSvhere p;; is a normal distributionN (0; 2) that models
map and consists of planar square patches. To adapt #iguations in which the sensor detects an obstacle. Random
motion vector, we discretize it into segments of length measurements are modeled using a uniform distribution
which is the cell size of the MLS map, in our ca@d m. p...q (zK j x). Maximum range measurements are covered
For each segment, we determine the corresponding surfagg a point mass distributiopmax (z¥ j x). These three dis-
patchS and rotate the segment according to the orientatiomibutions are weighted by the non-negative parametgs
(' s:#s) of the patch, where s is the rotation about the .4, and mnax , which sum up to one. The values fog; ,
x-axis and#s the rotation about they-axis. The patch .4, max, and 2 used in our current implementation
orientation is computed from the normal vectog of the have been determined empirically.
patchS, which in turn is obtained by tting a plane into the  In the end point model, the probability;: (zx j X) only
local vicinity of S. The normal vector computation is donedepends on the distanc¥ between the end point of tHe
beforehand and constitutes an extension to the framework @f laser beam and the closest obstacle in the map. Figure 3
MLS maps. In general, it is not robust against noise and smahows an example of a single beafwhich ends close to
errors in the MLS map, which results in an uncertainty of thgertical object in the MLS map. Thus, the physical property
patch orientation. In our approach, we model this uncettain of the laser beam is ignored, because the model just uses the
by adding Gaussian noise to the orientation parameters end point and does not consider the beam characteristieof th
and#s. Thus, our prediction model expresses the uncertaintgser. Therefore, we need to calculate the global cooreinat
in 5 out of 6 position parameters x, y and by the 2D  for a beam end point. If we denote the angle ofitktl beam
motion model and and# by our 3D extension. For the relative to the zero angle with¢, then the end poinp* =
last one — the height value — we have the constraint that (x*; y*;: 2T of that beam in the robot's own coordinate
the robot must stay on the ground. Therefore, we adjustame is Caécmeited %s
the z-value manually whenever it is too high or too low. k 1 0 .

- £-val iy v ' . x R cos( )

This is illustrated in Figure 2. Finally, after concatengti @ykA = @A + Rz @sin( ¥)A ; 4)

all transformed motion vector segments, we obtain a new 2K 2 0

3D motion vector¢ which is added to the current estimate

of the robot positiork; ; to obtain a new position estimate where (%; §; z)T denotes the position of the sensor at time
Xt. t and R is a rotation matrix that expresses the 3D sensor

A. Prediction Model for MLS Maps



orientation in the robot's coordinate frame. For a givenatob by minimizing thez-distance of the plane to the elevation
posex = (x;y;z;;#, ) attimet we can compute the values of the neighboring patches. We then compute the
global coordinatepk = (x¥;yk;z*)T of thek-th beam end slope and the roughness of the local terrain and detect

point pk as follows obstacles. The slope is de ned as the angle between the
xk 0 xkl 0 xl tted plane and a horizontal plane and the roughness is
@ykA = R(;#: ) @A + QYA (5) computed as the average squamdistances of the height
K T K . ' values of the neighboring patch to the tted plane. The

slope and the roughness are turned into traversabilityegalu

whereR(';#, ) denotes the rotation matrix for the given ¢(p) and ,(p) by linear interpolation between zero and a
Euler angles' , #, and . In MLS maps, obstacles are maximum slope and roughness value respectively. In order
represented agertical surface patchesvhich can be seen as to detect obstacles we set(p) 2 f 0;1g to zero, if the
vertical segments of occupied space. Unfortunately, ti'ere maximum squared-distance of a neighboring patch exceeds
no ef cient way to nd the closest of all vertical segments toa threshold, thereby accounting for positive and negative
a given beam end point. Therefore, we use an approximati@stacles, or if the patch has less than eight neighbors. The
by uniformly sampling a seé® of 3D points from all vertical latter is important for avoiding abysms in the early stage
patches. The distana of the k-th beam end poinpX to  of an exploration process, as some neighboring patches are
the closest obstacle is then approximated as the Euclidepslow the edge of the abysm and therefore are not visible
distanced(p¥; P) betweenp* andP. This distance can be yet.
ef ciently calculated by storing all points fror® in a kD- The combined traversability value is de ned a¢p) =
tree. s(P r(P) o(p). Next, we iteratively propagate the values

Equations. (4) and (5) describe a 3D transfofife®;x) by convolving the traversability values of the patch and its
of the measuremen at positionx. Using this and the fact eight neighboring patches with a Gaussian kernel. For non-

that p,ir is Gaussian, we can compytg: as | existent neighbors, we assume a valueDd&. The number
K. 2 of iterations depends on the used cell size, the robot's size

K 1 1 d(p*;P) . i i
Prit (2 X) pﬁ exp T — ; (6) and a safety margin. In order to enforce obstacle growing,

we do not perform a convolution if one of the neighboring
he patches is non-traversable £ 0), but rather set the patch's

wherepk = T(z¥;x). Plugging this into Eqgn. (3) and t
P ( ) ading an. (3) traversability directly to zero in this case.

result into Egn. (2), we obtain the entire sensor model.

V. AUTONOMOUSEXPLORATION IN B. Viewpoint Generation
THREE-DIMENSIONAL ENVIRONMENTS We follow the popular frontier-based approach to explo-

The previous section covered the problem of localizingiation [24] and adapt it to the needs of a 3D environment.
a vehicle in a MLS map. In this section, we relax theln our approach, a patch is considered as explored if it has
assumption that such a model is provided and present &ht neighbors and its uncertainty, measured by the entrop
approach to autonomously learn a MLS map with our mobil#? the patch, is below a threshold. Additionally, we track th
robot. entropy as well as the number of neighbors of a patch. If

In order to autonomously explore the environment, we rsthe entropy or number of non-existing neighbors cannot be
need to perform a traversability analysis, thereby avgjdinfeduced as expected over several observations, we consider
positive and negative obstacles. Then we determine caedidd to be explored nonetheless since further observations do
viewpoints in the vicinity of unexplored areas and evaluat80t seem to change the state of the patch.
those candidate viewpoints by considering the travel dosts A frontier patch is de ned as an unexplored patch with at
a particular viewpoint and the expected information gain dast one explored neighboring patch. Most of these patches

a measurement at this viewpoint. have less than eight neighbors and therefore are considsred
N ) non-traversable, since they might be at the edge of an abysm.
A. Traversability Analysis Therefore, we cannot drive directly to a frontier patch.

A grid based 2D traversability analysis usually only takesnstead, we use a 3D ray-casting technique to determine
into account the occupancy probability of a grid cell —close-by candidate viewpoints. A patch is considered as
implicitly assuming an even environment with only positivea candidate viewpoint, if it is reachable and there is at
obstacles. In the 3D case, especially in outdoor envirotsnenleast one frontier patch that is likely to be observable from
we additionally have to take into account the slope and thbat viewpoint. Instead of using ray-casting to track egaitt
roughness of the terrain, as well as negative obstacles sumdams from the sensor at every reachable position, we use
as abysms which are usually ignored in 2D representatiors. more ef cient approach. We emit virtual beams from

Each patctp will be assigned a traversability valuép) 2  the frontier patch instead and then select admissible senso
[0; 1]. A value of zero corresponds to a non-traversable patclgcations along those beams (Figure 4). This will reduce the
a value greater zero to a traversable patch, and a value mfmber of needed ray-casting operations as the number of
one to a perfectly traversable patch. In order to determirfeontier patches is much smaller than the number of reaehabl

(p), we t a plane into its local 8-patch neighborhood patches.



The expected information gain considers the uncertainty
free reduction in the known parts of the map as well as the
oo information gain caused by new patches that are expected
to be discovered.

To determine the patches that are likely to be hit by a laser
measurement, we rst perform a ray-cast operation similar
to [19]. We determine the intersection points of the cell

Figd- g-t To gen;fﬁ}te_t\llliEWpoimS- We_t_emit ||asef tﬁeami f;?Bm_ \gé"’wﬂlo boundaries and the 3D ray projected onto the 2D grid. In
3 determine admssbe sensor poiions long hose bedeantEnel _ a second step, we determine for each cell the height nterval
patch. covered by the ray and check for collisions with patches
contained in that cell by considering their elevation anptde
values.

Let the sequencd = Hgi;:::;lnhi be an equidistant
discretization of the maximum laser range. If the simulated
laser ray hits a patch in distance that falls ifdtg we
can divide L into three subsequencds’;L"; and L",
whereasLf = Hy;:::;ly 1i contains the collision free
traversed distancek!” = H,i contains the above mentioned
discretized distance to the patch that has been hit, and

Accordingly, if the simulated ray does not hit a patch, this
will result in three subsequenck$ = L andLM = L" = hi.

For each traversed distan¢e2 Lf [ L" we expect the
ray during a real measurement to end after distdnagth
probability p(1). If | 2 L, then this corresponds to the
discovery of a new patch, which implies an information gain
Fig. 5. Outdoor map showing sampled candidate viewpoints chgd@rk | M. 112 |_h, then this corresponds to a measurement of
gray) spheres. an already known patch, which implies an information gain
Ih(1). The expected information gain of raythen is de ned

In practice, we found it useful to reject candidate view?s

: : . ) L X X X
points, from which the expected information gain is belowgf| (r)g= p()1 (1) = p()1 (1) + YOINOE
a threshold. We also cluster the frontier patches by the 2L 2L I2Lh
neighboring relation, and prevent patches from very small (8)
frontier clusters to generate candidate viewpoints. Thilk w Here we assumg(l) =0 for | 2 L", as we do not expect
lead to a more reliable termination of the exploration pssce the ray to travel through a known patch.
Candidate viewpoints of an example map are shown in To assess the probabilities(l), we created statistics

Figure 5. through simulated measurements in a large outdoor map
_ _ which yielded a conditional probability distributiops(d j
C. Viewpoint Evaluation v) denoting the probability of hitting an obstacle after

The utility u(v) of a candidate viewpoin, is computed distanced when the elevation angle of the ray is. The
using the expected information galiif | (v)g and the travel intuition behind this is, that it is much more likely for
costst(v). As the evaluation involves a costly 3D ray-castinglownward pointing rays to hit a patch than for upward
operation, we reduce the set of candidate viewpoints bgointing rays. Secondly, the probability to hit an obstacle
sampling uniformly a xed number of viewpoints from thatis not equally distributed along the laser range, espgciall

set. not for downward pointing rays. Using this distribution, we
In order to simultaneously determine the shortest paths &&n de ne
all candidate viewpoints, we use a deterministic variant of >ns(li V) |2 Lf

the value iteration. The costs of moving from a pafcko
p? can be de ned as

op:p) = d(pip)+ wit - (p) % with , being the elevation angle of the current may
where d(p; p°) describes the Euclidian distance an¢p®) The information gainly is de ned by the uncertainty
the traversability ofp”. The constaniv is used to weight reduction in the known map. We therefore temporary add
the penalization for traversing poorly traversable patchea new measurement; into the grid cell of the hit patchy,
The travel costg(v) of a viewpointv is de ned as the with a corresponding mean and variance that depends on the
accumulated step costs of the shortest path to that viewpoidistancel,, of the simulated ray. The mean and variance of

p()=_ oenpue ps(lif v) 12L° C)

"0 [2L"



the patchp, will then be updated by using a Kalman Iter. most likely pose reported by the localization module, we
As a patch is represented as a Gaussian, we can compute fleeform scan-matching to re ne the estimate. The relation

entropyH (p) of a patch as between poses that are determined in this way are then added
1 ) to the constraint network. The exploration ends, if the $et o
H(p) = 5log 2e = : (10)  candidate viewpoints is empty.
The information gain (1) is then de ned as the difference VI|. EXPERIMENTS
In(h= H(pn) Hpnjmp) 12L": (12) In this section, we present experiments designed to il-

lustrate the properties of the presented techniques as well
as their advantages compared to other techniques. First, we
present experiments that evaluate the GPS-free localizati
approach using laser range nder only. Then, we investigate
the properties of our uncertainty-driven exploration aggh.

between the entropid (p,) of the patchp, before and the
entropyH (pn j my) after the temporary incorporation of the
simulated measurementy,.

For the information gain; we will proceed similarly.
As a newly discovered patclp; will be inserted with
an uncertainty proportional to the distancé 2 L' of A Localization
measurementn; , we can thereby computd (pr j m¢) as
in Egn. 10. We assume that the uncertaingyof the patch
before it has been measured, is bounded by the dist@nce
to the nearest patch in that cell and choose, as a heuristic,
uncertainty so tha® , = dp. Using , we can de neH (py )
and nally compute

le()=H(p) Hpjme) 12L": (12)

The expected information gaigf | (vF),g of a viewpointv is resampiing step resampiing step

then de n(_ad as th_e Surﬁ.fl (v)g = r2r Efl(r)g of the Fig. 6. Convergence of the particles to the true positiorhefrobot with
expected information gains of all casted ray2 R. 500,000 (left) and 1,000,000 (right) particles. Thaxes depict the number
Finally, the utility u(v) of each candidate viewpoint is of resampling steps, while the-axes show the percentage of particles that

computed by a relative expected information gain and trav@® ¢oser tharlm to the true position.
costs as

u(v) = +1 )

By varying the constant 2 [0;1] one can alter the
exploration behavior by trading off the travel costs and th
expected information gain.
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As explained before, we choose the viewpoint with the
best utility as the next goal point. However, to ensure thdtig. 7. The left image depicts the number of successful logttins after
we can construct a globally consistent map, we_have f Ssareing sebs ot he e dfernt nap epreseniionece
continously track the position of the vehicle. We construdbcalization error over all particles for a tracking expeeint with 1,000
a network of constraints between poses according to thwerticles. In average the use of the MLS maps leads to smatierser
observations. We then apply an ef cient global optimizatio
approach [10], [11] to correct the poses. The rst set of experiments is designed to evaluate the
To ensure that the relations between poses can be acperformance of the MLS map approach in the context of a
rately determined, a certain overlap between consecubve 3jlobal localization task. Figure 6 depicts the convergesfce
scans is required. We perform several 3D scans along thiee particles to the true position of the robot wBbg 000
way to ensure this suf cient overlap. We use the 3D rayand1; 000, 000 particles. Whereas the x-axis corresponds to
casting technique to simulate a 3D scan and estimate thee resampling step, the y-axis shows the number of pasticle
overlap of a real scan at each pafghof the planned path in percent that are closer thdm to the true position, which
1010 pni. The estimated overlap(p;) = r=jRj is ratio has been computed by a tracking experiment Wi@ig; 000
of the number of rays, that hit a patch of the last local map particles. Shown are the evolutions of these numbers when
to the number of all casted rayRj for a simulated scan at the MCL is applied on standard elevation maps and on MLS
patchp;. The patchp; with the highestindex2f 1;:::;ng maps. Note that the elevation map does not rebdto.
whose overlapd(p;) is above a threshold is chosen as thdhis is due to the fact that the sensor model for the stan-
subgoal for the next 3D scan. dard elevation map relies on a highly smoothed likelihood
Based on the map estimate so far, we apply the localizatidanction, which is good for global localization but does not
approach described in the previous chapter. Based on thehieve maximal accuracy during tracking. The application

particles time step



of a more peaked sensor model in the case of the standa
elevation map would lead to much higher divergence rates
In both cases, a t-test showed that it is signi cantly better
apply the MLS maps than the standard elevation maps fa
the global localization task. Experiments with 250,000 and
750,000 particles showed the same behavior. The left imag
of Figure 7 shows the number of successful localizations
for the two dlﬁe.rem map representations and for dlff.eren ig. 9. Overview of the simulation environment and a detail@svvof
numbers of particles. Here, we assumed that the localizatighe entrance on the rst oor with the robot in front of it.

was achieved when every particle differed by at mbst

from the true location of the robot. We can see that the global

localization performs more robust on the MLS map than oapproach outperforms the standard elevation map approach.
the standard elevation map. The tracking experiments have been computed online on a
standard PC with an AMD Athlon 64 3200+ processor. In
the practical experiments we found that the use of the MLS
maps results in a computational overhead of no more than
10% compared to elevation maps.
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B. Exploration

The rst exploration experiment is designed to show the
ability of our exploration technique to take full advantage
of the capabilities that MLS maps provide, e.g. represegntin
multiple surface layers on top of each other. In a simulation
environment with realistic rigid body physics we constaatt
a two-story building (Figure 9). It consists of two rooms
located on top of each other, each 12 by 8 meters in size,
and an unsecured balcony, where the robot is initially lkedat
The house is surrounded by some trees and bushes, which
are approximated by cuboids. We restricted the location of
possible viewpoints to a rectangular area around the house i
order to focus on the exploration of the house rather than the
free space around the house. The robot explored the balcony,
traversed the upper room and proceeded down a ramp that
connects the upper room with the ground oor. The robot
drove around the house and then entered the entrance to
the room in the rst oor. During the exploration of the
lower room several 3D loops with positions at the upper
room have been closed. He then visited a last viewpoint
at the back of the house and then the exploration ended.
The robot visited 18 viewpoints, performed 29 3D scans and
traveled a distance of 212 meters. The nal map consists
Fig. 8. MLS map used for the localization experiments. The are®f 185,000 patches. We demonstrated with this experiment,
represented by this map spans approximately 195 by 146 meteesbllie  that we are able to deal with several challenges that simple
e S ey, e verscs sy hesaih o 335 MaPPINg approaches are not able to deal with, e.g. negative
meters. obstacles and multiple surface layers. A 2D approach would

simply have fallen down the unsecured balcony, and simple

As a second set of experiments we carried out experimenf) mapping approaches like, for example, elevation maps,
in which we analyzed the accuracy of the MLS map approachiould not support the exploration of the two storys on top
in the context of a position tracking task. To obtain theof each other. Figure 10 shows the constructed map with a
corresponding data set, we steered along a loop in odetailed view of the entrance to the lower room.
campus environment. The traversed trajectory has a lengthTo demonstrate the ability to explore real environments,
of 284 meters. Figure 8 depicts a top view of the MLS mapve performed an experiment on the campus of the University
of our test environment. The blue / dark gray line showsf Freiburg using an ActivMedia Pioneer 2-AT equipped
the localized robot poses. The yellow / light gray line showsvith a SICK laser range scanner mounted on a pan-tilt unit.
the pure odometry. The right image of Figure 7 depicts th& give the exploration an initial direction, we restricted
average localization error for a tracking experiment withthe generation of viewpoints to the half-plane in front of
1,000 particles. As can be seen from the gure, the MLS mathe initial location of the robot. The robot followed a path




Fig. 10. Detailed view of the nal traversability map showitiye robot's
trajectory as a blue line.

bordered by the wall of a house on the left side and grassland
on the right side (Figure 11). Then he entered a small
courtyard on the left, which was suf ciently explored after

a few scans. He then proceeded to explore the rest of the
campus until he reached the border of the de ned half-
plane. The gure shows four snapshots of the exploration
process. In the last image, the robot traveled 186 meters,
visited 18 viewpoints and performed 26 3D scans. The
corresponding map including the traversability inforroati
contains about 410,000 patches and is depicted in Figure 12.
In both experiments, we set = 0:5 in order to equally
consider the travel costs and expected information gain.

VIl. CONCLUSION

In this paper, we considered the problem of autonomously
learning a three-dimensional model for combined outdoor
and indoor environments with a mobile robot. We further-
more demonstrated how to localize a mobile vehicle based
on such a model without requiring GPS information. Our
approach uses proximity data from a laser range nder as
well as odometry. Using our three-dimensional model of the
environment, namely multi-level surface maps, we obtain
signi cantly better results compared to elevation maps. We
also presented an algorithm to actively acquire such maps
from an unknown environment. This approach is decision-
theoretic and trades off the cost of carrying out an actich wi
the expected information gain of future observations. The
approach also considers negative obstacles such as absyms
which is an important prerequisite for robots operatingn 3
environments.
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