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Abstract— Whenever mobile robots are used in real world
applications, the ability to learn an accurate model of the
environment and to localize itself based on such a model are
important prerequisites for reliable operation. Whereas these
problems have been successfully solved in the past for most
indoor tasks, in which the robot is assumed to operate on a �at
surface, such approaches are likely to fail in combined indoor
and outdoor environments in which the three-dimensional
structure of the world needs to be considered. In this paper,
we consider the problem of localizing a vehicle that operates
in 3D indoor as well as outdoor settings. Our approach is
entirely probabilistic and does not rely on GPS information.
It is based on so-called multi-level surface maps which are
an extension of the well-known elevation maps. In addition to
that, we present a technique that allows the robot to actively
explore the environment. This algorithm applies a decision-
theoretic approach and considers the uncertainty in the model
to determine the next action to be executed. In practical
experiments, we illustrate the properties as well as advantages
of our approach compared to other techniques.

I. I NTRODUCTION

Robots that are able to acquire an accurate model of their
environment and to localize themselves based on such a
model are regarded as ful�lling a major precondition of truly
autonomous mobile vehicles.

The problem of mobile robot localization with range sen-
sors in outdoor environments arises whenever GPS signals
are missing due to occlusions caused by buildings, bridges,or
trees. Furthermore, in case of combined outdoor and indoor
environments, relying on GPS information will obviously
lead to failure in the pose estimate. In such situations, a
mobile robot typically has to estimate its position in the
environment using its exteroceptive sensors and a map of the
environment. However, when a robot attempts to perceive its
environment to localize itself, the choice of the directionof
the perception can substantially in�uence the accuracy of the
position estimate. The localization task requires a given map
of the environment. In case such a model is not available, it
has to be learned by the robot. This problem is also known as
autonomous exploration. So far, most approaches to mobile
robot exploration assume that the robot lives in a plane.
They typically focus on generating motion commands that
minimize the time needed to cover the whole terrain [13],
[24]. A frequently used technique is to build an occupancy
grid map since it can model unknown locations ef�ciently.
The robot seeks to reduce the number of unobserved cells
or the uncertainty in the grid map. In the three-dimensional

space, however, such approaches are not directly applicable.
The size of occupancy grid maps in 3D, for example,
prevents the robot from exploring an environment larger than
a few hundred square meters.

The contribution of this paper are solutions to the local-
ization and to the autonomous exploration problem in three-
dimensional, combined outdoor and indoor environments.
Both techniques use multi-level surface maps to provide
an appropriate model of the environment. The MCL-based
localization technique does not require GPS information
and uses only proximity data from a laser range �nder as
well as odometry information. Our exploration technique
extents existing exploration approaches used in 2D to the
three-dimensional space. It selects actions that reduce the
uncertainty of the robot about the world. It does so by
reasoning about potential measurements that can be obtained
when selecting an action. Our approach is able to deal
with negative obstacles like, for example, abysms, which is
a problem of robots exploring a three-dimensional world.
Experiments carried out in simulation and on a real robot
show the effectiveness of our techniques.

II. RELATED WORK

The problem of localizing a mobile robot in indoor and
outdoor environments with range sensors or cameras has
been studied intensively in the past. In indoor environments,
Monte-Carlo localization (MCL) [5] is one of the current
state-of-the-art approaches. Outdoors, Adamset al. [1] ex-
tract prede�ned features from range scanners and apply a
particle �lter for localization. Davison and Kita [4] utilize a
Kalman �lter for vision-based localization with point features
on non-�at surfaces. Recently, Agrawal and Konolige [2]
presented an approach to robot localization in outdoor ter-
rains based on feature points that are tracked across frames
in stereo images. Lingemannet al. [15] recently described a
method for fast localization in in- and outdoor environments.
Their system operates on raw data sets, which results in
huge memory requirements. Additionally, they apply a scan-
matching routine for localization, which does not facilitate
global localization. To reduce the memory requirements of
outdoor terrain representations, several researchers applied
elevation maps [3], [12], [14], [17]. A probabilistic approach
to localize a planetary rover in such elevation maps has been
described by Olson [16]. In this system, elevation maps were
suf�cient to robustly localize the vehicle, mainly because



the number of vertical and overhanging objects is negligible
in environments like on Mars. However, environments on
earth contain many objects like buildings or trees which have
vertical or even overhanging surfaces. To address this issue,
we use multi-level surface (MLS) maps [22] to represent
the environment in this paper. MLS maps discretize the
environment into cells and store for each cell a list of patches
representing the individual layer in the environment as well
as vertical structures.

So far, most approaches to mobile robot exploration as-
sume that the robot lives in a plane. They typically focus
on generating motion commands that minimize the time
needed to cover the whole terrain [13], [24]. A frequently
used technique is to build an occupancy grid map since it
can model unknown locations ef�ciently. The robot seeks
to reduce the number of unobserved cells or the uncertainty
in the grid map [24], [18]. In the three-dimensional space,
however, such approaches are not directly applicable. The
size of occupancy grid maps in 3D, for example, prevents
the robot from exploring an environment larger than a few
hundred square meters.

Whaite and Ferrie [23] presented an exploration approach
in 3D that uses the entropy to measure the uncertainty in
the geometric structure of objects that are scanned with
a laser range sensor. In contrast to the work described
here, they use a fully parametric representation of the ob-
jects and the size of the object to model is bounded by
the range of the manipulator. Surmannet al. [20] extract
horizontal planes from a 3D point cloud and construct a
polygon with detected lines (obstacles) and unseen lines (free
space connecting detected lines). They sample candidate
viewpoints within this polygon and use 2D ray-casting to
estimate the expected information gain. In contrast to this,
our approach uses an extension of 3D elevation maps and
3D ray-casting to select the next viewpoint. González-Bãnos
and Latombe [9] also build a polygonal map by merging
safe regions. Similar to our approach, they sample candidate
poses in the visibility range of frontiers to unknown area.
But unlike in our approach, they build 2D maps and do not
consider the uncertainty reduction in the known parts of the
map. Fournieret al. [8] present an 3D exploration approach
utilizing an octree structure to represent the environment.
However, it is unclear if the presented approach is able to
explore on multiple levels.

The contribution of this paper are techniques for au-
tonomously learning MLS maps with a mobile robot based
on laser range �nder and odometry only. We furthermore
describe how a robot can utilize such a model to track its own
pose and to globally localize itself. Our approach does not
rely on GPS information and thus allows a robot to operate
in combined indoor and outdoor scenarios.

III. 3D M ODEL OF THEENVIRONMENT

Our exploration system uses multi-level surface maps
(MLS maps) as proposed by Triebelet al. [22]. MLS maps
use a two-dimensional grid structure that stores different
elevation values. In particular, they store in each cell of a

Fig. 1. Standard elevation map (left) which is not able to represent the
underpass under the bridge correctly, and multi-level surface map (right)
that correctly represents the height of the vertical objects and is able to
model multiple levels.

discrete grid the height of the surface in the corresponding
area. In contrast to elevation maps, MLS maps allow us
to store multiple surfaces in each cell. Each surface is
represented by a Gaussian with the mean elevation and its
uncertainty� . In the remainder of this paper, these surfaces
are referred to as patches. This representation enables a
mobile robot to model environments with structures like
bridges, underpasses, buildings, or mines. They also enable
the robot to represent vertical structures by storing a vertical
depth value for each patch. Figure 1 shows two example
maps from the same environment. The left image shows that
it is not possible to represent an underpass , overhanging and
vertical objects correctly using elevation maps. On the other
hand the right image illustrates the ability of the MLS map
approach to represent all these structures correctly.

IV. GPS-FREELOCALIZATION USING MLS MAPS

In this chapter, we assume that the robot already has a
multi-level surface map available for localization. In thenext
chapter, we then present a technique to autonomously learn
a MLS map.

To estimate the posex = ( x; y; z; '; #;  ) of the robot in
its environment, we consider probabilistic localization,which
follows the recursive Bayesian �ltering scheme. The key idea
of this approach is to maintain a probability densityp(x t j
z1:t ; u0:t � 1) of the robot's locationx t at time t given all
observationsz1:t up to timet and all control inputsu0:t � 1

up to timet � 1. This posterior is updated as follows:

p(x t j z1:t ; u0:t � 1) =

� � p(zt j x t ) �
Z

p(x t j u t � 1; x t � 1) � p(x t � 1) dx t � 1: (1)

Here, � is a normalization constant ensuring thatp(x t j
z1:t ; u0:t � 1) sums up to one over allx t . The terms
to be described in Eqn. (1) are theprediction model
p(x t j u t � 1; x t � 1) and thesensor modelp(zt j x t ). One ma-
jor contribution of this paper is an appropriate computation
of these models in the case that an MLS map is given.

For the implementation of the described �ltering scheme,
we use a sample-based approach which is commonly known
as Monte Carlo localization[5]. Monte-Carlo localization
is a variant of particle �ltering [6] where each particle
corresponds to a possible robot pose and has an assigned
weight wi . Thebelief updatefrom Eqn. (1) is performed by
the following two alternating steps:

1) In theprediction step, we draw for each particle with
weight wi a new particle according towi and to the
prediction modelp(x t j u t � 1; x t � 1).
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Fig. 2. Application of our prediction model to a series of 2D motion
vectors (black). They are rotated to estimate the 3D motion vectors (red).
The dashed line indicates the tolerance interval for thez-coordinate.

2) In the correction step, a new observationzt is inte-
grated. This is done by assigning a new weightwi to
each particle according to the sensor modelp(zt j x t ).

A. Prediction Model for MLS Maps

The prediction modelp(x t j u t � 1; x t � 1) we use is based
on an approach introduced by Eliazaret al. [7]. It re�ects
systematic errors such as drift, as well as the uncertainty in
the execution of an actionu = ( xu ; yu ; � u ), where(xu ; yu )
is the translation and� u the rotation angle. To incorporate
this 2D motion into our 3D map we proceed as follows. First,
we obtain a possible outcome(xv ; yv ; � v ) of the action by
applying the probabilistic model. Then, we adapt the motion
vectorv = ( xv ; yv ) to the shape of the 3D surface traversed
by the robot. This surface is obtained from the given MLS
map and consists of planar square patches. To adapt the
motion vector, we discretize it into segments of lengthc,
which is the cell size of the MLS map, in our case0:1m.
For each segment, we determine the corresponding surface
patchS and rotate the segment according to the orientation
(' S ; #S ) of the patch, where' S is the rotation about the
x-axis and #S the rotation about they-axis. The patch
orientation is computed from the normal vectornS of the
patchS, which in turn is obtained by �tting a plane into the
local vicinity of S. The normal vector computation is done
beforehand and constitutes an extension to the framework of
MLS maps. In general, it is not robust against noise and small
errors in the MLS map, which results in an uncertainty of the
patch orientation. In our approach, we model this uncertainty
by adding Gaussian noise to the orientation parameters' S

and#S . Thus, our prediction model expresses the uncertainty
in 5 out of 6 position parameters –x, y and  by the 2D
motion model and' and # by our 3D extension. For the
last one – the height valuez – we have the constraint that
the robot must stay on the ground. Therefore, we adjust
the z-value manually whenever it is too high or too low.
This is illustrated in Figure 2. Finally, after concatenating
all transformed motion vector segments, we obtain a new
3D motion vectorv̂ which is added to the current estimate
of the robot positionx t � 1 to obtain a new position estimate
x t .

zk dk

Fig. 3. Example of a single beam which ends close to vertical object in
the MLS map. In the end point model, the probabilityphit (zk j x ) only
depends on the distancedk between the end point of thek-th laser beam
and the closest obstacle in the map.

B. Endpoint Sensor Model for MLS Maps

In our sensor model, we treat each beam independently
and determine the likelihood of a whole laser scan by
factorizing over all beams. Thus, we have

p(z j x) =
KY

k=1

p(zk j x ) (2)

whereK is the number of beams in each laser measurement
z. In Eqn. (2) and in the following, we drop the index
t for convenience. Our sensor modelp(zk j x ) is based
on an approach that has been introduced by Thrun [21] as
likelihood �elds (LF) or end point model. In particular, we
formulate the sensor modelp(zk j x ) for each particular
beam as a mixture of three different distributions:

p(zk j x ) = � hit phit (zk j x )+

� rand prand (zk j x ) + � max pmax (zk j x ); (3)

where phit is a normal distributionN (0; � 2) that models
situations in which the sensor detects an obstacle. Random
measurements are modeled using a uniform distribution
prand (zk j x ). Maximum range measurements are covered
by a point mass distributionpmax (zk j x ). These three dis-
tributions are weighted by the non-negative parameters� hit ,
� rand , and� max , which sum up to one. The values for� hit ,
� rand , � max , and � 2 used in our current implementation
have been determined empirically.

In the end point model, the probabilityphit (zk j x ) only
depends on the distancedk between the end point of thek-
th laser beam and the closest obstacle in the map. Figure 3
shows an example of a single beamzk which ends close to
vertical object in the MLS map. Thus, the physical property
of the laser beam is ignored, because the model just uses the
end point and does not consider the beam characteristic of the
laser. Therefore, we need to calculate the global coordinates
for a beam end point. If we denote the angle of thek-th beam
relative to the zero angle with� k , then the end point~pk =
(~xk ; ~yk ; ~zk )T of that beam in the robot's own coordinate
frame is calculated as

0

@
~xk

~yk

~zk

1

A =

0

@
x̂
ŷ
ẑ

1

A + Rzk

0

@
cos(� k )
sin(� k )

0

1

A ; (4)

where(x̂; ŷ; ẑ)T denotes the position of the sensor at time
t and R is a rotation matrix that expresses the 3D sensor



orientation in the robot's coordinate frame. For a given robot
posex = ( x; y; z; '; #;  ) at time t we can compute the
global coordinatespk = ( xk ; yk ; zk )T of the k-th beam end
point pk as follows

0

@
xk

yk

zk

1

A = R('; #;  )

0

@
~xk

~yk

~zk

1

A +

0

@
x
y
z

1

A ; (5)

whereR('; #;  ) denotes the rotation matrix for the given
Euler angles' , #, and  . In MLS maps, obstacles are
represented asvertical surface patches, which can be seen as
vertical segments of occupied space. Unfortunately, thereis
no ef�cient way to �nd the closest of all vertical segments to
a given beam end point. Therefore, we use an approximation
by uniformly sampling a setP of 3D points from all vertical
patches. The distancedk of the k-th beam end pointpk to
the closest obstacle is then approximated as the Euclidean
distanced(pk ; P) betweenpk and P. This distance can be
ef�ciently calculated by storing all points fromP in a kD-
tree.

Equations. (4) and (5) describe a 3D transformT(zk ; x)
of the measurementzk at positionx. Using this and the fact
that phit is Gaussian, we can computephit as

phit (zk j x ) �
1

p
2�� 2

exp

 

�
1
2

�
d(pk ; P)

�

� 2
!

; (6)

wherepk = T(zk ; x). Plugging this into Eqn. (3) and the
result into Eqn. (2), we obtain the entire sensor model.

V. AUTONOMOUSEXPLORATION IN

THREE-DIMENSIONAL ENVIRONMENTS

The previous section covered the problem of localizing
a vehicle in a MLS map. In this section, we relax the
assumption that such a model is provided and present an
approach to autonomously learn a MLS map with our mobile
robot.

In order to autonomously explore the environment, we �rst
need to perform a traversability analysis, thereby avoiding
positive and negative obstacles. Then we determine candidate
viewpoints in the vicinity of unexplored areas and evaluate
those candidate viewpoints by considering the travel coststo
a particular viewpoint and the expected information gain of
a measurement at this viewpoint.

A. Traversability Analysis

A grid based 2D traversability analysis usually only takes
into account the occupancy probability of a grid cell –
implicitly assuming an even environment with only positive
obstacles. In the 3D case, especially in outdoor environments,
we additionally have to take into account the slope and the
roughness of the terrain, as well as negative obstacles such
as abysms which are usually ignored in 2D representations.

Each patchp will be assigned a traversability value� (p) 2
[0; 1]. A value of zero corresponds to a non-traversable patch,
a value greater zero to a traversable patch, and a value of
one to a perfectly traversable patch. In order to determine
� (p), we �t a plane into its local 8-patch neighborhood

by minimizing thez-distance of the plane to the elevation
values of the neighboring patches. We then compute the
slope and the roughness of the local terrain and detect
obstacles. The slope is de�ned as the angle between the
�tted plane and a horizontal plane and the roughness is
computed as the average squaredz-distances of the height
values of the neighboring patch to the �tted plane. The
slope and the roughness are turned into traversability values
� s(p) and � r (p) by linear interpolation between zero and a
maximum slope and roughness value respectively. In order
to detect obstacles we set� o(p) 2 f 0; 1g to zero, if the
maximum squaredz-distance of a neighboring patch exceeds
a threshold, thereby accounting for positive and negative
obstacles, or if the patch has less than eight neighbors. The
latter is important for avoiding abysms in the early stage
of an exploration process, as some neighboring patches are
below the edge of the abysm and therefore are not visible
yet.

The combined traversability value is de�ned as� (p) =
� s(p) � � r (p) � � o(p). Next, we iteratively propagate the values
by convolving the traversability values of the patch and its
eight neighboring patches with a Gaussian kernel. For non-
existent neighbors, we assume a value of0:5. The number
of iterations depends on the used cell size, the robot's size
and a safety margin. In order to enforce obstacle growing,
we do not perform a convolution if one of the neighboring
patches is non-traversable (� = 0 ), but rather set the patch's
traversability directly to zero in this case.

B. Viewpoint Generation

We follow the popular frontier-based approach to explo-
ration [24] and adapt it to the needs of a 3D environment.
In our approach, a patch is considered as explored if it has
eight neighbors and its uncertainty, measured by the entropy
in the patch, is below a threshold. Additionally, we track the
entropy as well as the number of neighbors of a patch. If
the entropy or number of non-existing neighbors cannot be
reduced as expected over several observations, we consider
it to be explored nonetheless since further observations do
not seem to change the state of the patch.

A frontier patch is de�ned as an unexplored patch with at
least one explored neighboring patch. Most of these patches
have less than eight neighbors and therefore are consideredas
non-traversable, since they might be at the edge of an abysm.
Therefore, we cannot drive directly to a frontier patch.
Instead, we use a 3D ray-casting technique to determine
close-by candidate viewpoints. A patch is considered as
a candidate viewpoint, if it is reachable and there is at
least one frontier patch that is likely to be observable from
that viewpoint. Instead of using ray-casting to track emitted
beams from the sensor at every reachable position, we use
a more ef�cient approach. We emit virtual beams from
the frontier patch instead and then select admissible sensor
locations along those beams (Figure 4). This will reduce the
number of needed ray-casting operations as the number of
frontier patches is much smaller than the number of reachable
patches.
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Fig. 4. To generate viewpoints, we emit laser beams from viewpoints
and determine admissible sensor positions along those beams. The interval
df ree needs to be free and the intervaldocc has to contain a reachable
patch.

Fig. 5. Outdoor map showing sampled candidate viewpoints as red (dark
gray) spheres.

In practice, we found it useful to reject candidate view-
points, from which the expected information gain is below
a threshold. We also cluster the frontier patches by the
neighboring relation, and prevent patches from very small
frontier clusters to generate candidate viewpoints. This will
lead to a more reliable termination of the exploration process.
Candidate viewpoints of an example map are shown in
Figure 5.

C. Viewpoint Evaluation

The utility u(v) of a candidate viewpointv, is computed
using the expected information gainE f I (v)g and the travel
costst(v). As the evaluation involves a costly 3D ray-casting
operation, we reduce the set of candidate viewpoints by
sampling uniformly a �xed number of viewpoints from that
set.

In order to simultaneously determine the shortest paths to
all candidate viewpoints, we use a deterministic variant of
the value iteration. The costs of moving from a patchp to
p0 can be de�ned as

c(p; p0) = d(p; p0) + w(1 � � (p0)) (7)

where d(p; p0) describes the Euclidian distance and� (p0)
the traversability ofp0. The constantw is used to weight
the penalization for traversing poorly traversable patches.
The travel costst(v) of a viewpoint v is de�ned as the
accumulated step costs of the shortest path to that viewpoint.

The expected information gain considers the uncertainty
reduction in the known parts of the map as well as the
information gain caused by new patches that are expected
to be discovered.

To determine the patches that are likely to be hit by a laser
measurement, we �rst perform a ray-cast operation similar
to [19]. We determine the intersection points of the cell
boundaries and the 3D ray projected onto the 2D grid. In
a second step, we determine for each cell the height interval
covered by the ray and check for collisions with patches
contained in that cell by considering their elevation and depth
values.

Let the sequenceL = hl1; : : : ; lm i be an equidistant
discretization of the maximum laser range. If the simulated
laser ray hits a patch in distance that falls intolh , we
can divide L into three subsequencesL f ; L h ; and L n ,
whereasL f = hl1; : : : ; lh� 1i contains the collision free
traversed distances,L h = hlh i contains the above mentioned
discretized distance to the patch that has been hit, and
L n = hlh+1 ; : : : ; lm i contains the non-traversed distances.
Accordingly, if the simulated ray does not hit a patch, this
will result in three subsequencesL f = L andL h = L n = hi.
For each traversed distancel 2 L f [ L h we expect the
ray during a real measurement to end after distancel with
probability p(l). If l 2 L f , then this corresponds to the
discovery of a new patch, which implies an information gain
I f (l ). If l 2 L h , then this corresponds to a measurement of
an already known patch, which implies an information gain
I h (l ). The expected information gain of rayr then is de�ned
as

Ef I (r )g =
X

l 2 L

p(l)I (l ) =
X

l 2 L f

p(l)I f (l ) +
X

l 2 L h

p(l)I h (l ):

(8)
Here we assumep(l) = 0 for l 2 L n , as we do not expect
the ray to travel through a known patch.

To assess the probabilitiesp(l), we created statistics
through simulated measurements in a large outdoor map
which yielded a conditional probability distributionps(d j
� v ) denoting the probability of hitting an obstacle after
distanced when the elevation angle of the ray is� v . The
intuition behind this is, that it is much more likely for
downward pointing rays to hit a patch than for upward
pointing rays. Secondly, the probability to hit an obstacle
is not equally distributed along the laser range, especially
not for downward pointing rays. Using this distribution, we
can de�ne

p(l) =

8
><

>:

ps(l j � v ) l 2 L f

P
l i 2 L h [ L n ps(l i j � v ) l 2 L h

0 l 2 L n

(9)

with � v being the elevation angle of the current rayr .
The information gainI h is de�ned by the uncertainty

reduction in the known map. We therefore temporary add
a new measurementmh into the grid cell of the hit patchph

with a corresponding mean and variance that depends on the
distancelh of the simulated ray. The mean and variance of



the patchph will then be updated by using a Kalman �lter.
As a patch is represented as a Gaussian, we can compute the
entropyH (p) of a patch as

H (p) =
1
2

log
�
2e�� 2�

: (10)

The information gainI h (l ) is then de�ned as the difference

I h (l ) = H (ph ) � H (ph j mh ) l 2 L h : (11)

between the entropyH (ph ) of the patchph before and the
entropyH (ph j mh ) after the temporary incorporation of the
simulated measurementmh .

For the information gainI f we will proceed similarly.
As a newly discovered patchpf will be inserted with
an uncertainty� proportional to the distancel 2 L f of
measurementmf , we can thereby computeH (pf j mf ) as
in Eqn. 10. We assume that the uncertainty� b of the patch
before it has been measured, is bounded by the distancedp

to the nearest patch in that cell and choose, as a heuristic, an
uncertainty so that3� b = dp. Using� b we can de�neH (pf )
and �nally compute

I f (l ) = H (pf ) � H (pf j mf ) l 2 L f : (12)

The expected information gainE f I (v)g of a viewpointv is
then de�ned as the sumEf I (v)g =

P
r 2 R Ef I (r )g of the

expected information gains of all casted raysr 2 R.
Finally, the utility u(v) of each candidate viewpoint is

computed by a relative expected information gain and travel
costs as

u(v) = �
E f I (v)g

maxx Ef I (x)g
+(1 � � )

maxx t(x) � t(v)
maxx t(x)

: (13)

By varying the constant� 2 [0; 1] one can alter the
exploration behavior by trading off the travel costs and the
expected information gain.

D. Overlap

As explained before, we choose the viewpoint with the
best utility as the next goal point. However, to ensure that
we can construct a globally consistent map, we have to
continously track the position of the vehicle. We construct
a network of constraints between poses according to the
observations. We then apply an ef�cient global optimization
approach [10], [11] to correct the poses.

To ensure that the relations between poses can be accu-
rately determined, a certain overlap between consecutive 3D
scans is required. We perform several 3D scans along the
way to ensure this suf�cient overlap. We use the 3D ray-
casting technique to simulate a 3D scan and estimate the
overlap of a real scan at each patchpi of the planned path
hp1; : : : ; pn i . The estimated overlap̂o(pi ) = r l =jRj is ratio
of the number of raysr l that hit a patch of the last local map
to the number of all casted raysjRj for a simulated scan at
patchpi . The patchpi with the highest indexi 2 f 1; : : : ; ng
whose overlap̂o(pi ) is above a threshold is chosen as the
subgoal for the next 3D scan.

Based on the map estimate so far, we apply the localization
approach described in the previous chapter. Based on the

most likely pose reported by the localization module, we
perform scan-matching to re�ne the estimate. The relation
between poses that are determined in this way are then added
to the constraint network. The exploration ends, if the set of
candidate viewpoints is empty.

VI. EXPERIMENTS

In this section, we present experiments designed to il-
lustrate the properties of the presented techniques as well
as their advantages compared to other techniques. First, we
present experiments that evaluate the GPS-free localization
approach using laser range �nder only. Then, we investigate
the properties of our uncertainty-driven exploration approach.

A. Localization
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Fig. 6. Convergence of the particles to the true position of the robot with
500,000 (left) and 1,000,000 (right) particles. Thex-axes depict the number
of resampling steps, while they-axes show the percentage of particles that
are closer than1m to the true position.
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Fig. 7. The left image depicts the number of successful localizations after
15 resampling steps for the two different map representationsfor particle
numbers from 250,000 up to 1,000,000. The right image shows theaverage
localization error over all particles for a tracking experiment with 1,000
particles. In average the use of the MLS maps leads to smaller errors.

The �rst set of experiments is designed to evaluate the
performance of the MLS map approach in the context of a
global localization task. Figure 6 depicts the convergenceof
the particles to the true position of the robot with500; 000
and1; 000; 000 particles. Whereas the x-axis corresponds to
the resampling step, the y-axis shows the number of particles
in percent that are closer than1m to the true position, which
has been computed by a tracking experiment with100; 000
particles. Shown are the evolutions of these numbers when
the MCL is applied on standard elevation maps and on MLS
maps. Note that the elevation map does not reach100%.
This is due to the fact that the sensor model for the stan-
dard elevation map relies on a highly smoothed likelihood
function, which is good for global localization but does not
achieve maximal accuracy during tracking. The application



of a more peaked sensor model in the case of the standard
elevation map would lead to much higher divergence rates.
In both cases, a t-test showed that it is signi�cantly betterto
apply the MLS maps than the standard elevation maps for
the global localization task. Experiments with 250,000 and
750,000 particles showed the same behavior. The left image
of Figure 7 shows the number of successful localizations
for the two different map representations and for different
numbers of particles. Here, we assumed that the localization
was achieved when every particle differed by at most1m
from the true location of the robot. We can see that the global
localization performs more robust on the MLS map than on
the standard elevation map.

Fig. 8. MLS map used for the localization experiments. The area
represented by this map spans approximately 195 by 146 meters. The blue
/ dark gray line shows the localized robot poses. The yellow /light gray
line shows the pure odometry. The traversed trajectory has a length of 284
meters.

As a second set of experiments we carried out experiments,
in which we analyzed the accuracy of the MLS map approach
in the context of a position tracking task. To obtain the
corresponding data set, we steered along a loop in our
campus environment. The traversed trajectory has a length
of 284 meters. Figure 8 depicts a top view of the MLS map
of our test environment. The blue / dark gray line shows
the localized robot poses. The yellow / light gray line shows
the pure odometry. The right image of Figure 7 depicts the
average localization error for a tracking experiment with
1,000 particles. As can be seen from the �gure, the MLS map

robot

Fig. 9. Overview of the simulation environment and a detailed view of
the entrance on the �rst �oor with the robot in front of it.

approach outperforms the standard elevation map approach.
The tracking experiments have been computed online on a
standard PC with an AMD Athlon 64 3200+ processor. In
the practical experiments we found that the use of the MLS
maps results in a computational overhead of no more than
10% compared to elevation maps.

B. Exploration

The �rst exploration experiment is designed to show the
ability of our exploration technique to take full advantage
of the capabilities that MLS maps provide, e.g. representing
multiple surface layers on top of each other. In a simulation
environment with realistic rigid body physics we constructed
a two-story building (Figure 9). It consists of two rooms
located on top of each other, each 12 by 8 meters in size,
and an unsecured balcony, where the robot is initially located.
The house is surrounded by some trees and bushes, which
are approximated by cuboids. We restricted the location of
possible viewpoints to a rectangular area around the house in
order to focus on the exploration of the house rather than the
free space around the house. The robot explored the balcony,
traversed the upper room and proceeded down a ramp that
connects the upper room with the ground �oor. The robot
drove around the house and then entered the entrance to
the room in the �rst �oor. During the exploration of the
lower room several 3D loops with positions at the upper
room have been closed. He then visited a last viewpoint
at the back of the house and then the exploration ended.
The robot visited 18 viewpoints, performed 29 3D scans and
traveled a distance of 212 meters. The �nal map consists
of 185,000 patches. We demonstrated with this experiment,
that we are able to deal with several challenges that simple
mapping approaches are not able to deal with, e.g. negative
obstacles and multiple surface layers. A 2D approach would
simply have fallen down the unsecured balcony, and simple
3D mapping approaches like, for example, elevation maps,
would not support the exploration of the two storys on top
of each other. Figure 10 shows the constructed map with a
detailed view of the entrance to the lower room.

To demonstrate the ability to explore real environments,
we performed an experiment on the campus of the University
of Freiburg using an ActivMedia Pioneer 2-AT equipped
with a SICK laser range scanner mounted on a pan-tilt unit.
To give the exploration an initial direction, we restricted
the generation of viewpoints to the half-plane in front of
the initial location of the robot. The robot followed a path



Fig. 10. Detailed view of the �nal traversability map showingthe robot's
trajectory as a blue line.

bordered by the wall of a house on the left side and grassland
on the right side (Figure 11). Then he entered a small
courtyard on the left, which was suf�ciently explored after
a few scans. He then proceeded to explore the rest of the
campus until he reached the border of the de�ned half-
plane. The �gure shows four snapshots of the exploration
process. In the last image, the robot traveled 186 meters,
visited 18 viewpoints and performed 26 3D scans. The
corresponding map including the traversability information
contains about 410,000 patches and is depicted in Figure 12.
In both experiments, we set� = 0 :5 in order to equally
consider the travel costs and expected information gain.

VII. C ONCLUSION

In this paper, we considered the problem of autonomously
learning a three-dimensional model for combined outdoor
and indoor environments with a mobile robot. We further-
more demonstrated how to localize a mobile vehicle based
on such a model without requiring GPS information. Our
approach uses proximity data from a laser range �nder as
well as odometry. Using our three-dimensional model of the
environment, namely multi-level surface maps, we obtain
signi�cantly better results compared to elevation maps. We
also presented an algorithm to actively acquire such maps
from an unknown environment. This approach is decision-
theoretic and trades off the cost of carrying out an action with
the expected information gain of future observations. The
approach also considers negative obstacles such as absyms
which is an important prerequisite for robots operating in 3D
environments.
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Fig. 12. Traversability map of the university campus.
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