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P. Pfaff∗ R. Kümmerle∗ D. Joho∗ C. Stachniss∗ R. Triebel+ W. Burgard∗

∗Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
+Autonomous Systems Lab, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Abstract— Whenever mobile robots are used in real world
applications, the ability to learn an accurate model of the
environment and to localize itself based on such a model are
important prerequisites for reliable operation. Whereas these
problems have been successfully solved in the past for most
indoor tasks, in which the robot is assumed to operate on a flat
surface, such approaches are likely to fail in combined indoor
and outdoor environments in which the three-dimensional
structure of the world needs to be considered. In this paper,
we consider the problem of localizing a vehicle that operates
in 3D indoor as well as outdoor settings. Our approach is
entirely probabilistic and does not rely on GPS information.
It is based on so-called multi-level surface maps which are
an extension of the well-known elevation maps. In addition to
that, we present a technique that allows the robot to actively
explore the environment. This algorithm applies a decision-
theoretic approach and considers the uncertainty in the model
to determine the next action to be executed. In practical
experiments, we illustrate the properties as well as advantages
of our approach compared to other techniques.

I. INTRODUCTION

Robots that are able to acquire an accurate model of their

environment and to localize themselves based on such a

model are regarded as fulfilling a major precondition of truly

autonomous mobile vehicles.

The problem of mobile robot localization with range sen-

sors in outdoor environments arises whenever GPS signals

are missing due to occlusions caused by buildings, bridges, or

trees. Furthermore, in case of combined outdoor and indoor

environments, relying on GPS information will obviously

lead to failure in the pose estimate. In such situations, a

mobile robot typically has to estimate its position in the

environment using its exteroceptive sensors and a map of the

environment. However, when a robot attempts to perceive its

environment to localize itself, the choice of the direction of

the perception can substantially influence the accuracy of the

position estimate. The localization task requires a given map

of the environment. In case such a model is not available, it

has to be learned by the robot. This problem is also known as

autonomous exploration. So far, most approaches to mobile

robot exploration assume that the robot lives in a plane.

They typically focus on generating motion commands that

minimize the time needed to cover the whole terrain [13],

[24]. A frequently used technique is to build an occupancy

grid map since it can model unknown locations efficiently.

The robot seeks to reduce the number of unobserved cells

or the uncertainty in the grid map. In the three-dimensional

space, however, such approaches are not directly applicable.

The size of occupancy grid maps in 3D, for example,

prevents the robot from exploring an environment larger than

a few hundred square meters.

The contribution of this paper are solutions to the local-

ization and to the autonomous exploration problem in three-

dimensional, combined outdoor and indoor environments.

Both techniques use multi-level surface maps to provide

an appropriate model of the environment. The MCL-based

localization technique does not require GPS information

and uses only proximity data from a laser range finder as

well as odometry information. Our exploration technique

extents existing exploration approaches used in 2D to the

three-dimensional space. It selects actions that reduce the

uncertainty of the robot about the world. It does so by

reasoning about potential measurements that can be obtained

when selecting an action. Our approach is able to deal

with negative obstacles like, for example, abysms, which is

a problem of robots exploring a three-dimensional world.

Experiments carried out in simulation and on a real robot

show the effectiveness of our techniques.

II. RELATED WORK

The problem of localizing a mobile robot in indoor and

outdoor environments with range sensors or cameras has

been studied intensively in the past. In indoor environments,

Monte-Carlo localization (MCL) [5] is one of the current

state-of-the-art approaches. Outdoors, Adams et al. [1] ex-

tract predefined features from range scanners and apply a

particle filter for localization. Davison and Kita [4] utilize a

Kalman filter for vision-based localization with point features

on non-flat surfaces. Recently, Agrawal and Konolige [2]

presented an approach to robot localization in outdoor ter-

rains based on feature points that are tracked across frames

in stereo images. Lingemann et al. [15] recently described a

method for fast localization in in- and outdoor environments.

Their system operates on raw data sets, which results in

huge memory requirements. Additionally, they apply a scan-

matching routine for localization, which does not facilitate

global localization. To reduce the memory requirements of

outdoor terrain representations, several researchers applied

elevation maps [3], [12], [14], [17]. A probabilistic approach

to localize a planetary rover in such elevation maps has been

described by Olson [16]. In this system, elevation maps were

sufficient to robustly localize the vehicle, mainly because



the number of vertical and overhanging objects is negligible

in environments like on Mars. However, environments on

earth contain many objects like buildings or trees which have

vertical or even overhanging surfaces. To address this issue,

we use multi-level surface (MLS) maps [22] to represent

the environment in this paper. MLS maps discretize the

environment into cells and store for each cell a list of patches

representing the individual layer in the environment as well

as vertical structures.

So far, most approaches to mobile robot exploration as-

sume that the robot lives in a plane. They typically focus

on generating motion commands that minimize the time

needed to cover the whole terrain [13], [24]. A frequently

used technique is to build an occupancy grid map since it

can model unknown locations efficiently. The robot seeks

to reduce the number of unobserved cells or the uncertainty

in the grid map [24], [18]. In the three-dimensional space,

however, such approaches are not directly applicable. The

size of occupancy grid maps in 3D, for example, prevents

the robot from exploring an environment larger than a few

hundred square meters.

Whaite and Ferrie [23] presented an exploration approach

in 3D that uses the entropy to measure the uncertainty in

the geometric structure of objects that are scanned with

a laser range sensor. In contrast to the work described

here, they use a fully parametric representation of the ob-

jects and the size of the object to model is bounded by

the range of the manipulator. Surmann et al. [20] extract

horizontal planes from a 3D point cloud and construct a

polygon with detected lines (obstacles) and unseen lines (free

space connecting detected lines). They sample candidate

viewpoints within this polygon and use 2D ray-casting to

estimate the expected information gain. In contrast to this,

our approach uses an extension of 3D elevation maps and

3D ray-casting to select the next viewpoint. González-Baños

and Latombe [9] also build a polygonal map by merging

safe regions. Similar to our approach, they sample candidate

poses in the visibility range of frontiers to unknown area.

But unlike in our approach, they build 2D maps and do not

consider the uncertainty reduction in the known parts of the

map. Fournier et al. [8] present an 3D exploration approach

utilizing an octree structure to represent the environment.

However, it is unclear if the presented approach is able to

explore on multiple levels.

The contribution of this paper are techniques for au-

tonomously learning MLS maps with a mobile robot based

on laser range finder and odometry only. We furthermore

describe how a robot can utilize such a model to track its own

pose and to globally localize itself. Our approach does not

rely on GPS information and thus allows a robot to operate

in combined indoor and outdoor scenarios.

III. 3D MODEL OF THE ENVIRONMENT

Our exploration system uses multi-level surface maps

(MLS maps) as proposed by Triebel et al. [22]. MLS maps

use a two-dimensional grid structure that stores different

elevation values. In particular, they store in each cell of a

Fig. 1. Standard elevation map (left) which is not able to represent the
underpass under the bridge correctly, and multi-level surface map (right)
that correctly represents the height of the vertical objects and is able to
model multiple levels.

discrete grid the height of the surface in the corresponding

area. In contrast to elevation maps, MLS maps allow us

to store multiple surfaces in each cell. Each surface is

represented by a Gaussian with the mean elevation and its

uncertainty σ. In the remainder of this paper, these surfaces

are referred to as patches. This representation enables a

mobile robot to model environments with structures like

bridges, underpasses, buildings, or mines. They also enable

the robot to represent vertical structures by storing a vertical

depth value for each patch. Figure 1 shows two example

maps from the same environment. The left image shows that

it is not possible to represent an underpass , overhanging and

vertical objects correctly using elevation maps. On the other

hand the right image illustrates the ability of the MLS map

approach to represent all these structures correctly.

IV. GPS-FREE LOCALIZATION USING MLS MAPS

In this chapter, we assume that the robot already has a

multi-level surface map available for localization. In the next

chapter, we then present a technique to autonomously learn

a MLS map.

To estimate the pose x = (x, y, z, ϕ, ϑ, ψ) of the robot in

its environment, we consider probabilistic localization, which

follows the recursive Bayesian filtering scheme. The key idea

of this approach is to maintain a probability density p(xt |
z1:t,u0:t−1) of the robot’s location xt at time t given all

observations z1:t up to time t and all control inputs u0:t−1

up to time t− 1. This posterior is updated as follows:

p(xt | z1:t,u0:t−1) =

α · p(zt | xt) ·
∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1.(1)

Here, α is a normalization constant ensuring that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms

to be described in Eqn. (1) are the prediction model

p(xt | ut−1,xt−1) and the sensor model p(zt | xt). One ma-

jor contribution of this paper is an appropriate computation

of these models in the case that an MLS map is given.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known

as Monte Carlo localization [5]. Monte-Carlo localization

is a variant of particle filtering [6] where each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from Eqn. (1) is performed by

the following two alternating steps:

1) In the prediction step, we draw for each particle with

weight wi a new particle according to wi and to the

prediction model p(xt | ut−1,xt−1).
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Fig. 2. Application of our prediction model to a series of 2D motion
vectors (black). They are rotated to estimate the 3D motion vectors (red).
The dashed line indicates the tolerance interval for the z-coordinate.

2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight wi to

each particle according to the sensor model p(zt | xt).

A. Prediction Model for MLS Maps

The prediction model p(xt | ut−1,xt−1) we use is based

on an approach introduced by Eliazar et al. [7]. It reflects

systematic errors such as drift, as well as the uncertainty in

the execution of an action u = (xu, yu, θu), where (xu, yu)
is the translation and θu the rotation angle. To incorporate

this 2D motion into our 3D map we proceed as follows. First,

we obtain a possible outcome (xv, yv, θv) of the action by

applying the probabilistic model. Then, we adapt the motion

vector v = (xv, yv) to the shape of the 3D surface traversed

by the robot. This surface is obtained from the given MLS

map and consists of planar square patches. To adapt the

motion vector, we discretize it into segments of length c,
which is the cell size of the MLS map, in our case 0.1 m.

For each segment, we determine the corresponding surface

patch S and rotate the segment according to the orientation

(ϕS , ϑS) of the patch, where ϕS is the rotation about the

x-axis and ϑS the rotation about the y-axis. The patch

orientation is computed from the normal vector nS of the

patch S, which in turn is obtained by fitting a plane into the

local vicinity of S. The normal vector computation is done

beforehand and constitutes an extension to the framework of

MLS maps. In general, it is not robust against noise and small

errors in the MLS map, which results in an uncertainty of the

patch orientation. In our approach, we model this uncertainty

by adding Gaussian noise to the orientation parameters ϕS

and ϑS . Thus, our prediction model expresses the uncertainty

in 5 out of 6 position parameters – x, y and ψ by the 2D

motion model and ϕ and ϑ by our 3D extension. For the

last one – the height value z – we have the constraint that

the robot must stay on the ground. Therefore, we adjust

the z-value manually whenever it is too high or too low.

This is illustrated in Figure 2. Finally, after concatenating

all transformed motion vector segments, we obtain a new

3D motion vector v̂ which is added to the current estimate

of the robot position xt−1 to obtain a new position estimate

xt.

zk dk

Fig. 3. Example of a single beam which ends close to vertical object in
the MLS map. In the end point model, the probability phit(zk | x) only
depends on the distance dk between the end point of the k-th laser beam
and the closest obstacle in the map.

B. Endpoint Sensor Model for MLS Maps

In our sensor model, we treat each beam independently

and determine the likelihood of a whole laser scan by

factorizing over all beams. Thus, we have

p(z | x) =

K
∏

k=1

p(zk | x) (2)

where K is the number of beams in each laser measurement

z. In Eqn. (2) and in the following, we drop the index

t for convenience. Our sensor model p(zk | x) is based

on an approach that has been introduced by Thrun [21] as

likelihood fields (LF) or end point model. In particular, we

formulate the sensor model p(zk | x) for each particular

beam as a mixture of three different distributions:

p(zk | x) = αhitphit(z
k | x)+

αrandprand(z
k | x) + αmaxpmax(zk | x), (3)

where phit is a normal distribution N (0, σ2) that models

situations in which the sensor detects an obstacle. Random

measurements are modeled using a uniform distribution

prand(z
k | x). Maximum range measurements are covered

by a point mass distribution pmax(zk | x). These three dis-

tributions are weighted by the non-negative parameters αhit,

αrand, and αmax, which sum up to one. The values for αhit,

αrand, αmax, and σ2 used in our current implementation

have been determined empirically.

In the end point model, the probability phit(zk | x) only

depends on the distance dk between the end point of the k-

th laser beam and the closest obstacle in the map. Figure 3

shows an example of a single beam zk which ends close to

vertical object in the MLS map. Thus, the physical property

of the laser beam is ignored, because the model just uses the

end point and does not consider the beam characteristic of the

laser. Therefore, we need to calculate the global coordinates

for a beam end point. If we denote the angle of the k-th beam

relative to the zero angle with ζk, then the end point p̃k =
(x̃k, ỹk, z̃k)T of that beam in the robot’s own coordinate

frame is calculated as




x̃k

ỹk

z̃k



 =





x̂
ŷ
ẑ



+Rzk





cos(ζk)
sin(ζk)

0



 , (4)

where (x̂, ŷ, ẑ)
T

denotes the position of the sensor at time

t and R is a rotation matrix that expresses the 3D sensor



orientation in the robot’s coordinate frame. For a given robot

pose x = (x, y, z, ϕ, ϑ, ψ) at time t we can compute the

global coordinates pk = (xk, yk, zk)T of the k-th beam end

point pk as follows




xk

yk

zk



 = R(ϕ, ϑ, ψ)





x̃k

ỹk

z̃k



+





x
y
z



 , (5)

where R(ϕ, ϑ, ψ) denotes the rotation matrix for the given

Euler angles ϕ, ϑ, and ψ. In MLS maps, obstacles are

represented as vertical surface patches, which can be seen as

vertical segments of occupied space. Unfortunately, there is

no efficient way to find the closest of all vertical segments to

a given beam end point. Therefore, we use an approximation

by uniformly sampling a set P of 3D points from all vertical

patches. The distance dk of the k-th beam end point pk to

the closest obstacle is then approximated as the Euclidean

distance d(pk,P) between pk and P . This distance can be

efficiently calculated by storing all points from P in a kD-

tree.

Equations. (4) and (5) describe a 3D transform T (zk;x)
of the measurement zk at position x. Using this and the fact

that phit is Gaussian, we can compute phit as

phit(z
k | x) ≈ 1√

2πσ2
exp

(

−1

2

(

d(pk,P)

σ

)2
)

, (6)

where pk = T (zk;x). Plugging this into Eqn. (3) and the

result into Eqn. (2), we obtain the entire sensor model.

V. AUTONOMOUS EXPLORATION IN

THREE-DIMENSIONAL ENVIRONMENTS

The previous section covered the problem of localizing

a vehicle in a MLS map. In this section, we relax the

assumption that such a model is provided and present an

approach to autonomously learn a MLS map with our mobile

robot.

In order to autonomously explore the environment, we first

need to perform a traversability analysis, thereby avoiding

positive and negative obstacles. Then we determine candidate

viewpoints in the vicinity of unexplored areas and evaluate

those candidate viewpoints by considering the travel costs to

a particular viewpoint and the expected information gain of

a measurement at this viewpoint.

A. Traversability Analysis

A grid based 2D traversability analysis usually only takes

into account the occupancy probability of a grid cell –

implicitly assuming an even environment with only positive

obstacles. In the 3D case, especially in outdoor environments,

we additionally have to take into account the slope and the

roughness of the terrain, as well as negative obstacles such

as abysms which are usually ignored in 2D representations.

Each patch p will be assigned a traversability value τ(p) ∈
[0, 1]. A value of zero corresponds to a non-traversable patch,

a value greater zero to a traversable patch, and a value of

one to a perfectly traversable patch. In order to determine

τ(p), we fit a plane into its local 8-patch neighborhood

by minimizing the z-distance of the plane to the elevation

values of the neighboring patches. We then compute the

slope and the roughness of the local terrain and detect

obstacles. The slope is defined as the angle between the

fitted plane and a horizontal plane and the roughness is

computed as the average squared z-distances of the height

values of the neighboring patch to the fitted plane. The

slope and the roughness are turned into traversability values

τs(p) and τr(p) by linear interpolation between zero and a

maximum slope and roughness value respectively. In order

to detect obstacles we set τo(p) ∈ {0, 1} to zero, if the

maximum squared z-distance of a neighboring patch exceeds

a threshold, thereby accounting for positive and negative

obstacles, or if the patch has less than eight neighbors. The

latter is important for avoiding abysms in the early stage

of an exploration process, as some neighboring patches are

below the edge of the abysm and therefore are not visible

yet.

The combined traversability value is defined as τ(p) =
τs(p) ·τr(p) ·τo(p). Next, we iteratively propagate the values

by convolving the traversability values of the patch and its

eight neighboring patches with a Gaussian kernel. For non-

existent neighbors, we assume a value of 0.5. The number

of iterations depends on the used cell size, the robot’s size

and a safety margin. In order to enforce obstacle growing,

we do not perform a convolution if one of the neighboring

patches is non-traversable (τ = 0), but rather set the patch’s

traversability directly to zero in this case.

B. Viewpoint Generation

We follow the popular frontier-based approach to explo-

ration [24] and adapt it to the needs of a 3D environment.

In our approach, a patch is considered as explored if it has

eight neighbors and its uncertainty, measured by the entropy

in the patch, is below a threshold. Additionally, we track the

entropy as well as the number of neighbors of a patch. If

the entropy or number of non-existing neighbors cannot be

reduced as expected over several observations, we consider

it to be explored nonetheless since further observations do

not seem to change the state of the patch.

A frontier patch is defined as an unexplored patch with at

least one explored neighboring patch. Most of these patches

have less than eight neighbors and therefore are considered as

non-traversable, since they might be at the edge of an abysm.

Therefore, we cannot drive directly to a frontier patch.

Instead, we use a 3D ray-casting technique to determine

close-by candidate viewpoints. A patch is considered as

a candidate viewpoint, if it is reachable and there is at

least one frontier patch that is likely to be observable from

that viewpoint. Instead of using ray-casting to track emitted

beams from the sensor at every reachable position, we use

a more efficient approach. We emit virtual beams from

the frontier patch instead and then select admissible sensor

locations along those beams (Figure 4). This will reduce the

number of needed ray-casting operations as the number of

frontier patches is much smaller than the number of reachable

patches.
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Fig. 4. To generate viewpoints, we emit laser beams from viewpoints
and determine admissible sensor positions along those beams. The interval
dfree needs to be free and the interval docc has to contain a reachable
patch.

Fig. 5. Outdoor map showing sampled candidate viewpoints as red (dark
gray) spheres.

In practice, we found it useful to reject candidate view-

points, from which the expected information gain is below

a threshold. We also cluster the frontier patches by the

neighboring relation, and prevent patches from very small

frontier clusters to generate candidate viewpoints. This will

lead to a more reliable termination of the exploration process.

Candidate viewpoints of an example map are shown in

Figure 5.

C. Viewpoint Evaluation

The utility u(v) of a candidate viewpoint v, is computed

using the expected information gain E{I(v)} and the travel

costs t(v). As the evaluation involves a costly 3D ray-casting

operation, we reduce the set of candidate viewpoints by

sampling uniformly a fixed number of viewpoints from that

set.

In order to simultaneously determine the shortest paths to

all candidate viewpoints, we use a deterministic variant of

the value iteration. The costs of moving from a patch p to

p′ can be defined as

c(p, p′) = d(p, p′) + w(1 − τ(p′)) (7)

where d(p, p′) describes the Euclidian distance and τ(p′)
the traversability of p′. The constant w is used to weight

the penalization for traversing poorly traversable patches.

The travel costs t(v) of a viewpoint v is defined as the

accumulated step costs of the shortest path to that viewpoint.

The expected information gain considers the uncertainty

reduction in the known parts of the map as well as the

information gain caused by new patches that are expected

to be discovered.

To determine the patches that are likely to be hit by a laser

measurement, we first perform a ray-cast operation similar

to [19]. We determine the intersection points of the cell

boundaries and the 3D ray projected onto the 2D grid. In

a second step, we determine for each cell the height interval

covered by the ray and check for collisions with patches

contained in that cell by considering their elevation and depth

values.

Let the sequence L = 〈l1, . . . , lm〉 be an equidistant

discretization of the maximum laser range. If the simulated

laser ray hits a patch in distance that falls into lh, we

can divide L into three subsequences Lf , Lh, and Ln,

whereas Lf = 〈l1, . . . , lh−1〉 contains the collision free

traversed distances, Lh = 〈lh〉 contains the above mentioned

discretized distance to the patch that has been hit, and

Ln = 〈lh+1, . . . , lm〉 contains the non-traversed distances.

Accordingly, if the simulated ray does not hit a patch, this

will result in three subsequences Lf = L and Lh = Ln = 〈〉.
For each traversed distance l ∈ Lf ∪ Lh we expect the

ray during a real measurement to end after distance l with

probability p(l). If l ∈ Lf , then this corresponds to the

discovery of a new patch, which implies an information gain

If (l). If l ∈ Lh, then this corresponds to a measurement of

an already known patch, which implies an information gain

Ih(l). The expected information gain of ray r then is defined

as

E{I(r)} =
∑

l∈L

p(l)I(l) =
∑

l∈Lf

p(l)If (l) +
∑

l∈Lh

p(l)Ih(l).

(8)

Here we assume p(l) = 0 for l ∈ Ln, as we do not expect

the ray to travel through a known patch.

To assess the probabilities p(l), we created statistics

through simulated measurements in a large outdoor map

which yielded a conditional probability distribution ps(d |
αv) denoting the probability of hitting an obstacle after

distance d when the elevation angle of the ray is αv . The

intuition behind this is, that it is much more likely for

downward pointing rays to hit a patch than for upward

pointing rays. Secondly, the probability to hit an obstacle

is not equally distributed along the laser range, especially

not for downward pointing rays. Using this distribution, we

can define

p(l) =











ps(l | αv) l ∈ Lf

∑

li∈Lh∪Ln ps(li | αv) l ∈ Lh

0 l ∈ Ln

(9)

with αv being the elevation angle of the current ray r.

The information gain Ih is defined by the uncertainty

reduction in the known map. We therefore temporary add

a new measurement mh into the grid cell of the hit patch ph

with a corresponding mean and variance that depends on the

distance lh of the simulated ray. The mean and variance of



the patch ph will then be updated by using a Kalman filter.

As a patch is represented as a Gaussian, we can compute the

entropy H(p) of a patch as

H(p) =
1

2
log
(

2eπσ2
)

. (10)

The information gain Ih(l) is then defined as the difference

Ih(l) = H(ph) −H(ph | mh) l ∈ Lh. (11)

between the entropy H(ph) of the patch ph before and the

entropy H(ph | mh) after the temporary incorporation of the

simulated measurement mh.

For the information gain If we will proceed similarly.

As a newly discovered patch pf will be inserted with

an uncertainty σ proportional to the distance l ∈ Lf of

measurement mf , we can thereby compute H(pf | mf ) as

in Eqn. 10. We assume that the uncertainty σb of the patch

before it has been measured, is bounded by the distance dp

to the nearest patch in that cell and choose, as a heuristic, an

uncertainty so that 3σb = dp. Using σb we can define H(pf )
and finally compute

If (l) = H(pf ) −H(pf | mf ) l ∈ Lf . (12)

The expected information gain E{I(v)} of a viewpoint v is

then defined as the sum E{I(v)} =
∑

r∈RE{I(r)} of the

expected information gains of all casted rays r ∈ R.

Finally, the utility u(v) of each candidate viewpoint is

computed by a relative expected information gain and travel

costs as

u(v) = α
E{I(v)}

maxxE{I(x)} +(1−α)
maxx t(x) − t(v)

maxx t(x)
. (13)

By varying the constant α ∈ [0, 1] one can alter the

exploration behavior by trading off the travel costs and the

expected information gain.

D. Overlap

As explained before, we choose the viewpoint with the

best utility as the next goal point. However, to ensure that

we can construct a globally consistent map, we have to

continously track the position of the vehicle. We construct

a network of constraints between poses according to the

observations. We then apply an efficient global optimization

approach [10], [11] to correct the poses.

To ensure that the relations between poses can be accu-

rately determined, a certain overlap between consecutive 3D

scans is required. We perform several 3D scans along the

way to ensure this sufficient overlap. We use the 3D ray-

casting technique to simulate a 3D scan and estimate the

overlap of a real scan at each patch pi of the planned path

〈p1, . . . , pn〉. The estimated overlap ô(pi) = rl/|R| is ratio

of the number of rays rl that hit a patch of the last local map

to the number of all casted rays |R| for a simulated scan at

patch pi. The patch pi with the highest index i ∈ {1, . . . , n}
whose overlap ô(pi) is above a threshold is chosen as the

subgoal for the next 3D scan.

Based on the map estimate so far, we apply the localization

approach described in the previous chapter. Based on the

most likely pose reported by the localization module, we

perform scan-matching to refine the estimate. The relation

between poses that are determined in this way are then added

to the constraint network. The exploration ends, if the set of

candidate viewpoints is empty.

VI. EXPERIMENTS

In this section, we present experiments designed to il-

lustrate the properties of the presented techniques as well

as their advantages compared to other techniques. First, we

present experiments that evaluate the GPS-free localization

approach using laser range finder only. Then, we investigate

the properties of our uncertainty-driven exploration approach.

A. Localization
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Fig. 6. Convergence of the particles to the true position of the robot with
500,000 (left) and 1,000,000 (right) particles. The x-axes depict the number
of resampling steps, while the y-axes show the percentage of particles that
are closer than 1m to the true position.
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Fig. 7. The left image depicts the number of successful localizations after
15 resampling steps for the two different map representations for particle
numbers from 250,000 up to 1,000,000. The right image shows the average
localization error over all particles for a tracking experiment with 1,000
particles. In average the use of the MLS maps leads to smaller errors.

The first set of experiments is designed to evaluate the

performance of the MLS map approach in the context of a

global localization task. Figure 6 depicts the convergence of

the particles to the true position of the robot with 500, 000
and 1, 000, 000 particles. Whereas the x-axis corresponds to

the resampling step, the y-axis shows the number of particles

in percent that are closer than 1m to the true position, which

has been computed by a tracking experiment with 100, 000
particles. Shown are the evolutions of these numbers when

the MCL is applied on standard elevation maps and on MLS

maps. Note that the elevation map does not reach 100%.

This is due to the fact that the sensor model for the stan-

dard elevation map relies on a highly smoothed likelihood

function, which is good for global localization but does not

achieve maximal accuracy during tracking. The application



of a more peaked sensor model in the case of the standard

elevation map would lead to much higher divergence rates.

In both cases, a t-test showed that it is significantly better to

apply the MLS maps than the standard elevation maps for

the global localization task. Experiments with 250,000 and

750,000 particles showed the same behavior. The left image

of Figure 7 shows the number of successful localizations

for the two different map representations and for different

numbers of particles. Here, we assumed that the localization

was achieved when every particle differed by at most 1m
from the true location of the robot. We can see that the global

localization performs more robust on the MLS map than on

the standard elevation map.

Fig. 8. MLS map used for the localization experiments. The area
represented by this map spans approximately 195 by 146 meters. The blue
/ dark gray line shows the localized robot poses. The yellow / light gray
line shows the pure odometry. The traversed trajectory has a length of 284
meters.

As a second set of experiments we carried out experiments,

in which we analyzed the accuracy of the MLS map approach

in the context of a position tracking task. To obtain the

corresponding data set, we steered along a loop in our

campus environment. The traversed trajectory has a length

of 284 meters. Figure 8 depicts a top view of the MLS map

of our test environment. The blue / dark gray line shows

the localized robot poses. The yellow / light gray line shows

the pure odometry. The right image of Figure 7 depicts the

average localization error for a tracking experiment with

1,000 particles. As can be seen from the figure, the MLS map

robot

Fig. 9. Overview of the simulation environment and a detailed view of
the entrance on the first floor with the robot in front of it.

approach outperforms the standard elevation map approach.

The tracking experiments have been computed online on a

standard PC with an AMD Athlon 64 3200+ processor. In

the practical experiments we found that the use of the MLS

maps results in a computational overhead of no more than

10% compared to elevation maps.

B. Exploration

The first exploration experiment is designed to show the

ability of our exploration technique to take full advantage

of the capabilities that MLS maps provide, e.g. representing

multiple surface layers on top of each other. In a simulation

environment with realistic rigid body physics we constructed

a two-story building (Figure 9). It consists of two rooms

located on top of each other, each 12 by 8 meters in size,

and an unsecured balcony, where the robot is initially located.

The house is surrounded by some trees and bushes, which

are approximated by cuboids. We restricted the location of

possible viewpoints to a rectangular area around the house in

order to focus on the exploration of the house rather than the

free space around the house. The robot explored the balcony,

traversed the upper room and proceeded down a ramp that

connects the upper room with the ground floor. The robot

drove around the house and then entered the entrance to

the room in the first floor. During the exploration of the

lower room several 3D loops with positions at the upper

room have been closed. He then visited a last viewpoint

at the back of the house and then the exploration ended.

The robot visited 18 viewpoints, performed 29 3D scans and

traveled a distance of 212 meters. The final map consists

of 185,000 patches. We demonstrated with this experiment,

that we are able to deal with several challenges that simple

mapping approaches are not able to deal with, e.g. negative

obstacles and multiple surface layers. A 2D approach would

simply have fallen down the unsecured balcony, and simple

3D mapping approaches like, for example, elevation maps,

would not support the exploration of the two storys on top

of each other. Figure 10 shows the constructed map with a

detailed view of the entrance to the lower room.

To demonstrate the ability to explore real environments,

we performed an experiment on the campus of the University

of Freiburg using an ActivMedia Pioneer 2-AT equipped

with a SICK laser range scanner mounted on a pan-tilt unit.

To give the exploration an initial direction, we restricted

the generation of viewpoints to the half-plane in front of

the initial location of the robot. The robot followed a path



Fig. 10. Detailed view of the final traversability map showing the robot’s
trajectory as a blue line.

bordered by the wall of a house on the left side and grassland

on the right side (Figure 11). Then he entered a small

courtyard on the left, which was sufficiently explored after

a few scans. He then proceeded to explore the rest of the

campus until he reached the border of the defined half-

plane. The figure shows four snapshots of the exploration

process. In the last image, the robot traveled 186 meters,

visited 18 viewpoints and performed 26 3D scans. The

corresponding map including the traversability information

contains about 410,000 patches and is depicted in Figure 12.

In both experiments, we set α = 0.5 in order to equally

consider the travel costs and expected information gain.

VII. CONCLUSION

In this paper, we considered the problem of autonomously

learning a three-dimensional model for combined outdoor

and indoor environments with a mobile robot. We further-

more demonstrated how to localize a mobile vehicle based

on such a model without requiring GPS information. Our

approach uses proximity data from a laser range finder as

well as odometry. Using our three-dimensional model of the

environment, namely multi-level surface maps, we obtain

significantly better results compared to elevation maps. We

also presented an algorithm to actively acquire such maps

from an unknown environment. This approach is decision-

theoretic and trades off the cost of carrying out an action with

the expected information gain of future observations. The

approach also considers negative obstacles such as absyms

which is an important prerequisite for robots operating in 3D

environments.
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Fig. 12. Traversability map of the university campus.
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