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Abstract— One of the key tasks during the realization of
probabilistic approaches to localization is the design of a proper
sensor model, that calculates the likelihood of a measurement
given the current pose of the vehicle and the map of the
environment. In the past, range sensors have become popu-
lar for mobile robot localization since they directly measure
distance. However, in situations in which the robot operates
close to edges of obstacles or in highly cluttered environments,
small changes in the pose of the robot can lead to large
variations in the acquired range scans. If the sensor model used
does not appropriately characterize the resulting fluctuations,
the performance of probabilistic approaches may substantially
degrade. A common solution is to artificially smooth the
likelihood function or to only integrate a small fraction of the
measurements. In this paper we present a more fundamental
and robust approach which uses mixtures of Gaussians to
model the likelihood function for single range measurements.
In practical experiments we compare our approach to previous
methods and demonstrate that it yields a substantially increase
in robustness.

I. INTRODUCTION

The ability to robustly localize a mobile robot given a map

of its environment belongs to the fundamental problems in

mobile robotics. One of the key challenges in this context

is to design a likelihood function or observation model

p(z | x,m) which specifies how to compute the likelihood

of an observation or measurement z given the robot is at

pose x in a given map m. For probabilistic approaches

like Monte Carlo localization (MCL) the proper design of

the likelihood function is essential. For example, too opti-

mistically specified sensor models might make the vehicle

overly confident in its position, might cause a depletion of

the correct particles, and finally might lead to a divergence of

the filter. On the other hand, too conservative models might

lead to a high uncertainty or even prevent the robot from

localizing itself as the sensor information cannot compensate

for the uncertainty introduced by the motion of the vehicle.

In the past, sophisticated sensor models have been de-

veloped for probabilistic approaches to robot localization.

Some of them take into account various aspects such as

objects not contained in the map or cross-talk. Whereas

such approaches have been proven to be extremely robust

in real-world applications, they do not appropriately take

into account potential effects not stemming from the mea-

surement process itself but caused by the fact that the map

is only an approximation of the real world or that not all

objects can be appropriately modeled, for example, due

to discretization errors. Additionally, such sensor models
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Fig. 1. In mobile robot localization, small variations in the robot pose
can cause large changes of the range measurements. This leads to multi-
modal distributions of beam-lengths in the local neighborhood of a pose
hypothesis.

are sensitive to discontinuities in the map. For example,

when the environment is cluttered, slight changes in the

map might lead to huge differences in the length of the

expected measurement at that particular location. This will

lead to extremely small likelihoods of the measurement

and then in turn might result in a divergence of the filter.

To cope with such situations, likelihood fields have been

proposed [17]. These models provide multi-modal likelihood

functions to better deal with clutter in the environment but

ignore the information along the individual beam of a range

measurement. Therefore, likelihood fields are less effective

in situations in which the robot has to perform a global

localization.

In this paper, we present a novel sensor model that applies

mixtures of Gaussians to better represent the likelihood

function at each individual place. The key idea of our

approach is to simulate a series of range measurements in

the local neighborhood of each particular location and to ap-

proximate the likelihood function by a mixture of Gaussians

using the Expectation Maximization (EM) algorithm. The

advantage of this approach is that the resulting likelihood

function is location-dependent and correctly captures the

effects of clutter and discontinuities on the measurements.

As a result, the localization process becomes more robust.

In practical experiments carried out with data obtained with a

real robot, we demonstrate that our new model substantially

outperforms existing sensor models.

This paper is organized as follows. After discussing related

work in the next section, we briefly describe Monte Carlo

localization in Section III and the principle of likelihood

models in Section IV. In Section V, we introduce our novel

likelihood model based on mixtures of Gaussians and finally,



in Section VI, we present experimental results illustrating

that our sensor model outperforms other popular likelihood

models.

II. RELATED WORK

In the literature, various techniques for computing the like-

lihood function for probabilistic localization methods with

proximity sensors have been introduced [2], [8], [17], [18].

These approaches either directly approximate the physical

characteristics of the sensor or try to provide smooth like-

lihood models to increase the robustness of the localization

process. In the past, is has been observed that the likelihood

function can have a major influence on the performance

of Monte Carlo Localization. Pitt and Shepard [14], for

example, as well as Thrun et al. [19] observed that more

particles are required if the likelihood function is peaked. In

the limit, i.e., for a perfect sensor, the number of required

particles becomes infinite. To deal with this problem, Lenser

and Veloso [10] and Thrun et al. [19] introduced techniques

to directly sample from the observation model and in this

way ensure that there is a critical mass of samples at

the important parts of the state space. Unfortunately, this

approach depends on the ability to sample from observa-

tions, which can often only be done in an approximate,

inaccurate way. Another way of dealing with the limitations

of the sample-based representation is to dynamically adapt

the number of particles, as done in KLD sampling [7].

However, for highly accurate sensors, even such an adaptive

technique might require a huge number of samples in order

to achieve a sufficiently high particle density during global

localization. Alternatively, one can artificially inflate the

measurement uncertainty to achieve a regularization of the

likelihood function, e.g., see the Scaling Series approach

presented by Petrovskaya et al. [11]. Also Kalman filters

have limitations in highly non-linear systems and in the

case of multi-modal likelihood functions. To overcome this

problem several researchers used Gaussian mixture models.

Duckett and Nehmzow [6], for example, introduced a multi-

modal generalization of the Kalman filter based on mixtures

of Gaussians. Recently, Upcroft et al. [20] introduced a fast

re-parameterization of Gaussian mixture models to represent

the probability distribution. Takamasa et al. [9] use Gaussian

mixture models to fuse odometry and sonar and to reduce

the localization error in the case of noisy sensors.

The focus of this paper is to model possible multi-

modalities in likelihood functions for laser range measure-

ments using Gaussian mixture models. Our approach im-

proves the robustness of probabilistic localization approaches

like MCL especially in situations in which small changes

of the robot’s pose can have drastic effects on the range

measurements.

III. MONTE CARLO LOCALIZATION USING RANGE

SENSORS

Throughout this paper, we consider the problem of esti-

mating the pose x = (x, y, θ) of a robot relative to a given

map m using a particle filter. The key idea of this approach

is to maintain a probability density p(xt | z1:t,u0:t−1) of

the location xt of the robot at time t given all observations

z1:t up to time t and all control inputs u0:t−1 up to time

t− 1. This probability is calculated recursively as

p(xt | z1:t,u0:t−1) =

α · p(zt | xt)

∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1 .(1)

Here, α is a normalizing constant ensuring that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms

to be described in Eqn. (1) are the prediction model

p(xt | ut−1,xt−1) and the sensor model p(zt | xt) respec-

tively.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known

as Monte Carlo localization (MCL) [3]. Monte Carlo local-

ization is a variant of particle filtering [5] where each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from Eqn. (1) is performed by

the following two alternating steps:

1) In the prediction step, we draw for each particle with

weight wi a new particle according to wi and to the

prediction model p(xt | ut−1,xt−1).
2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight wi to

each particle according to the sensor model p(zt | xt).

The likelihood model p(z | x) plays a crucial role in the

correction step of the particle filter and its proper design

is essential for the robustness of the filter. In the following

section we will describe typical likelihood models for range

sensors. Afterwards, we will present our model that uses

mixtures of Gaussians to represent multi-modalities in the

likelihood function.

IV. LIKELIHOOD MODELS

A laser scan zt is a vector of beams zt = (z1
t , . . . , zN

t )T ,

which have fixed orientations relative to the sensor. Beam-

based sensor models (see Fox et al. [8] for a typical

example) consider each value zi
t of the measurement vector

z as a separate range measurement and represent its one-

dimensional distribution by a parametric function depending

on the expected distance in the respective beam direction.

Such models are closely linked to the geometry and the

physics involved in the measurement process. They are

sometimes also called ray cast models because they rely on

ray casting operations within the map of the environment,

e.g., an occupancy grid map, to calculate the expected

beam lengths. Another popular measurement model for range

finder sensors are the so-called likelihood fields (AKA end

point model) [17]. This correlation-based method measures

the correlation between the measurement and the map. Here,

the likelihood of a range measurement is a function of the

distance of the respective end point of the beam to the closest

obstacle in the environment. This model lacks physical

explanation as it can basically “see through walls”, but in

the case of position tracking it is efficient and works well

in practice. The reader may notice that likelihood fields are



less effective in situations in which the robot has to perform

global localization. In all above mentioned approaches, the

individual beams are treated independently. Due to this, the

likelihood p(zt | xt,m) of the scan zt given the position xt

and the map m can be calculated by

p(zt | xt,m) =

N
∏

i=1

p(zi
t | xt,m). (2)

Given that laser range finders typically provide between

181 and 540 measurements with a resolution from 0.25 to

1.0 degrees, the independence assumption leads to highly

peaked likelihoods. In practice, this problem is dealt with by

sub-sampling of measurements [18], by introducing minimal

likelihoods for beams, or by other means of regularization

of the resulting likelihoods, see e.g.Arulampalam et al. [1].

In our previous work [12], we addressed this problem by

adapting the “peakedness” of the beam model using learned

heuristics. In other previous work [13], [15], we introduced

scan-based likelihood models. These models allow to di-

rectly calculate the likelihood of entire scans rather than

individual beams only. The common idea of these two

approaches is that they are location-dependent and explicitly

take the approximation error coming from the sample-based

representation into account. More precisely, they estimate

p(z | x) based on the local environment U(x) of a pose x,

p(z | x) =

∫

x̃∈U(x)

p(z | x̃) p(x̃) dx̃ . (3)

This is based on the observation that laser range finders

are extremely accurate sensors with a low level of mea-

surement noise. Thus, if one learns p(z | x) directly for

exact sensor poses x, e.g., with a mobile robot that is

not moved during training, one gets an extremely peaked

model with p(z | x + δ) ≪ p(z | x) already for small

pose perturbations δ. This peakedness, in turn, leads to

problems when only a finite number of pose hypotheses can

be evaluated, as it is the case, for example, with particle

filters where the number of particles is limited. The model

described in Eqn. 3, however, is able to explicitly consider

the sampling density by adjusting the spatial extent of the

local neighborhoods U(x) accordingly. The hard task is

indeed to estimate and represent the distributions of range

scans p(z | x) from a given number of training scans from

U(x), which are typically simulated using the map of the

environment m. Our previous approaches [13], [15] deal with

the high dimensionality of this distribution by modeling it as

an N -dimensional Gaussian. While this leads to an increased

performance compared to approaches that only consider the

current pose of the particle, it does not capture the multi-

modality of the likelihood function. In the following section,

we describe how to learn a Gaussian mixture model for the

distribution obtained by Eqn. 3 to improve the robustness of

the localization process.

V. PLACE-DEPENDENT GAUSSIAN MIXTURE MODELS

Figure 1 illustrates the drastic effects that small changes

of the robot’s pose can have on the measured range scans.

Starting
Position

Fig. 2. Traditional sensor models which ignore the multi-modality in
the distribution of beam lengths become inaccurate in the proximity of
doors, corners, and clutter. In this diagram, dark parts of the trajectory
mark locations, where the true pose receives a high likelihood relative
to neighboring ones, while orange/brightly colored parts highlight the less
accurately modeled locations.

The distribution of measured distances that arises when the

robot pose is varied locally as described in the previous

section is only unimodal in a perfectly convex world. In

general, however, there can be large jumps in perceived range

measurements when the sensor pose is changed only slightly.

Typically, such multi-modalities arise in the proximity of

doorways, corners, and cluttered areas of the environment.

In contrast to former approaches [8], [12], [13], [15] which

modeled the likelihood functions as unimodal distributions

for single beams or entire scans we now consider to model

each beam independently as a mixture of K Gaussian

distributions [16]. In such a mixture model, the likelihood

of the i-th beam of zt becomes

p(zi
t | xt,m) =

K
∑

j=1

p(zi
t | j) P (j), (4)

where

p(zi
t | j) =

1√
2πσi

j

· exp

(

−
(

zi
t − µi

j

)2

2σi
j

2

)

. (5)

Here, the individual mixture components are indexed by j

and their relative mixing weights are denoted – with a slight

abuse of notation for better readability – as P (j) =: αi
j . To

determine these weights αi
j with

∑K

j=1 αi
j = 1, 0 ≤ αi

j ≤ 1,

as well as the parameters µi
j and σi

j of the individual

Gaussians, we cluster the simulated ranges Di using the

expectation-maximization (EM) algorithm [4]. Concretely,

for each pose hypothesis xt, we simulate L complete range

scans D = {d1, . . . ,dL} at locations drawn uniformly from

U(xt) using the given map m of the environment. The

simulation of the laser range scans D = {d1, . . . ,dL} takes

into account the geometry and the physics involved in the

measurement process. It relies on ray casting operations

within an occupancy grid map to calculate the expected beam

lengths. The set of ranges simulated in direction of the i-

th laser beam is denoted as Di = {di
1, . . . , d

i
L}. The EM

algorithm iteratively assigns these distances to the mixture

components and optimizes their parameters in the following

manner. Consider that θ′ denotes the current estimate of

parameters µi
j , σi

j , and αi
j . In the E-Step, we calculate the



expected value of the complete log-likelihood

Q(θ,θ′) =E
[

log{p(Di, Y i | θ)} | Di,θ′
]

(6)

=

∫

yi

log{p(Di, yi | θ)}p(yi | Di,θ′) dyi, (7)

where Y i denotes data associations of the simulated data

points Di to one of the Gaussian mixture components.

Visually speaking, we estimate the assignment likelihoods

of the individual samples to the clusters while keeping the

other model parameters fixed. Then, in the M-Step, we fix

the data associations and optimize the expected value of the

complete log-likelihood

θ
′′ = argmax

θ
Q(θ,θ′) (8)

by updating the cluster parameters according to

αi
j =

1

L

L
∑

l=1

P (j | di
l,θ

′), (9)

µi
j =

∑L

l=1 P (j | di
l,θ

′) di
l

∑L

l=1 P (j | di
l,θ

′)
, (10)

(

σi
j

)2
=

∑L

l=1 P (j | di
l,θ

′)(di
l − µi

j)
∑L

l=1 P (j | di
l,θ

′)
. (11)

We now set θ′ ← θ′′ and iterate this procedure until the

amount of improvement per iteration falls below a specified

threshold.

VI. EXPERIMENTS

The approach described above has been implemented

and tested on data obtained with a mobile robot and by

simulation. To evaluate our approach we performed several

experiments. We first show that the pose uncertainty of the

robot can result in serious problems during a localization

process, especially when the multi-modality of the beams

is not considered. Then we analyze our Gaussian mixture

model in a global localization task in which in multi-modal

situations frequently occur and compare it to alternative

models that do not take into account the multi-modality. In

particular, we compared the performance of the following

sensor models:

GM: Our place-dependent beam-based Gaussian mixture

sensor model as detailed in Section V.

IB: The standard beam-based sensor model that as-

sumes independent beams with an additive white

noise component.

EP: The end-point sensor model [17] that calculates the

likelihood of a range measurement as a function of

the distance of the end point of the respective beam

to the closest obstacle in the environment.

EC: The scan-based place-dependent model with

learned covariance matrix as detailed in our pre-

vious work [13].

DC: The same model as EC with cross-correlation com-

ponents ignored, which means that only the diago-

nal entries of the covariance matrix are learned.
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Fig. 3. Experiment using 61 beams of laser range data collected in the
Heinz-Nixdorf-Forum in Paderborn. The experiment shows that the standard
ray cast model (IB) performs sub-optimally in regions close to corners
and that it produces highly fluctuating likelihood estimates. Our Gaussian
mixture model (GM) outperforms the other sensor models and produces
much less variance in the evaluated likelihoods.

A. Likelihood Evaluation

In the first set of experiments we evaluated the likelihood

of the true position of the robot in different data sets. We

therefore compared our Gaussian mixture model (GM) to

other likelihood models which are also based on ray casting

operations (IB, EC, and DC). This set of experiments is

designed to investigate the case that the robot is not able to

localize itself at different locations with the same robustness.

Figures 2 and 3 show two experiments using maps built

from a real data. Figure 5 shows an artificial data set with

strong discontinuities in the right part of the map. During

these experiments, we simulated laser range scans with an

opening angle of 180◦ on a simulated robot trajectory. Then

we calculated for different sensor models (GM, IB, EC, and

DC) the likelihood of the simulated range scan given the

true position of the robot. Figure 2, 3, and 5 depict the

trajectories of the robot. The likelihoods of the scans at the

true robot poses are represented by the different colors (grey

scale values) between orange (light grey) and black. While

orange (light grey) marks regions where the scans at the true

robot location are assigned low likelihoods, high likelihood

areas are printed in black. The figures show that whenever

the robot traverses regions close to obstacles, doorways, or

clutter the likelihood of the true position decreases. In the

case of global localization using a particle filter this leads

to serious problems because the particles at these positions

have a high risk of being depleted. Figure 4 shows the mean

likelihoods for 31, 61, and 181 laser beams and different

sensor models. We evaluated the likelihood at 847 robot

poses in our office environment depicted in Figure 2 and

averaged over 50 runs. As can be seen from the figures, our

Gaussian mixture model (GM) yields much less variance in
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Fig. 4. Evaluated likelihood for 31, 61, and 181 laser beams (from left to right) and different sensor models at 847 robot poses in our office environment
depicted in Figure 2. The figures show that the likelihood of our Gaussian mixture model (GM) yields much less variance in the estimated likelihood of
the true pose of the robot than the other sensor models. The right most diagram depicts the standard deviations of the different sensor models for 31, 61,
and 181 laser beams.
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Fig. 5. Experiment carried out to evaluate the likelihood of 348 simulated
robot poses using an artificial data set including strong discontinuities like
corners and doorways. The left diagram depicts the average likelihoods
for 61 laser beams and different sensor models. The figures show that the
likelihood of our Gaussian mixture model (GM) yields much less variance
in the likelihood of the true pose of the robot than the other sensor models.
The right diagram shows the standard deviations of the different sensor
models for 31, 61, and 181 laser beams.

the estimated likelihood of the true pose compared to the

other sensor models. The rightmost diagram shows the stan-

dard deviation of the different sensor models for 31, 61, and

181 laser beams. Figure 3 shows the same experiment using

data collected in the Heinz-Nixdorf-Forum in Paderborn for

61 laser beams. The experiment shows that the standard ray

cast model (IB) performs sub-optimally in regions close to

corners and that it produces highly fluctuating likelihood

estimates. Our Gaussian mixture model (GM) outperforms

the other sensor models and has much lower variance in

the estimated likelihoods. In a final experiment documented

in Figure 5 we observed a similar behavior of the different

sensor models in an artificial data set which produces strong

discontinuities because of corners and doorways.

B. Localization

The second set of experiments is designed to illustrate that

our new sensor model (GM) which takes the multi-modality

of measurements into account achieves more robust and

accurate localization than the other sensor models. The left

part of Figure 6 shows the six positions in a real environment

where we obtained the highest probability that the global

localization fails. These probabilities have been determined

by random restarts of the localization procedure during 50

complete runs on the data set. The marked positions directly

correspond to orange (light grey) marked regions in Figure 2

where the likelihoods of the true poses are extremely low

due to the multi-modality of the measurements. To evaluate

the properties of the different sensor models we performed

20 global localization runs at each position and compared

the average success rates. In these experiments, we assumed

that the localization was achieved when the mean of the

particles differed by at most 50 cm from the true location

of the robot. The central diagram of Figure 6 shows the

number of successful localizations after ten integrations of

61 measurements of each scan for different models. The

experiments show that our Gaussian mixture model (GM)

allows us to more robustly localize the robot in situations

in which the other models frequently fail. It also illustrates

that the endpoint model (EP) which shows good performance

for position tracking in cluttered environments is not able to

solve the global localization task in the marked regions of

our environment. Additionally, we analyzed the robustness of

the different sensor models with respect to the computation

time (see the right diagram of Figure 6). The x-axis of this

diagram represents the product of the number of particles

used and the average computation time per particle for the

different sensor models. As can be seen from this diagram,

our Gaussian mixture model (GM) outperforms the other

models also with respect to the computational complexity.

Whereas the time per iteration is higher compared to the

other approaches, it requires considerably less particles for a

successful localization run and thus achieves a higher robust-

ness relative to the required computational resources. We also

carried out experiments, in which we analyzed the accuracy

of our model (GM) when the system is tracking the pose of

the vehicle. We compared our sensor model to various other

models and evaluated the average localization error of the

individual particles. The right diagram of Figure 6 depicts the

average localization error for a position tracking experiment

with 61 laser beams. It can be seen that the two beam-based

ray cast sensor models (IB) and (DC) diverge while our beam
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experiment with 61 laser beams.

based Gaussian mixture model(GM) performs as well as the

endpoint model (EP) and the scan-based place-dependent

model (EC).

VII. CONCLUSIONS

In this paper, we presented a novel beam-based sensor

model for probabilistic localization techniques that explicitly

takes multi-modalities in the distribution of beam lengths into

account. In contrast to other location-independent models our

approach adapts the likelihood evaluation according to the lo-

cal environment of each evaluated pose hypothesis to achieve

a natural and accurate form of regularization. By learning

a Gaussian mixture model for the resulting distribution of

possible range measurements using the EM algorithm, our

approach is able to outperform the state-of-the-art approaches

in terms of localization accuracy and robustness also relative

to the required computational resources.

ACKNOWLEDGMENT

This work has partly been supported by the DFG within

the Research Training Group 1103 and under contract num-

ber SFB/TR-8, by the EU under FP6-004250-CoSy, and by

the German Ministry for Education and Research (BMBF)

through the DESIRE project.

REFERENCES

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking.
In IEEE Transactions on Signal Processing, volume 50, pages 174–
188, February 2002.

[2] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
Kavraki L.E., and S. Thrun. Principles of Robot Motion Planning.
MIT-Press, 2005.

[3] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
Monte carlo localization for mobile robots. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 99–141, 1998.
[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal

Statistical Society, 1977.
[5] A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-

Carlo Methods in Practice. Springer Verlag, 2001.
[6] T. Duckett and U. Nehmzow. Mobile robot self-localization using

occupancy histograms and a mixture of Gaussians location hypotheses.
Robotics and Autonomous Systems, 34(2-3):119–130, 2001.

[7] D. Fox. Adapting the sample size in particle filters through KLD-
sampling. Int. Journal of Robotics Research, 22(12):985 – 1003, 2003.

[8] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localiza-
tion for mobile robots in dynamic environments. Journal of Artificial

Intelligence Research, 11:391–427, 1999.
[9] T. Koshizen, P. Bartlett, and A. Zelinsky. Sensor fusion of odometry

and sonar sensors by the Gaussian mixture Bayes’ technique in mobile
robot position estimation. In IEEE International Conference on

Systems, Man, and Cybernetics(SMC), 1999.
[10] S. Lenser and M. Veloso. Sensor resetting localization for poorly

modelled mobile robots. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2000.
[11] A. Petrovskaya, O. Khatib, S. Thrun, and A.Y. Ng. Bayesian estima-

tion for autonomous object manipulation based on tactile sensors. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2006.

[12] P. Pfaff, W. Burgard, and D. Fox. Robust monte-carlo localization
using adaptive likelihood models. In H.I. Christiensen, editor, Euro-

pean Robotics Symposium 2006, volume 22, pages 181–194. Springer-
Verlag Berlin Heidelberg, Germany, 2006.

[13] P. Pfaff, C. Plagemann, and W. Burgard. Improved likelihood models
for probabilistic localization based on range scans. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2007.
[14] M. K. Pitt and N. Shephard. Filtering via simulation: auxiliary particle

filters. Journal of the American Statistical Association, 94(446), 1999.
[15] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Gaussian beam

processes: A nonparametric bayesian measurement model for range
finders. In Robotics: Science and Systems (RSS), June 2007.

[16] R. A. Redner and H. F. Walker. Mixture densities, maximum
likelihood, and the em algorithm. SIAM Review, 26(2):195–239, 1984.

[17] S. Thrun. An online mapping algorithm for teams of mobile robots.
Int. Journal of Robotics Research, 20(5):335–363, 2001.

[18] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT-Press,
2005.

[19] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
localization for mobile robots. Artificial Intelligence, 128(1-2), 2001.

[20] B. Upcroft, S. Kumar, M.F. Ridley, L. Ong, and H.F. Durrant-Whyte.
Fast re-parameterisation of Gaussian mixture models for robotics
applications. In Australasian Conference on Robotics and Automation,
2004.


