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Summary. Elevation maps are a popular data structure for representing the environment of a
mobile robot operating outdoors or on not-flat surfaces. Elevation maps store in each cell of a
discrete grid the height of the surface the corresponding place in the environment. The use of
this 21

2-dimensional representation, however, is disadvantageous when it is used for mapping
with mobile robots operating on the ground, since vertical or overhanging objects cannot be
represented appropriately. Such objects furthermore can lead to registration errors when two
elevation maps have to be matched. In this paper we propose anapproach that allows a mobile
robot to deal with vertical and overhanging objects in elevation maps. We classify the points in
the environment according to whether they correspond to such objects or not. We also describe
a variant of the ICP algorithm that utilizes the classification of cells during the data association.
Experiments carried out with a real robot in an outdoor environment demonstrate that the scan
matching process becomes significantly more reliable and accurate when our classification is
used.

1 Introduction

The problem of learning maps with mobile robots has been intensively studied in
the past. In the literature, different techniques for representing the environment of a
mobile robot prevail. Topological maps aim at representingenvironments by graph-
like structures, where edges correspond to places, and arcsto paths between them.
Geometric models, in contrast, use geometric primitives for representing the environ-
ment. Whereas topological maps have the advantage to betterscale to large environ-
ments, they lack the ability to represent the geometric structure of the environment.
The latter, however, is essential in situations, in which robots are deployed in poten-
tially unstructured outdoor environments where the ability to traverse specific areas
of interest needs to be known accurately. However, full three-dimensional models
typically have too high computational demands for a direct application on a mobile
robot.

Elevation maps have been introduced as a more compact 21
2-dimensional repre-

sentation. An elevation map consists of a two-dimensional grid in which each cell
stores the height of the territory. This approach, however,can be problematic when a
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Fig. 1. Scan (point set) of a bridge recorded with a mobile robot carrying a SICK LMS laser
range finder mounted on a pan/tilt unit.

robot has to utilize these maps for navigation or when it has to register two different
maps in order to integrate them. For example, consider the three-dimensional data
points shown in Figure 1. They have been acquired with a mobile robot standing
in front of a bridge. The resulting elevation map, which is computed from averag-
ing over all scan points that fall into a cell of a horizontal grid (given a vertical
projection), is depicted in Figure 2. As can be seen from the figure, the underpass
has completely disappeared and the elevation map shows a non-traversable object.
Additionally, when the environment contains vertical structures, we typically obtain
varying average height values depending on how much of this vertical structure is
contained in a scan. Accordingly, if one registers two such elevation maps, one ob-
tains incorrect alignments.

Fig. 2. Standard elevation map computed for the outdoor environment depicted in Figure 1.
The passage under the bridge has been converted into a large un-traversable object.

In this paper we present a system for mapping outdoor environments with el-
evation maps. Our algorithm transforms range scans into local elevation maps and
combines these local elevation maps using a variant of the ICP algorithm [3]. In our
elevation maps, we classify locations in the environment into four classes, namely
locations sensed from above, vertical structures, vertical gaps, and traversable cells.
The advantage of this classification is twofold. First, the robot can represent obsta-
cles corresponding to vertical structures like walls of buildings. It also can deal with
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overhanging structures like branches of trees or bridges. Furthermore, the classifi-
cation can be utilized in the ICP algorithm to more robustly match local elevation
maps. We present experimental results illustrating the advantages of our approach
regarding the representation aspect as well as regarding the robust matching.

This paper is organized as follows. After discussing related work in the follow-
ing section, we will describe our extension to the elevationmaps in Section 3. In
Section 4 we then describe how to incorporate our classification into the ICP algo-
rithm used for matching elevation maps. Finally, we presentexperimental results in
Section 5.

2 Related Work

The problem of learning three-dimensional representations has been studied inten-
sively in the past. One of the most popular representations are raw data points or tri-
angle meshes [1, 7, 12, 15]. Whereas these models are highly accurate and can easily
be textured, their disadvantage lies in the huge memory requirement, which grows
linearly in the number of scans taken. An alternative is to use three-dimensional
grids [9] or tree-based representations [13], which only grow linearly in the size of
the environment. Still, the memory requirements for such maps in outdoor environ-
ments are high.

In order to avoid the complexity of full three-dimensional maps, several re-
searchers have considered elevation maps as an attractive alternative. The key idea
underlying elevation maps is to store the 21

2-dimensional height information of the
terrain in a two-dimensional grid. Bares et al. [2] as well asHebert et al. [4] use ele-
vation maps to represent the environment of a legged robot. They extract points with
high surface curvatures and match these features to align maps constructed from con-
secutive range scans. Parra et al. [11] represent the groundfloor by elevation maps
and use stereo vision to detect and track objects on the floor.Singh and Kelly [14]
extract elevation maps from laser range data and use these maps for navigating an
all-terrain vehicle. Ye and Borenstein [16] propose an algorithm to acquire elevation
maps with a moving vehicle equipped with a tilted laser rangescanner. They pro-
pose special filtering algorithms to eliminate measurementerrors or noise resulting
from the scanner and the motions of the vehicle. Lacroix et al. [6] extract elevation
maps from stereo images. They use a two-dimensional grid andstore in each cell
of this grid the average height. Hygounenc et al. [5] construct elevation maps in an
autonomous blimp using 3d stereo vision. They propose an algorithm to track land-
marks and to match local elevation maps using these landmarks. Olson [10] describes
a probabilistic localization algorithm for a planetary rover that uses elevation maps
for terrain modeling.

Compared to these techniques the contribution of this paperlies in two aspects.
First, we classify the points in the elevation map into horizontal points seen from
above, vertical points, and gaps. This classification is important especially when a
rover is deployed in an urban environments. In such environments, typical structures
like the walls of buildings cannot be represented in standard elevation maps. Second,
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we describe how this classification can be used to enhance thematching of different
elevation maps.

3 Extended Elevation Maps

As already mentioned above, elevation maps are 21
2-dimensional representation of

the environment. The maintain a two-dimensional grid and maintain in every cell
of this grid an estimate about the height of the terrain at thecorresponding point of
the environment. To correctly reflect the actual steepness of the terrain, a common
assumption is that the initial tilt and the roll of the vehicle is known.

When updating a cell based on sensory input, we have to take into account, that
the uncertainty in a measurement increases with the distance measured due to errors
in the tilting angle. In our current system, we a apply a Kalman filter to estimate the
parametersµ1:t andσ1:t about the elevation in a cell and its standard deviation. We
apply the following equations to incorporate a new measurement zt with standard
deviationσt at timet [8]:
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Note that the application of the Kalman filter allows us to take into account the
uncertainty of the measurement. In our current system, we apply a sensor model,
in which the variance of the height of a measurement increases linearly with the
distance of the corresponding beam. This process is indicated in Figure 3.

Fig. 3. Variance of a height measurements depending on the distanceof the beam.

In addition we need to identify which of the cells of the elevation map correspond
to vertical structures and which ones contain gaps. In orderto determine the class of
a cell, we first consider the variance of the height of all measurements falling into
this cell. If this value exceeds a certain threshold, we identify it as a point that has not
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been observed from above. We then check, whether the point set corresponding to a
cell contains gaps exceeding the height of the robot. When a gap has been identified,
we determine the minimum traversable elevation in this point set.

Fig. 4. Labeling of the data points depicted in Figure 2 according totheir classification. The
different colors/grey levels indicate the individual classes.

Figure 4 shows the same data points already depicted in Figure 2. The classes
of the individual cells in the elevation map are indicated bythe different colors/grey
levels. The blue/dark points indicate the data points above a gap. The red/medium
grey values indicate cells that are classified as vertical. The green/light grey values,
however, indicate traversable terrain. Note that the not traversable cells are not shown
in this figure.

Fig. 5. Extended elevation map for the scene depicted in Figure 1.

A major part of the resulting elevation map extracted from this data set is shown
in Figure 5. As can be seen from the figure, the area under the bridge can now be
represented appropriately by ignoring data points above the lowest surface. This in
turn enables the robot to plan a path through the passage under the bridge.
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4 Efficient Matching of Elevation Maps in 6 Dimensions

To integrate several local elevation maps into a single global elevation map we need
to be able register two maps relative to each other. In our current system, we apply
the ICP algorithm for this purpose. The goal of the matching process is to minimize
an error function defined over two point setsX = {x1, . . . , xL} andY = {y1, . . . , yL},
where each pairxi andyi is assumed to be the points that corresponding to each other.
We are interested in the rotationR and the translationt that minimizes the following
cost function:

E(R, t) =
1
n

L∑

l=1

||xl − Ryl − t||2, (3)

where|| · || is a distance function that takes into account the variance of the Gaussians
corresponding to each pairxi andyi.

In principle, one could define this function to directly operate on the height val-
ues and their variance when aligning two different elevation maps. The disadvantage
of this approach, however, is that in the case of vertical objects, the resulting height
seriously depends on the view point. The same vertical structure may lead to varying
heights in the elevation map when sensed from different points. In practical experi-
ments we observed that this introduces serious errors and often prevents the ICP al-
gorithm from convergence. To overcome this problem, we separate Equation (3) into
four components each minimizing the error over the individual classes of points. The
first two classes consist of the cells corresponding to vertical objects and gaps. The
latter two classes contain only cells whose points have beensensed from above. To
increase the efficiency of the matching process, we only consider a subset of these
cells. In practical experiments we found out that traversable cells and edge cells yield
the best registration results. The traversable cells are those cells for which the ele-
vation of the surface normal obtained from a plane fitted to the local neighborhood
exceeds 83 degrees. Additionally, we consider edge cells, i.e., cells which lie more
than 20cm above their neighboring points.

Let us assume thatα1, . . . , αNα andα′1, . . . , α
′
Nα

are the corresponding vertical
points,β1, . . . , βNβ andβ′1, . . . , β

′
Nβ

are the vertical gaps,γ1, . . . , γNγ andγ′1, . . . , γ
′
Nγ

are the edge points, andδ1, . . . , δNδ and δ′1, . . . , δ
′
Nδ

are the traversable cells. The
resulting error function then is

E(R, t) =
Nα∑

n=1

d(αn, α
′
n)

︸         ︷︷         ︸

vertical objects

+

Nβ∑

n=1

d(βn, β
′
n)

︸         ︷︷         ︸

vertical gaps

+

Nγ∑

n=1

d(γn, γ
′
n)

︸         ︷︷         ︸

edge cells

+

Nδ∑

n=1

d(δn, δ
′
n),

︸         ︷︷         ︸

traversable cells

(4)

whered(x, y) = ‖x − Ry − t‖.
Figure 6 illustrates how two elevation maps are aligned overseveral iterations of

the minimization process. Whereas the left column shows thepoint clouds the right
column shows the cells in the elevation map used for minimizing Equation (4). In our
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current implementation, each iteration of the ICP algorithm usually takes between
one and five seconds on a 2.8GHz Pentium 4. The time necessary to acquire a scan
by tilting the laser is 5 seconds.

Fig. 6. Incremental registration of two elevation maps. The left column depicts the original
point clouds. The right column shows the vertical and edge cells of the elevation maps used
by the ICP algorithm. The individual rows correspond to the initial relative pose (top row),
alignment after 5 iterations (second row), after 10 iterations (third row) and the final alignment
after 30 iterations (fourth row).
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In addition to the position and orientation of the vehicle wealso have to estimate
the tilt and roll of the vehicle when integrating two elevation maps. In practical ex-
periments we found that an iterative scheme, in which we repeatedly estimate the
tilt and roll of the robot and then determine the relative position and orientation of
the involved elevation maps, improves the registration accuracy. In most cases, two
iterations are sufficient to achieve precise matchings and to obtain highly accurate
maps from multiple local maps generated from different viewpoints.

SICK laser range finder

AMTEC wrist unit

Fig. 7. Robot Herbert used for the experiments.

5 Experimental Results

The approach described above has been implemented and tested on a real robot sys-
tem and in simulation runs with real data. The robot used to acquire the data is our
outdoor robot Herbert, which is depicted in Figure 7. The robot is a Pioneer II AT
system equipped with a SICK LMS range scanner and an AMTEC wrist unit, which
is used as a pan/tilt device for the laser.

5.1 Learning Accurate Elevation Maps from Multiple Scans

To evaluate our approach we steered our robot Herbert through different areas of our
university campus and visually inspected the maps obtainedwith our technique. In
all cases, we obtained highly accurate maps. Figure 8 shows atypical example, in
which the robot traveled under the bridge depicted in Figure1 and then continued
driving up a ramp. Along its path the robot generated local elevation maps from 36
scans. The overall number of data points recorded was 9,500,000. The size of each
cell in the elevation map is 20 by 20cm. The whole map spans approximately 70 by
30 meters. As can be seen from the figure, the map clearly reflects the details of the
environment. Additionally, the matching of the elevation maps is quite accurate.

Figure 9 shows a typical example in which our algorithm yields more accurate
maps than the standard approach. In this situation the robottraveled along a paved
way and scanned a tree located in front of the scene. Whereas the left image shows
the map obtained with the standard elevation map approach, the right image shows



An Efficient Extension of Elevation Maps for Outdoor Terrain Mapping 9

Fig. 8. Elevation map generated from 36 local elevation maps. The size of the map is approx-
imately 70 by 30 meters.

Fig. 9. Maps generated from four local elevation maps acquired withHerbert. The left image
shows a standard elevation map. The right image depicts the map obtained with our approach.
The peak in front of the scene corresponds to a tree, which is modeled more accurately with
our approach.

the map obtained with our method. The individual positions of the robot where the
scans were taken are also shown in the images. As can be seen from the figures, our
method results in more free space around the stem of the tree.

5.2 Statistical Evaluation of the Accuracy

Additionally, we performed a series of experiments to get a statistical assessment as
to whether the classification of the data points into normal,vertical and gap points
combined with the sub-sampling of the normal points leads tobetter registration
results. To perform these experiments we considered two different elevation maps for
which we computed the optimal relative pose using several runs of the ICP algorithm.
We then randomly added noise to the pose of the second map and applied the ICP
algorithm to register both maps. We performed two sets of experiments to compare
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the registration results for the unclassified and the classified point sets. Table 1 shows
the individual classes of noise that we added to the true relative pose of the two maps
before we started the ICP algorithm. In this experiment described here, we only
varied the pose error of the maps and kept the error in the rotations constant. In
particular, we randomly chose rotational displacements from±5 degrees around the
real relative angle and also varying random displacements in thex andy direction.

displacement classmax. rot. displ.max. displ. inx andy
1 ±5 degrees ±0.5m
2 ±5 degrees ±1.0m
3 ±5 degrees ±1.5m
4 ±5 degrees ±2.0m
5 ±5 degrees ±2.5m

Table 1. Displacement classes used to evaluate the performance of the ICP algorithm on the
classified and unclassified points extracted from the elevation maps.
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Fig. 10. Average registration error for the individual types of initial displacement.

The resulting average displacement errors after convergence of the ICP algo-
rithm are depicted in Figure 10. As can be seen from the figure,the ICP algorithm
performed significantly better on the classified point sets.In this figure, the error bars
indicate theα = 0.05 confidence level.

Additionally, we evaluated how often the ICP algorithm failed to accurately reg-
ister the two maps. Figure 11 depicts the normalized divergence frequencies in per-
cent for the individual displacement classes. As this plot illustrates, the utilization of
the individual classes in the ICP algorithm leads to a seriously better convergence
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Fig. 11. Number of times the ICP algorithm diverges for the individual initial displacements.

rate. In additional experiments not reported here we obtained similar results for the
different orientational errors.

6 Conclusions

In this paper we presented an approach to generate elevationmaps from three-
dimensional range data acquired with a mobile robot. Our approach especially ad-
dresses the problem of acquiring such maps with a ground-based vehicle. On such
a system one often encounters situations, in which certain objects, such as walls or
trees, are not seen from above. Accordingly, the resulting elevation maps contain
incorrect information. The approach in this paper classifies the individual cells of el-
evation maps into four classes representing parts of the terrain seen from above, verti-
cal objects, overhanging objects such as branches of trees or bridges, and traversable
areas. We also presented an extension of the ICP algorithm that takes this classifica-
tion into account when computing the registration.

Our algorithm has been implemented and tested on a real robotand using outdoor
terrain data. Experimental results show that our classification yields more accurate
elevation maps, especially in the cases of vertical objectsand overhanging objects.
Additionally, our extension of the ICP algorithm, which utilizes our classification,
produces more accurate alignments and additionally converges more often.
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