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Summary. Elevation maps are a popular data structure for repreggtitmenvironment of a
mobile robot operating outdoors or on not-flat surfacesvdtien maps store in each cell of a
discrete grid the height of the surface the correspondiagepin the environment. The use of
this Zg-dimensional representation, however, is disadvantageden it is used for mapping
with mobile robots operating on the ground, since verticabw@rhanging objects cannot be
represented appropriately. Such objects furthermoreezh to registration errors when two
elevation maps have to be matched. In this paper we propasepsoach that allows a mobile
robot to deal with vertical and overhanging objects in dievemaps. We classify the points in
the environment according to whether they correspond tlo shjects or not. We also describe
avariant of the ICP algorithm that utilizes the classificatf cells during the data association.
Experiments carried out with a real robot in an outdoor emrinent demonstrate that the scan
matching process becomes significantly more reliable aodrate when our classification is
used.

1 Introduction

The problem of learning maps with mobile robots has beemsively studied in
the past. In the literature, fiiérent techniques for representing the environment of a
mobile robot prevail. Topological maps aim at represenéingronments by graph-
like structures, where edges correspond to places, andapzths between them.
Geometric models, in contrast, use geometric primitivesdpresenting the environ-
ment. Whereas topological maps have the advantage to be#ilerto large environ-
ments, they lack the ability to represent the geometrictiire of the environment.
The latter, however, is essential in situations, in whidbots are deployed in poten-
tially unstructured outdoor environments where the abitittraverse specific areas
of interest needs to be known accurately. However, fullgkdanensional models
typically have too high computational demands for a dirg@gti@ation on a mobile
robot.

Elevation maps have been introduced as a more coméadirﬂensional repre-
sentation. An elevation map consists of a two-dimensiondlig which each cell
stores the height of the territory. This approach, howesar,be problematic when a
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Fig. 1. Scan (point set) of a bridge recorded with a mobile robotyiagra SICK LMS laser
range finder mounted on a pét unit.

robot has to utilize these maps for navigation or when it basgister two dierent
maps in order to integrate them. For example, consider tleettimensional data
points shown in Figure 1. They have been acquired with a raabibot standing
in front of a bridge. The resulting elevation map, which isnguted from averag-
ing over all scan points that fall into a cell of a horizontaldg(given a vertical
projection), is depicted in Figure 2. As can be seen from tiperdi, the underpass
has completely disappeared and the elevation map shows-aavemnsable object.
Additionally, when the environment contains vertical stures, we typically obtain
varying average height values depending on how much of #iscal structure is
contained in a scan. Accordingly, if one registers two suekiagion maps, one ob-
tains incorrect alignments.

Fig. 2. Standard elevation map computed for the outdoor envirohmepicted in Figure 1.
The passage under the bridge has been converted into a latgaversable object.

In this paper we present a system for mapping outdoor enviemrts with el-
evation maps. Our algorithm transforms range scans int@l klevation maps and
combines these local elevation maps using a variant of tRealGorithm [3]. In our
elevation maps, we classify locations in the environmetat four classes, namely
locations sensed from above, vertical structures, végigps, and traversable cells.
The advantage of this classification is twofold. First, tbkat can represent obsta-
cles corresponding to vertical structures like walls ofdings. It also can deal with
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overhanging structures like branches of trees or bridgeth&rmore, the classifi-
cation can be utilized in the ICP algorithm to more robustigteh local elevation

maps. We present experimental results illustrating theuaidges of our approach
regarding the representation aspect as well as regarddngliust matching.

This paper is organized as follows. After discussing relaterk in the follow-
ing section, we will describe our extension to the elevatitaps in Section 3. In
Section 4 we then describe how to incorporate our classiitanto the ICP algo-
rithm used for matching elevation maps. Finally, we pressperimental results in
Section 5.

2 Related Work

The problem of learning three-dimensional representatias been studied inten-
sively in the past. One of the most popular representaticsesav data points or tri-
angle meshes [1, 7, 12, 15]. Whereas these models are higfhlyede and can easily
be textured, their disadvantage lies in the huge memoryirement, which grows
linearly in the number of scans taken. An alternative is te tisee-dimensional
grids [9] or tree-based representations [13], which ontwglinearly in the size of
the environment. Still, the memory requirements for suclpsria outdoor environ-
ments are high.

In order to avoid the complexity of full three-dimensionahps, several re-
searchers have considered elevation maps as an attratéiieative. The key idea
underlying elevation maps is to store th%—dimensional height information of the
terrain in a two-dimensional grid. Bares et al. [2] as welHebert et al. [4] use ele-
vation maps to represent the environment of a legged rolhety €xtract points with
high surface curvatures and match these features to alige cmastructed from con-
secutive range scans. Parra et al. [11] represent the gfftmorcby elevation maps
and use stereo vision to detect and track objects on the Bangh and Kelly [14]
extract elevation maps from laser range data and use thgse foranavigating an
all-terrain vehicle. Ye and Borenstein [16] propose an afgjm to acquire elevation
maps with a moving vehicle equipped with a tilted laser rasggnner. They pro-
pose special filtering algorithms to eliminate measurereemirs or noise resulting
from the scanner and the motions of the vehicle. Lacroix.d6akextract elevation
maps from stereo images. They use a two-dimensional gridstord in each cell
of this grid the average height. Hygounenc et al. [5] cortstelevation maps in an
autonomous blimp using 3d stereo vision. They propose aritiign to track land-
marks and to match local elevation maps using these landm@lkon [10] describes
a probabilistic localization algorithm for a planetary epthat uses elevation maps
for terrain modeling.

Compared to these techniques the contribution of this pigggem two aspects.
First, we classify the points in the elevation map into hanial points seen from
above, vertical points, and gaps. This classification isorgmt especially when a
rover is deployed in an urban environments. In such envients) typical structures
like the walls of buildings cannot be represented in stashdbevation maps. Second,
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we describe how this classification can be used to enhancedtehing of diferent
elevation maps.

3 Extended Elevation Maps

As already mentioned above, elevation maps %{dmensional representation of
the environment. The maintain a two-dimensional grid anéhtaa in every cell
of this grid an estimate about the height of the terrain attreesponding point of
the environment. To correctly reflect the actual steepnéfiseaterrain, a common
assumption is that the initial tilt and the roll of the velgics known.

When updating a cell based on sensory input, we have to takaatount, that
the uncertainty in a measurement increases with the distaeasured due to errors
in the tilting angle. In our current system, we a apply a Kairfiker to estimate the
parameterg; s ando1; about the elevation in a cell and its standard deviation. We
apply the following equations to incorporate a new measerdgm with standard
deviationo at timet [8]:
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Note that the application of the Kalman filter allows us toetakto account the
uncertainty of the measurement. In our current system, vpdyapsensor model,
in which the variance of the height of a measurement inceelisearly with the
distance of the corresponding beam. This process is iratiéatFigure 3.

Fig. 3. Variance of a height measurements depending on the distditice beam.

In addition we need to identify which of the cells of the eligya map correspond
to vertical structures and which ones contain gaps. In dadéetermine the class of
a cell, we first consider the variance of the height of all rmeaments falling into
this cell. If this value exceeds a certain threshold, wetifieit as a point that has not
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been observed from above. We then check, whether the pdicdsesponding to a
cell contains gaps exceeding the height of the robot. Wheapdgs been identified,
we determine the minimum traversable elevation in this fpgeéh

Fig. 4. Labeling of the data points depicted in Figure 2 accordinth&ir classification. The
different colorgrey levels indicate the individual classes.

Figure 4 shows the same data points already depicted ind-Bufhe classes
of the individual cells in the elevation map are indicatedty diferent colorgrey
levels. The blugark points indicate the data points above a gap. Thamedium
grey values indicate cells that are classified as vertidad. greeflight grey values,
however, indicate traversable terrain. Note that the mwetrsable cells are not shown
in this figure.

T

Fig. 5. Extended elevation map for the scene depicted in Figure 1.

A major part of the resulting elevation map extracted froim thata set is shown
in Figure 5. As can be seen from the figure, the area under ttigebcan now be
represented appropriately by ignoring data points abogédaivest surface. This in
turn enables the robot to plan a path through the passage tiederidge.
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4 Efficient Matching of Elevation Mapsin 6 Dimensions

To integrate several local elevation maps into a singleallelevation map we need

to be able register two maps relative to each other. In oueatisystem, we apply

the ICP algorithm for this purpose. The goal of the matchiragpss is to minimize

an error function defined over two point se{s= {x,...,x .} andY = {y1,..., .},
where each paix; andy; is assumed to be the points that corresponding to each other.
We are interested in the rotatiétand the translatiohthat minimizes the following
cost function:

L
ERY = " X~ Ry 1%, @
1=1

where|| - || is a distance function that takes into account the variahtteedGaussians
corresponding to each pair andy;.

In principle, one could define this function to directly ogier on the height val-
ues and their variance when aligning twéreient elevation maps. The disadvantage
of this approach, however, is that in the case of verticadaisj the resulting height
seriously depends on the view point. The same verticalsireienay lead to varying
heights in the elevation map when sensed froffedént points. In practical experi-
ments we observed that this introduces serious errors dad pfevents the ICP al-
gorithm from convergence. To overcome this problem, we sdp&quation (3) into
four components each minimizing the error over the indigldlasses of points. The
first two classes consist of the cells corresponding to aartibjects and gaps. The
latter two classes contain only cells whose points have bersed from above. To
increase theféiciency of the matching process, we only consider a subsdteskt
cells. In practical experiments we found out that travelessaélls and edge cells yield
the best registration results. The traversable cells argetleells for which the ele-
vation of the surface normal obtained from a plane fitted &ltital neighborhood
exceeds 83 degrees. Additionally, we consider edge cadls cells which lie more
than 20cm above their neighboring points.

Let us assume thats,...,an, anday, .. . ay, are the corresponding vertical
points,By, ..., AN, andﬁ’l,...,,B;“ﬁ are the vertical gapss., ..., yn, andy’l,...,y;\ly
are the edge points, ard,...,dn, and 6’1,...,6;\16 are the traversable cells. The
resulting error function then is

5
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E(R1) = Ed(an,aa) + z;d«sn,/s’n) + z;d(yn,y'n) +§;d(an,a’n), (4)
n= n= n= n=

vertical objects vertical gaps edge cells traversable cells

whered(x,y) =[x — Ry — ]|

Figure 6 illustrates how two elevation maps are aligned egeeral iterations of
the minimization process. Whereas the left column showgdirt clouds the right
column shows the cells in the elevation map used for minimgiEquation (4). In our
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current implementation, each iteration of the ICP algonithsually takes between
one and five seconds on a 2.8GHz Pentium 4. The time necessacyguire a scan
by tilting the laser is 5 seconds.

Fig. 6. Incremental registration of two elevation maps. The lefunm depicts the original
point clouds. The right column shows the vertical and eddjs oéthe elevation maps used
by the ICP algorithm. The individual rows correspond to thigial relative pose (top row),
alignment after 5 iterations (second row), after 10 iteragi(third row) and the final alignment
after 30 iterations (fourth row).
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In addition to the position and orientation of the vehicleal& have to estimate
the tilt and roll of the vehicle when integrating two elegatimaps. In practical ex-
periments we found that an iterative scheme, in which weatsully estimate the
tilt and roll of the robot and then determine the relativeifias and orientation of
the involved elevation maps, improves the registratiomneary. In most cases, two
iterations are dticient to achieve precise matchings and to obtain highly rateu
maps from multiple local maps generated frorfietient viewpoints.

SICK laser range finde

AMTEC wrist unit

Fig. 7. Robot Herbert used for the experiments.

5 Experimental Results

The approach described above has been implemented artiaestereal robot sys-
tem and in simulation runs with real data. The robot used tpiae the data is our
outdoor robot Herbert, which is depicted in Figure 7. Theotdb a Pioneer Il AT

system equipped with a SICK LMS range scanner and an AMTES&twriit, which

is used as a pdtilt device for the laser.

5.1 Learning Accurate Elevation Maps from Multiple Scans

To evaluate our approach we steered our robot Herbert thrdifigrent areas of our
university campus and visually inspected the maps obtainitdour technique. In
all cases, we obtained highly accurate maps. Figure 8 shawsiaal example, in
which the robot traveled under the bridge depicted in Fidueand then continued
driving up a ramp. Along its path the robot generated looaaion maps from 36
scans. The overall number of data points recorded was ®800The size of each
cell in the elevation map is 20 by 20cm. The whole map spansoappately 70 by
30 meters. As can be seen from the figure, the map clearly teflee details of the
environment. Additionally, the matching of the elevatioaps is quite accurate.
Figure 9 shows a typical example in which our algorithm ysetdore accurate
maps than the standard approach. In this situation the todbatled along a paved
way and scanned a tree located in front of the scene. Whédredsft image shows
the map obtained with the standard elevation map approaehight image shows
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Fig. 8. Elevation map generated from 36 local elevation maps. Tfeedfithe map is approx-
imately 70 by 30 meters.

Fig. 9. Maps generated from four local elevation maps acquired Wétbert. The left image

shows a standard elevation map. The right image depicts aéipeointained with our approach.
The peak in front of the scene corresponds to a tree, whictodeiad more accurately with
our approach.

the map obtained with our method. The individual positiohthe robot where the
scans were taken are also shown in the images. As can be seethf figures, our
method results in more free space around the stem of the tree.

5.2 Statistical Evaluation of the Accuracy

Additionally, we performed a series of experiments to gahtigical assessment as
to whether the classification of the data points into norweitical and gap points
combined with the sub-sampling of the normal points leadbétter registration
results. To perform these experiments we considered tikerdnt elevation maps for
which we computed the optimal relative pose using severa ofithe ICP algorithm.
We then randomly added noise to the pose of the second mappalidcathe ICP
algorithm to register both maps. We performed two sets oéerpents to compare
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the registration results for the unclassified and the diaglgpoint sets. Table 1 shows
the individual classes of noise that we added to the truéivelpose of the two maps
before we started the ICP algorithm. In this experiment dieed here, we only
varied the pose error of the maps and kept the error in theéigntaconstant. In
particular, we randomly chose rotational displacememsfe5 degrees around the
real relative angle and also varying random displacemarttseix andy direction.

displacement clagsax. rot. displlmax. displ. inx andy
1 +5 degrees +0.5m
2 +5 degrees +1.0m
3 +5 degrees +1.5m
4 +5 degrees +2.0m
5 +5 degrees +2.5m

Table 1. Displacement classes used to evaluate the performance t€khalgorithm on the
classified and unclassified points extracted from the amvataps.
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unclassified points ~ +
0.35
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] | |
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Fig. 10. Average registration error for the individual types of iaidisplacement.

The resulting average displacement errors after conveggefithe ICP algo-
rithm are depicted in Figure 10. As can be seen from the figheelCP algorithm
performed significantly better on the classified point detthis figure, the error bars
indicate thex = 0.05 confidence level.

Additionally, we evaluated how often the ICP algorithmésailto accurately reg-
ister the two maps. Figure 11 depicts the normalized divergérequencies in per-
cent for the individual displacement classes. As this fllastirates, the utilization of
the individual classes in the ICP algorithm leads to a sshjobetter convergence
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Fig. 11. Number of times the ICP algorithm diverges for the individniéial displacements.

rate. In additional experiments not reported here we obthgimilar results for the
different orientational errors.

6 Conclusions

In this paper we presented an approach to generate elevatgs from three-
dimensional range data acquired with a mobile robot. Ouraaigh especially ad-
dresses the problem of acquiring such maps with a grounedba=hicle. On such
a system one often encounters situations, in which certgjiects, such as walls or
trees, are not seen from above. Accordingly, the resultlagaon maps contain
incorrect information. The approach in this paper classifie individual cells of el-
evation maps into four classes representing parts of theteseen from above, verti-
cal objects, overhanging objects such as branches of trée&lges, and traversable
areas. We also presented an extension of the ICP algorithintetkes this classifica-
tion into account when computing the registration.

Our algorithm has been implemented and tested on a realaoblatsing outdoor
terrain data. Experimental results show that our classificayields more accurate
elevation maps, especially in the cases of vertical objatsoverhanging objects.
Additionally, our extension of the ICP algorithm, whichlizgs our classification,
produces more accurate alignments and additionally cgeganore often.
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