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Abstract. The ability to accurately localize objects in an observed scene
is regarded as an important precondition for many practical applications
including automatic manufacturing, quality assurance, or human-robot
interaction. A popular method to recognize three-dimensional objects
in two-dimensional images is to apply so-called view-based approaches.
In this paper, we present an approach that uses a probabilistic view-
based object recognition technique for 3D localization of rigid objects.
Our system generates a set of views for each object to learn an object
model which is applied to identify the 6D pose of the object in the scene.
In practical experiments carried out with real image data as well as
rendered images, we demonstrate that our approach is robust against
changing lighting conditions and high amounts of clutter.

1 Introduction

In this paper, we consider the problem of estimating the three-dimensional posi-
tion and the orientation of rigid objects contained in images. This problem has
been studied intensively in the computer vision community and its solution is
regarded as a major precondition for many practical applications, like automatic
manufacturing, quality assurance, or human-robot interaction. In this work, we
are especially interested in view-based approaches, where objects are represented
by 2-dimensional views. Such approaches allow to incorporate visual features di-
rectly and do not assume prior knowledge about the spatial structure of the
objects. The limited localization accuracy caused by the view-based representa-
tion can be compensated for by a scene-based object tracking process, as will be
demonstrated in Section 5.2.

Recently, Pope and Lowe [1] proposed the probabilistic alignment algorithm
to identify two-dimensional views of objects in images. The goal of the work
presented here is to investigate how this purely image-based approach can be
utilized to achieve a robust estimate of the position and orientation of the ob-
ject in the scene. The input to our system are either real images of an object or
alternatively a volumetric model that is used to render the necessary views. We
describe how the four parameters obtained from the 2D object recognition can
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be combined with the two parameters of the corresponding view to determine
the pose of the object in the scene. We evaluate our approach on real images
and perform simulation experiments to provide quantitative results for the lo-
calization accuracy. Experimental results carried out with free-form objects and
objects with specular surfaces demonstrate the robustness of our approach.

2 Related Work

The problem of recognizing objects using two-dimensional views has been ap-
proached from many directions. Popular methods are based on eigenvector de-
composition to represent and recognize 3D objects [2,3]. Alternative approaches
learn networks of Gaussian basis functions [4] or build their models on wavelet-
based features [5]. Several authors [6,7] apply support vector machines to object
recognition. An additional approach is to train a neural network spanning the
whole view sphere to classify single object views into orientation categories [8].
These methods, however, assume a segmented test image where the object in-
stance is roughly isolated by a bounding box. The approach presented in this
paper focuses on the case in which the object instance covers just a small part
of the test image. To avoid the feature correspondence problem, Schiele and
Pentland build position independent feature histograms [9]. To localize objects
they apply a voting scheme similar to the Hough-transform. Several authors also
combine view-based and model-based approaches to recognize and localize tex-
tured objects [10,11]. Finally, Lanser et al. [12] present a view-based localization
system called MORAL. In their approach, the 3D object structure has to be
known and is assumed to be polyhedral. The constructed object views are not
clustered and generalized to achieve a more compact model.

3 View-Based Probabilistic Alignment

Pope and Lowe [1] introduced a visual object recognition approach based on
probabilistic models of appearance. The appearance of an object is modeled by
a relatively small set of 2-dimensional model views, each of which is assembled
from discrete visual features, like edges, corners, joints, and complex combina-
tions thereof. The features are associated with their uncertainty in presence and
position as well as their distribution of attribute values. Hence, a single model
view represents the appearance of an object from a whole range of view points.
The scope of each model view is determined by an unsupervised learning process.

The recognition method, called probabilistic alignment, resembles Hutten-
locher and Ullman’s alignment approach [13] by gradually building feature pair-
ings between model view and test image to align the view to the test image.
The recognition process is guided by a probabilistic quality measure for possible
alignment hypotheses.

g(E, T ) ≈ log P(H | E, T ) (1)

In this equation, H denotes the hypothesis that the model view is contained in
the image, E stands for the set of feature pairings contained in the hypothesized
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match, and T is the similarity transformation that aligns the model view with
the test image. The typically large set of possible feature pairings is ordered
using this measure to process likely hypotheses first.

The learning process for an unknown object starts with an empty set of
model views and gradually incorporates all training views. If a new training
view cannot be matched with a sufficient accuracy to an existing model view,
a new model view is created. Otherwise, the training view and the matching
model view are generalized to a combined model view. Therefore, the resulting
view-based model is a set of generalized clusters of training views. The minimum
description length principle is used to obtain the smallest model that sufficiently
describes the visual appearance of the object.

4 3D Object Localization

In real world applications, it is generally not sufficient to identify an object
within an image. Rather, one is often interested in its exact pose. The goal of this
section is to embed the 2D recognition approach described above into a 3D object
localization system, which covers object learning, view-based recognition and the
calculation of the 3D pose.

4.1 Object Learning

A popular technique for the acquisition of training views for an object is to
record images of the real object from different view points. This procedure re-
quires an elaborate hardware setup to accurately measure the viewing angles and
is quite time consuming. An alternative approach is to construct a 3D object
model (e.g., by using photometric 3D scanning methods) and generate artificial
training views. Using state of the art rendering techniques, like ray-tracing, a
large training set of photo-realistic views covering different image resolutions and
lighting conditions can be constructed. It may be favorable for specific applica-
tions to extract just the object silhouette, which can easily be achieved using
rendering techniques. We generate photo-realistic views to keep the repertoire of
visual features as wide as possible. Other systems that construct artificial views
by just projecting 3D model features like lines and corners into the image plane
limit themselves in that respect. As the experiments in Section 5 demonstrate,
our recognition system achieves good results with real training images as well as
generated ones.

The learning algorithm discussed in Section 3 clusters the training views to
reflect the variance in visual appearance across the view sphere. It is therefore
desirable to uniformly sample the view sphere. We achieve this by iteratively
dividing a spherical triangular mesh. The individual training views are gener-
ated using ray-tracing. The optimal number of training views that have to be
generated for a specific object can be determined as follows. As discussed in Sec-
tion 3, the learning step builds a set of 2-dimensional model views by iteratively
integrating training images. Assuming that the appearance of the object changes
smoothly with small variations of the viewing angles and furthermore assuming
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Fig. 1. One of the generated training images (left) and the recognition result (right) for
a free-form object. It was sufficient for this object to learn and represent the silhouette.

that the views are uniformly distributed and presented in a coarse to fine or-
der, the complete appearance of the object is covered after a certain number of
training views. This number depends on the object and the learning parameters
and is independent from the specific training views. In our current system, we
define as the stopping criterion for generating new training views the point when
the number of model views stops to increase. For example, 130 training views
are sufficient to learn the 18 model views of the highly symmetric barbell object
depicted in Figure 3.

4.2 Localization

For every 2-dimensional model view m, the alignment algorithm yields a 4D pose
vector r (2D position (x, y), orientation α, and scale s) and a match quality mea-
sure. Assuming a calibrated camera, we can calculate the 6D pose vector of the
object in the scene (3D position, 3D orientation) by utilizing information from
the training step. In this section, we describe how a transformation T can be de-
rived that maps object coordinates to scene coordinates. The localization result
can be obtained directly from the transformation matrix. Let us decompose T−1

into four individual transformations T−1 = T4 T3 T2 T1. In this equation, T1
translates the center of the object to the origin of the scene coordinate system.
It is therefore defined by the position vector p of the object. The distance of the
object from the origin (the length of p) can be derived from the scale factor s
and the known object size from the training process. The direction of p is defined
by the position (x, y) of the recognized view in the image plane and the camera
calibration parameters. T1 can be written as

T1 =

⎛
⎜⎜⎝

1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

⎞
⎟⎟⎠ , p =

⎛
⎝

px

py

pz

⎞
⎠ . (2)

The transformation T2 rotates the vector p onto the z-axis. Vividly speaking,
T2 transforms the object into the same pose that its training counterpart was in



188 C. Plagemann, T. Müller, and W. Burgard

 1
 0.9
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1

 0
 9 8 7 6 5 4 3 2 1 0

R
ec

og
ni

tio
n 

ra
te

 / 
Lo

ca
liz

at
io

n 
ac

cu
ra

cy

Number of random clutter objects

Recognition rate
Localization accuracy g(L,T) if detected

Fig. 2. Typical synthetic test data for quantitative performance analysis (left two im-
ages) and the localization results depending on the number of clutter objects (right)

when the training images for model view m were acquired. In the following, the
vectors x̂, ŷ, and ẑ denote the three unit vectors respectively. If we define Ta,b

as the transformation that rotates the vector a onto a vector b around the axis
perpendicular to a and b we have T2 = Tp,ẑ .

Furthermore, T3 rotates the object within the image plane to account for
the angle α that was part of the 2D recognition result. If we define Ta,α as the
transformation that rotates around the axis a with angle α we obtain T3 = Tẑ,α .
Finally, T4 rotates the object according to the viewing angles ϑ (azimuth angle)
and ϕ (polar angle) associated with the recognized view during training, thus
we obtain

T4 = T4,2 T4,1 T4,1 = Tx̂,(180◦−ϕ) T4,2 = Tź,(ϑ−90◦) ź = T4,1 ẑ.

The 3D position vector of the object can be read directly from the last column
of the transformation matrix of T . We refer to Shoemake [14] for details about
the derivation of the 3D orientation vector in Euler’s angular notation from the
transformation matrix.

5 Experimental Results

5.1 Quantitative Evaluation

We conducted simulation experiments to evaluate the localization accuracy using
the known ground truth. Figure 2 depicts typical examples of a series containing
100 test images. The task was to localize the barbell object among a vary-
ing number of random clutter objects using features like edges, corners, joints
and complex groupings thereof. The used rectangular clutter structures made
recognition harder than seemingly more realistic curved structures, because of
their similarity to the barbell object. The test images were rendered to a size
of 384 × 288 pixels using the freely available ray-tracer Povray. To compare the
true object pose T with the localization result L we use the measure

g(L,T) := max
{
0, 1 − (fz δ2

z + fxy δ2
xy + fα δ2

α)
}

. (3)
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Fig. 3. View-based recognition result (left), the derived 3D pose (middle), and the
3D pose after refinement by a scene-based tracking process (right)

Fig. 4. Real training image (left) and recognition result (middle) for a highly specular
object. Detected barbell (right) under extensive occlusion by fog.

In Equation 3, δz denotes the distance between the two poses along the z-axis
(the viewing direction of the camera), δxy is the distance perpendicular to the z-
axis, and δα is the difference in orientation. The weighting factors for the different
dimensions have been set to fz = 1

250000 , fxy = 1
50000 , and fα = 1

10000 to reflect
the importance of the different dimensions given their scales. The quantities δz

and δxy are measured in mm, δα in degrees. A typical value of g = 0.80 is reached
for example with distances of δxy = 2.3 cm, δz = 23 cm, and δα = 15◦. This
displacement is small enough to initialize a scene-based tracking algorithm like
the one described in the next section. The recognition rate for an increasing
number of clutter objects as well as the achieved localization accuracy is plotted
in Figure 2. The mean localization accuracy for recognized objects was g = 0.82
with a median of g = 0.84.

5.2 Recognizing Specular and Free-Form Objects and Refining the
Estimated Object Pose

Specular and free-form objects are particularly hard to recognize visually. The
appearance of a specular object varies greatly with changing lighting conditions
or object movement. Therefore, feature-based recognition has to get by with
only few robust feature pairings among many spurious ones. The rating of fea-
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Fig. 5. Typical image containing the learned top view of a compound pipe object (left)
and recognized object instance in a noticeably different pose (right)

ture pairings using statistics acquired during the training phase is especially
important in such cases to reduce the amount of tested alignment hypotheses.
Figure 4 shows a training image and recognition result for the highly specular
coffee machine object. For this experiment, we used real training images rather
than rendered ones to demonstrate that this is a viable option.

Objects of predominantly curved structure are harder to represent and recog-
nize than purely polyhedral ones. To accurately represent views of non-polyhedral
objects using curve-based features, higher order curves have to be fitted to the im-
ages. This not only increases the complexity in the feature extraction step, it also
makes the feature-based representation less predictable. This points out the im-
portance of the rating function for feature pairings to process useful pairings first.

Figure 1 shows a typical result of our experiments with a toy dinosaur. We
used the optic 3D-Scanner DigiScan 2000 to obtain the 3D structure from the real
object to generate the training set by simulation. A further experiment has been
carried out with an object consisting of compound pipes (see Figure 5). Here,
our system learned the view-based object model using only top-view images.
Note that the test images contained object instances largely displaced from the
image center which lead to perspectively distorted views that were not included
in the training data. As shown on the right image of Figure 5, the object can
still be localized.

We also applied our system to initialize a scene-based object tracking pro-
cess [15]. In our experiments we found that the achieved localization accuracy
was sufficient to robustly obtain a refined object pose after a few tracker itera-
tions. Figure 3 shows the relationship between the 2D recognition result (the left
image), the derived 3D pose (middle), and the refined pose after a few tracker it-
erations (on the right). Localization and pose refinement was also possible under
extensive partial occlusion by fog as shown in the right image of Figure 4.

6 Conclusions

In this paper, we presented an approach to 3D object localization in single im-
ages using a probabilistic view-based alignment technique. Our system learns a
view-based object model from a set of training views. During application, our
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system combines for the recognized view the four parameters of the 2D similar-
ity transform with the orientation of the object in the corresponding training
image to extract the 3D position and orientation of the object in the scene. The
system has been implemented and validated on real images and images rendered
from 3D-models. Experiments with free-form objects and objects with specular
surfaces in cluttered scenes demonstrate the robustness of our approach. We fur-
thermore presented an application of our approach for the initialization of a 3D
scene-based tracking system.
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