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Summary. In this paper, we consider the problem of online failure diéb@ and isolation
for mobile robots. The goal is to enable a mobile robot to mieitee whether the system is
running free of faults or to identify the cause for faulty betor. In general, failures cannot
be detected by solely monitoring the process model for the fnee mode because if certain
model assumptions are violated the observation likelilmiht not indicate a defect. Existing
approaches therefore use comparably complex system mimdets/er all possible system
behaviors. In this paper, we propose the mixed-abstragi@oticle filter as an efficient way
of dealing with potential failures of mobile robots. It usesierarchy of process models to
actively validate the model assumptions and distributectimaputational resources between
the models adaptively. We present an implementation of gorishm and discuss results
obtained from simulated and real-robot experiments.

1 Introduction

Whenever mobile robots act in the real world, they are ad@dty faults and ab-

normal conditions. Detecting such situations and allowirgrobot to react appro-
priately is a major precondition for truly autonomous védsc While the applied

techniques need to be able to reliably detect rare faukspterall estimation pro-

cess under error-free conditions should not be substhmigire complex compared
to systems that are optimized for the normal operationalenSeparate monitor-
ing processes that use more complex models to cover alllpessistem behav-
iors introduce an unnecessary high computational loachitngaper, we introduce
mixed-abstraction particle filters as an effective meanad@aptively distributing the

computational resources between different system modaelsecbon the estimated
validity of their specific model assumptions.

The term "fault detection” is commonly referred to as theedéibn of an abnor-
mal condition that may prevent a functional unit from penfiarg a required func-
tion [11]. Most works in the fault detection and isolatiotefiature deal with internal
faults such as defects in hardware or software. For the mobilot domain, we ap-
ply the same nomenclature to external influences like éotissor wheel slip since
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Fig. 1. The leftimage depicts a simulated robot before collidinghwain obstacle which is not
detected by its sensors. The right photograph shows a rdailemobot that collides with an
undetected glass door while moving on its planned trajgdtothe neighboring room.

their effects are similar to those of internal defects amdrésulting models have the
same structure.

As an illustrating scenario, consider a mobile robot eqegppith wheel en-
coders, a laser range finder, and a sufficiently accurate rhtge @nvironment. In
the fault-free case, the position of the robot can be tracising a standard tracking
algorithm such as a Kalman filter or a particle filter with aglistic odometry-based
motion model, which is formally given in Section 3.3. In odetny-based models, the
next system state, is directly predicted from the odometry, which is the measur
mento,; obtained from the wheel encoders.

Although such models allow us to evaluate different statgollyeses by weight-
ing them using exteroceptive measurements, e.g., usingea fange measurement
l;, they do not directly allow us to detect collisions with dades that cannot be
perceived by the sensors of the robot. This is due to thetiatithen the robot stops
moving, its wheel encoders do not record any motion, whigteidectly consistent
with the recorded laser measurements. Therefore, no fitgradlation occurs and
there is no possibility to detect such faults inside therfil@ne typical solution to
overcome such problems is to compare the estimated trajegith the planned one
on a higher system level. As major drawbacks of such an appraae cannot infer
the actual cause for the deviation from the planned trajg@od the system archi-
tecture is complicated by the stronger connection betwaeplanning and tracking
module.

An alternative solution is to consider the actual motion owands that have been
sent to the motors instead of just using the wheel encoddings. However, this
makes the system model substantially more complex and #uqtions, which are
now based on motor currents and accelerations, less aeclraur experiments, we
observed that such a model is around 32 times slower to cantipam the odometry-
based model. It is important to note that the odometry-basedel makes the im-
plicit assumption, that the wheel encoder measuremenéxtéifie intended motion.
If this assumption is violated, the standard estimatiohéque cannot be used to
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estimate the joint probability(z, f) anymore, where: stands for the pose of the
robot andf indicates the failure state.

In this paper, we propose to make the model assumptionscégtid to build
a model abstraction hierarchy. We present the mixed-att&treparticle filter algo-
rithm that uses such a hierarchy to direct computationalees to the most effi-
cient model whose assumptions are met. In this way, it mzesithe computational
load while maximizing the robustness of the system.
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Fig. 2. Arbitrary model hierarchy (left) with an unrestricted modé,, several restricted mod-
els My, M, Ms as well as the specific assumptiods_..; that restrict the state spaces re-
spectively. Two models for the same physical process: thedsird odometry-based model
(e.g. M,) that uses the odometry measurementss controls (middle) and the laser mea-
surementg$; as sensor inputs. A less restricted model (84g, on the right) that includes the
actual motion commands; as controls.

The paper is organized as follows. After the discussion &fted work, we
present our mixed-abstraction particle filter algorithna d@s application to moni-
toring mobile robots in Section 3. Finally, Section 4 présexperimental results.

2 Related Work

Model-based diagnosis has been approached from within te®mmunity using
symbolic reasoning with a focus on large systems with matgyatting components
and from the control theory community concentrating on fea@mponents with
complex dynamics and higher noise levels [8]. With symbafiproaches, the system
is typically assumed to move between discrete steady qtetgsHere, diagnosis is
often based on system snapshots without a history. Krysg8peroposed a hybrid
model consisting of discrete fault modes that switch betwdifferential equations
to describe the system behavior. The diagnosis systemiigmesfor large systems
with low noise levels, where instantaneous statisticastere sufficient to identify a
faulty component.

As Dearden and Clancy [3] pointed out, the close coupling/beh a mobile sys-
tem with its environment makes it hard to apply discrete daagis models directly,
because extremely complex monitoring components would tabe used. A more
robust and efficient way is to reason directly on the contirsugensor readings. As
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a result, probabilistic state tracking techniques haventsgplied to this problem.
Adopted paradigms range from Kalman filters [16] to partiitters in various mod-
elings [1, 3, 12]. Particle filters represent the belief alibe state of the system by a
set of state samples, which are moved when actions are petband re-weighted
when sensor measurements are integrated (see Deadtaglc{4]). In particle filter
based approaches to failure diagnosis, the system is tiypisadeled by a dynamic
mixture of linear processes [2] or a non-linear Markov jumpaess [5]. Benanzera
et al. [1] combine consistency-based approaches, i.e. the Lstamg system, with
particle filter based state estimation techniques.

Vermaet al. [15] introduce the variable resolution particle filter failfire de-
tection. Their approach is similar to ours in that they baifdabstraction hierarchy
of system models. The models of consideration build a pamtiof the complete
state space and the hierarchy is defined in terms of beh&sior#arity. Our focus
in contrast lies on switching between overlapping systendetwofor certain parts
on the state space. Our model hierarchy is therefore basefficency differences
and explicit model assumptions about the system state. Wh@pproaches should
therefore be seen as complementary rather than altersative

Other approaches that deal with the time efficiency of plarfiiters include Kwok
et al.[10] in which real-time constraints are considered for Ergystem models or
techniques in which a Rao-Blackwellized particle filtersed to coordinate multiple
models for tracking moving objects [9].

3 Particle Filters for Sequential State Estimation

A mobile robot can be modeled as a dynamic system under thesirde of issued
control commands,; and received sensor measurementd he temporal evolution

of the system state; can be described recursively using the formalism of the so
called Bayes filter

p(It | ZO:taUO:tfl)
= /p(It | ze,up—1, Te—1) D(Te—1 | 20:t—1, Uo:t—2) dTr—1 (1)

= pze | x¢) /p(ivt | ue—1,2¢e—1) p(Te—1 | 20:t—1, Urt—2) dze—1. (2)
———

observation model motion model recursive term

The termy, is a normalizing constant ensuring that the left-hand sighessup to one
over all z;. With Equation 1, we assume Markovian dependencies, nathaty:,
only depends on the most recent measuremgand control command,_; given
knowledge about the preceding state of the system. Particle filters are an im-
plementation of the Bayes filter and can be used to efficiesfymate the posterior
p(z;) in a sequential manner. Here, the posterior is representeddiscrete set of
weighted sample§’ = {<x£m] , wﬁm])}. With the sampled representation, the integral
in Equation 2 simplifies to a finite sum over the samples reguftom the previous



Efficient Failure Detection for Mobile Robots 5

Algorithm 1 Particlefilter(X;_1, us—1, 2¢)

1: yt:Xt:(a
2: for m = 1to M do

3 samplerl™ ~ p(z | w1, 2l™)
4 w™ =p(z | 2™
5: Tt = Tt + <CC£m] s wy'L])
6: end for
7. for m = 1to M do _
8:  draw particlei with probability oc w,{z]
9:  addz! to X,
10: end for
11: returnX;

iteration. The motion model and the observation model caagpied directly to
move and weight the individual samples respectively. Athan 1 formulates the
standard patrticle filtering approach [14].

In Algorithm 1, the state of the system at timés represented by a séf; of

state samplesl[fm]. In Line 3, we perform a state prediction step using the extler
[m]

motion command,_; and the motion model(x; | u;—1,x; 7). Line 4 incorpo-
rates the current sensor measuremeity re-weighting the state samples according

to the measurement modg(z; | ILT"]). From Line 7 to 10, a resampling step is
performed to concentrate the samples on high-probabd@ions of the state space.
We refer to Thruret al. [14] for details about the resampling step and its efficient
implementation.

For the odometry-based model that treats the odometry merasats as con-
trols, we havey; 1 = o, andz; = I;, whereo; is the odometry measurement and
l; is a perception of the environment. For the dynamic modeiotiegh in the right
diagram of Figure 2u,_; is the actual control command and = (o;,!;). Both
models are described in more detail in Section 3.3.

3.1 Process Model Hierarchy

A fundamental problem in science and engineering is chgotie right level of
abstraction for a modeled system. While complex and highedsional models
promise high estimation accuracy, models of less complex often significantly
more efficient and easier to construct. In the area of mobletics, the accuracy-
efficiency trade-off is an important issue, since on the caredh computational re-
sources are strictly limited in online problems and on theeothand, estimation
errors have to be avoided to prevent serious malfunctioveytherefore propose
an online model selection algorithm with adaptive resoalfmation based on the
Bayesian framework.

An abstraction hierarchy for process models is given by pleeific assumptions
that the different models make about the world (comparerei@). We define the
model abstraction hierarchgs an acyclic directed graph with the different system
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models); as nodes and their model assumptions,; as edges, leading from the
more general modeko a more restricted orje A model assumptiod;_, ; is defined
as a binary function on the state space of the unrestrictetbhid;.

As an example, consider the process model for a mobile rbabshould be able
to continuously localize itself in a given map. A general raloi/, would include
the the pose of the robatand additionally take physical factors like ground frictjo
tire pressure, load balance, motor characteristics, eto.dccount and treat those
as additional state variables in a state vegtofn most situations, however, it is
quite common and reasonable to assume a simpler niddeihere these additional
variables are constant and do not need to be estimated dapergtion. Formally,
the state space dff; is therefore{z, f | f = const}, which is a projection of the
more general spacge, f} of model M. The assumptiom,_,; would in this case

be defined as
true : f = const

Ao—i(z, f) = {false . f # const.

It is important to note that the validity of an assumption oafy be tested in a
less restricted state space, where this assumption is ri#.fivepractice, this means
that we have to test for every edge in the model abstractiaplgthe associated
assumption using the more general model. As a measure fosatitity of an as-
sumptionA at timet, we use the ratio

~ ZAP(Zt | I[m]) |1_|
Ut A) = N
W= o o) 4

whereA is defined as the subsgt!™ | A(z!"™)} of all particlesX for which A is
valid. More informally, we compute the amount of evidencéawor of a restricted

state space relative to the unrestricted case. The qua{(tjiy is based on the current
approximation of the posterior distribution by the padifilter.

3)

3.2 Adaptive Model Selection

To adaptively switch between alternative system modetsy#iidity of the model
assumptions have to be estimated online and computatiesalirces have to be
distributed among the appropriate models. The distrilbbutresources is done by
increasing or decreasing the number of particles for tHerdifit models. To achieve
this, we apply the following algorithm that takes as inpw thodel abstraction hi-
erarchygraph defined in the previous section. When a new measuremeéenbb-
tained, the mixed abstraction particle filter algorithmwlsaamples from the particle
set representing the current postetidr , for all system models, incorporates the
measurement, and builds new posterior distributidiis The key question in this
update step is which model posteritif should receive how many samples. We base
this decision on the estimated validity of the model assionptd,_. ;. If the esti-
mated quantity, (A4;_;) drops below a predefined threshaélwe sample into the
more complex mode); and otherwise prefer the more efficient ahg. This de-
cision is made repeatedly on a per particle basis until a iouakereceived enough
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Algorithm 2 Mixed-AbstractionParticlefilter

1: Calculate samples for the unrestricted matigluntil the assumptiond; . ;(Z.) is valid
for a minimal number of samples
: Build a first estimate of: (A;_.;) according to Equation 3
repeat
if vs(Ai—;) >= O then
Calculate samples fav/;
else
Calculate samples fav/;
end if
: until either M; received enough samples et (A;— ;) >= © and M received enough
samples)

©CoNORr®N

samples and all its assumptions are validated. In eachi@erave start with the
most unrestricted modal/; and perform the following steps for each of its outgoing

edgesthe update steps mentioned above, the samples are takartlfe previous
posterior distributionst;_,, if assumptiond,_.; was valid in the previous step and
from X;_, otherwise. When all outgoing edges_.; of modelM; have been pro-
cessed in the described manner, the same update is appleddels/; further
down in the hierarchy until either the leaf nodes have beengssed or one of the
assumptions did not receive enough evidence to justifhéunnodel simplifications.

Several quantities like the numbers of samples necessaeaét model (Line 9)
or the validity threshol@® (Line 4) have to be determined in an offline learning step.
For the experimental results reported below, we optimibedé values on a set of
representative trajectories, recorded from real and sitadIrobots.

To recapitulate, the mixed abstraction particle filterrasties the system state
by running several particle filters in parallel, each usingjifeerent system model.
Samples are assigned applying the following rule. For eachaiternative system
models, the simpler one is prefered as long as there is yositidence for the va-
lidity of the corresponding model assumption.

3.3 Motion Models for Mobile Robots

The standard odometry-based motion moftela wheeled robot estimates the pos-
teriorp(x; | z1—1, 0¢) about the current posg based on the previous posg ; and
the wheel encoder measurementA popular approach [6] to represent the relative
movement is to use three parameters, an initial rotaticmtranslationl, and a sec-
ond rotation3 as illustrated in Figure 3. Typically, one uses a Gaussiafmilution
for each of these parameters to model the noise.

Under the influence of events like the collision with an obktar wheel slip-
page, the odometry-based model is not applicable anymuoce #ie wheel encoder
measurements do not provide useful information about theabmotion. To handle
such situations, we construct an alternative model, terdy@amic motion model
that depends on the actual motion commands that were sehé tmotors of the
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Fig. 3. Parameters of the standard odometry-based motion model.

robot. This model includes the geometry of the robot andhigsiral attributes like
mass and moment of inertia. For each wheel, we compute theeindé of the veloc-
ity command on the translational and rotational energy eftibot. In this represen-
tation, we can directly incorporate the effects of collispslippage, and deflating
tires. We then convert the energy state of the system to @sdspnd obtain a state
prediction for the next time step.

It is important to note that the dynamic motion model is nagigeed for the
failure states only. Rather it is able to deal with normalditions as well. Itis there-
fore considered as more general as the standard odomesteglibeodel in our model
abstraction hierarchy. The assumption placed on the syst@t® by the odometry-
based modelis, that there are no external influences liltisiools, slippage, etc.

4 Experiments

4.1 Quantitative Evaluation Using a Simulator

To quantitatively evaluate our system, we performed ség@ralation experiments
and compared the results to the known ground truth. We usetig-fidelity sim-
ulator Gazebo [7], in which physics and motion dynamics areikated accurately
using the Open Dynamics Engine [13]. In several practicaberents carried out
with real robots, we experienced the Gazebo simulator dsswigdd for studying the
motion dynamics of robots even under highly dynamic evekesdollisions. For ex-
ample, we did not have to change any system parameters wheorteel our system
from the simulator to the real robot.

To demonstrate how the proposed algorithm coordinatedpteufiarticle filters
that have been designed independently, we confronted #tersywith two different
faults within one scenario. A simulated ActivMedia Pion2BxX robot (see the left
image of Figure 1) was placed in the corridor of a 3D office emuinent. We manu-
ally steered the robot through this environment. On its gagimcountered a collision
with an undetectable object. After that, its left tire stairto deflate. Four filters were
used independently to track the state of the system. Thdifiestwas based on the
standard odometry-based motion model described in Se8t&The second filter
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used the dynamic motion model described in the previousoseahd also included
a model for collision faults. The third model was also basedh& dynamic motion
model but was capable of dealing with deflating tires. Finalie forth filter was the
proposed mixed-abstraction filter that combined all of ther8 described above.

Figure 4 depicts the true trajectory as well as the trackésylts obtained with
the individual filters overlayed on a map built from laser si@@ments in a real
building. The three arrows in the diagram mark the followtimgee events: a collision
with an undetected glass door (1), a point where the robppsith backing off and
turned around (2), and a point where the left tire of the rabatted losing air (3).

As can be seen from the figure, the filter that is able to dedl d&fflating tires
diverges immediately after the collision at point 1. Singe filter able to deal with
collisions cannot deal with deflating tires, it divergesainp 3. The odometry-based
model keeps track of the robot despite the collision at pairthowever it is not
aware of any fault at this point. The combined filter in costiucceeds in tracking
the robot despite of both incidents.

The middle and lower image of Figure 4 plot the internal statEthe special-
ized detectors within the mixted-abstraction filter. Theskies reflect the belief of
the system about the presence of certain faults. The middige plots the relative
number of particles in the fault mode of the collision detectver time. As can be
seen, this number raises significantly shortly after théstoh as well as after the
full stop at point 2. After the robot had been intenionallypgied there, the system
cannot know whether an obstacle is in its way or not. The ldmage of Figure 4
shows the evolution of the relative number of particles eftult mode of the defla-
tion detector. Since the collision at point 1 has been hahujj¢he collision detection
within the mixed-abstraction filter, this filter does not tshito a failure mode until
point 3. At that point, the filter switches into its failure deand in this way enables
the mixed-abstraction filter to keep track of the pose of timt.

4.2 Analyzing the Gain in Efficiency

In this experiment, we quantatively evaluate the gain ircifficy that we achieve
by dynamically distributing samples between the individiters. In the modeled
scenario, a simulated robot follows a trajectory and celidwice with an obsta-
cle, which is too small to be detected by its laser range findéer the collisions,
the robot backs off and continues its task. The top diagraffigire 5 shows the
trajectory of the vehicle and the locations where the athoricorrectly detected a
collision. The other two diagrams illustrate the failuréegtdion process of the same
simulation run. The bar at the bottom indicates the true taenps of the faults.
Whereas the plot in the second row depicts the relativeitiked for a collision as
defined in Equation 3, the curve plotted in the third row gitrestimes needed for
the individual iterations of the particle filter.

Table 1 gives the results of a comparison of our adaptive trwligching ap-
proach to three other implementations, where only singldatsowere used for state
estimation and fault detection. The results are averagedtbe full trajectories of
100 runs per implementation. The implementations consitleere are realized on
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Fig. 4. Results of an experiment with two fault-events (top). Thiigion of the robot with a
glass door is marked with the arrow “1”, the point where ifpgted backing of and turned is
marked with “2”, and at point “3” the left tire of the robot sted losing air. The diagram in
the middle plots the relative number of the particles in tadtfmode of the collision detector.
The lower diagram shows the corresponding number for thatéteildetector.

the basis of two models. Whereas modé) is the complex model that considers
the actual motion commands and therefore is able to trackdhition as well as the
failure state, model/; is the standard odometry-based system model, which is able
to track the position of the robot reliably with low time réeggments, but cannot de-
tect the collisions. The firstimplementation is based onehdd, with 20 particles,

the second is modé&l/; with 200 particles. While the third implementation is based
on modelM, with 300 particles, the forth one is the mixed-abstractiartiple filter
combining implementation one and three. The common task ohplementations



Efficient Failure Detection for Mobile Robots 11

17 T . T . .
Collision detected ()
| Estimated trajectory—— |
16.5
S
Z 16 t=8.2 sec
(o]
o
< 155}
2
= 15 +
£
E 145+t
141 t=28.9 sec
135 1 1 1 1 1 1 1 1
7 8 9 10 11 12 13 14
Estimated x-position
3 § Relative likelihood: collision
g EL
< 3
- 2
o 1 M.
@ 0 fr— —
0 10 20 30 40 50

Simulation time [sec]

30 Time per iteration

9 m
10
5 M

0 10 20 30 40 50
Simulation time [sec]

Time per iteration [ms]
N
o

Fig. 5. A trajectory followed by a simulated robot (first row) with rka at positions where
the evidence for a collision was high. The plot in the secamddepicts the relative likelihood
for collisions. The plot also shows the ground truth (thedidahe bottom). The last plot shows
the time needed for each iteration (third row).

was to track the position of the robot along a trajectory oficivithe robot encoun-
tered two undetected collisions afteR and28.9 seconds. A typical estimate of the
trajectory generated by the mixed-abstraction filter idilg markings for detected
collisions is depicted in the left diagram of Figure 5. Theréwo right image of Fig-
ure 5 plots the value af; (A) over time. As can be seen from the figure, the evidence
for a fault substantially increases at the time of the inctdss. The upper right im-
age in the same figure plots the CPU time used by the mixedaatkish filter. It
nicely shows that the computation time is only high when thidence of a failure
has increased.

Table 1 shows average values obtained from the 100 test ocureath imple-
mentation. Whereas mod#&f; was never able to detect a failute, as well as our
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adaptive switching algorithm detected all failures equeléll. However, our adap-
tive model required substantially less computation tinmpgared tal/, alone using
300 particles.

System model Failure DetectiopAverage timeAverage estimation errpr
rate per iteratio Positiorj Orientatior

M, : standard odometry 0% 0.67ms 0.13m 3.6

20 particles

M : standard odometry 0% 5.83ms 0.13m 3L

200 particles

Moy: dynamic 100 % 10.10 ms 0.11 m 5.8

300 particles

adaptive-switching: 100 % 3.42ms 0.12m 3¢

M 20 particles

My: 300 particles

Table 1. Results of a series of simulation runs using different systeodels for state estima-
tion. The results are averaged over the complete trajestofi100 runs per model.

4.3 Evaluation on a real robot

We also tested our system on a real ActivMedia Pioneer 2DXtrimban office envi-
ronment. The rightimage of Figure 1 depicts the experimieetap. Three positions
of the robot were manually cut from a recorded video and ayed on one image to
illustrate the process. The robot planned a path to the bheiging room on the right-
hand side of the corridor. While executing the planned ttajg, the robot could not
detect the glass door that blocked its path and thus collidédthe wooden part
of the door. In this situation, the standard odometry-bagstiem model used for
localization does not indicate a defect, because the wineelbers report no motion,
which is perfectly consistent with the laser measuremditts.left diagram of Fig-
ure 6 gives the evolution of the observation likelihoodglf@r standard model, which
stays nearly constant. In contrast to this, the proposeddrakstraction particle filter
detects that the model assumption of the standard modet igatid anymore after
the collision with the door and switches to the more complestesn model. The
right diagram of Figure 6 visualizes this process. For the sd clarity, we plotted
the estimated validity of the negated model assumptionglivban be interpreted as
the evidence against the assumption that no collision hasreed. The upper curve
corresponds to the time needed per iteration. Note thatetyeined computational
resources only slightly exceed those of the standard odgrbesed model (see left
diagram for a comparison). Only in the failure case, theinnaincreases seriously
since the more complex model requires substantially matecfes. Please also note,
that the runtime goes back to the original value after therbhs backed off and the
model assumption of the simplified model is valid again.
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Fig. 6. In an experiment with a real robot, the observation likeith@f the standard system
model (lower left) does not indicate the collision with aggaloor at time = 22 seconds. The

mixed-abstraction particle filter (right) detects the fawmithout needing substantially more
computational resources in the fault-free case (upperaias).

5 Conclusion

This paper presents an efficient approach to estimate tke sta dynamic sys-

tem including its failures. Complex models with high congiignal requirements
are needed in order to detect and track unusual behaviorthékefore proposed a
mixed-abstraction particle filter which distributes thengutational resources in a
way that failure states can be detected and tracked but aathe time allows us an
efficient estimation process in case the systems runs fréeuti§. To achieve this,

we apply a process model hierarchy which allows us to modeiraptions that hold

for the fault-free case but not in general.

In several experiments carried out in simulation and witi rebots, we demon-
strated that our technique is well-suited to track dynamstesns affected by errors.
Our approach allows us to accurately track different failstates and at the same
time is only marginally slower in case the system is runnimg fof faults. We be-
lieve that our approach is not limited to the failure detttproblem and can also
be advantageous for various state estimation tasks in wdiffdrent system mod-
els have to be used to correctly predict the behavior of tlstesy under varying
conditions.
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