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Abstract have been proposed. In this paper, we propose an alterna-

tive approach, in which Gaussian processes (GP) are used to
learn proposal distributions that represent informed ge®s
about the failure mode and its parameters. We demonstrate
how GP classification can be used to predict discrete failure
modes and how GP regression can be used to model continu-
ous failure parameters. Since Gaussian processes provide f
predictive distributions including the predictive unaénties,

they can readily be used as proposal distributions in thie par
cle filter implementation. By including the most recent sgns
measurements received by the robot, these proposals can be
seen as an approximation of the optimal proposals for the re-
spective state variables.

Our system does not require additional hardware such as
inertial sensors or bumper rings, which may be expensive
or otherwise unfavorable in certain domains, e.g., foraeri
blimps. The proposed algorithm has been implemented on
a real robot and can be executed in real-time. We discuss
results from several test runs in realistic scenarios irctvhi
we compared the achievable detection rates and pose track-
ing quality of our system with an optimized standard pagticl
filter implementation without informed proposals.

This paper is organized as follows. After discussing relate
1 Introduction work, we describe particle filters for sequential statenesti

The detection of and reaction to unforeseen failure eventLJon and fallurg detection n Sect|'on 3. Our Gaussian proces
is a fundamental ability for autonomous systems as an imProposals are introduced in Section 4, followed by the exper

proper treatment of such situations may cause loss of dontrémental results.

and can possibly harm the system or the environment. Cons

sider, for example, a mobile service robot that collidewait r? Related Work
low doorstep or a planetary rover that hits an unforseenlsmaf he close coupling between a mobile system and its environ-
rock. In such situations, the mobile robot should be abla}o ( ment makes it hard to detect abnormal behavior using instan-
detect the unexpected event quickly and (b) to infer theecaustaneous statistical tests only without tracking possialkife

of the event in order to react appropriately. Many succéssfumodes over timgDearden and Clancy, 20D2For this rea-
previous approaches to the online failure detection prable son, probabilistic state tracking techniques have beeleabp
are based on the sequential Monte-Carlo method. They typio this problem. Particle filters represent the belief altbat
cally track multiple system modes in parallel before they de state of the system by a set of state samplsun et al.,

cide on the most probable one. A crucial problem for such2005. In particle filter based approaches to fault diagnosis,
sampling-based approaches especially in real-time sospar the system is typically modeled by a non-linear Markov jump
however, lies in the high dimensionality of the state spacerocesdDriessen and Boers, 20Ddr a dynamic mixture of

to be tracked and the low frequency and unpredictability ofinear processdsle Freitast al., 2003. The look-ahead par-
failure events. To increase the efficiency of sample-baseticle filter introduced in the latter work also approximaties
representations, different techniques such as lookalerad s optimal proposal distribution by considering the most reece
pling [de Freitast al., 2009, risk sensitive samplinfThrun  sensor measurements, but in contrast to our work focuses on
et al., 2001, and hierarchical samplingyermaet al., 2003 the case of discrete failure modes without continuous riailu

The ability to detect failures and to analyze their
causes is one of the preconditions of truly au-
tonomous mobile robots. Especially online fail-
ure detection is a complex task, since the effects
of failures are typically difficult to model and often
resemble the noisy system behavior in a fault-free
operational mode. The extremely l@anpriori like-
lihood of failures poses additional challenges for
detection algorithms. In this paper, we present an
approach that applies Gaussian process classifica-
tion and regression techniques for learning highly
effective proposal distributions of a particle filter
that is applied to track the state of the system. As a
result, the efficiency and robustness of the state es-
timation process is substantially improved. In prac-
tical experiments carried out with a real robot we
demonstrate that our system is capable of detecting
collisions with unseen obstacles while at the same
time estimating the changing point of contact with
the obstacle.



to include the discrete failure modg, the continuous failure
parameters,, and the remaining part of the robot’s state

e @ ° We assume the commonly used constant failure rate model
(see[Ng et al., 2008), where the failure event itself does not
@ e @ @ Q ° depend on the rest of the system. The right diagram of Fig-

ure 1 shows the underlying graphical model. Since the ob-
@ @ @ e servations are independent of the failure s{gieo;) given
. . . ) the stater; of the robot, the observation model simplifies to
Figure 1 Graphical model for the. dynamic system in an ab-p(zt | s¢) = p(z | z;). The transition model can be factor-
stract view (left) and a more detailed form (right) where thejzed as

system states,; are split up to include the discrete failure

¢ ) p(st | st—1,ut—1) = p(xe, fer,oe | e—1, fr—1,06—1,ut—1) (2
mode f;, the failure parameters, and the robot’s state,.
= p(fe | fi—1)-ploc | fo,me—1,00—1) p(@¢ |0t xp—1,up—1) - (3)
————
parameters Benanzemal [2004 Comblne CO”SlstenCy_ failure event model failure parameter model robot motion model

based approaches, i.e., the Livingstone system, withqiarti 116 ¢onstant failure rate model states that failure eveats a

filter based state estimation techniques. Vestnal. [2003 P ; ; ;
introduce the variable resolution particle filter for fagule- ?éft/{ﬂé));&d exponentially depending on a failure rate para

tection. Their approach is to build an abstr;action_hiemmh _ (f)=1-— o= (t=D) @
system models. The models of consideration build a pantitio ~ P\Je ’
of the complete state space and the hierarchy is defined iwheret denotes the time of the last failure event. It can eas-
terms of behavioral similarity. A different kind of model-ab ily be shown that for such a model, the mean time between
straction hierarchy based on explicit model assumptiorss wafailures becomed/TBF = <. For realistic failure rates,
developed ifPlagemanret al., 2004 to detect failures on- this model results in extremely low failure probabilitiesrp
line. Other approaches that deal with the time efficiency offilter iteration. Assume, for example, a mean time of 30 min-
particle filters includéKwok et al., 2009 in which real-time  utes between collisions of a service robot with unseen ebsta
constraints are considered for single system models. cles. This implies\ = ;- = 0.0005 and with a filter
Gaussian processes have been widely studied in the Mdrequency ofét = 0.1 seconds yields a failure probability of
chine Learning community. Excellent introductions havep(f: | —fi—1) ~ 0.000056 within one iteration. For such
been given byMacKay, 1998 and[Rasmussen, 1996[Gi-  a small value, just one df0, 000 particles would jump to a
rardet al., 2009 present a Gaussian process based model fdiailure mode on average. Thus, one would either need an ex-
multiple step ahead prediction of time series. Classificati tremely large particle set or would risk that failures remai
models are discussed [heal, 1997. [Schwaighofert al., undetected. This problem is amplified by the fact that not
2009 present an application of Gaussian processes to locapnly the discrete failure mode has to be sampled, but also

ization using signals of a wireless phone network. the unknown continuous failure parameters. Since in génera
there is no prior knowledge about the parameters of randomly

3 Sequential State Estimation occurring failures, we assume a uniform distribution

The temporal evolution of dynamic systems such as mobile pot | fe,2e-1,00-1) = Uo,111 0man] (01) (5)

robots can be described using the graphical model depicteq\,er 4 certain interval.

in the left diagram of Figure 1. In this figure; denotes the o : ;
state of the system at time =, stands for received sensor the case where the system transitions into a failure stéte. T

measurements, and is the issued control command. Given €volution of failure parameters within a failure state ipity
the modeled independence assumptions, the state of the sylly governed by a much more peaked distribution similar to
tem can be evaluated recursively using the Bayes Filter forthe motion model of the robot. In Section 5, we describe our
malism[Thrunet al., 2004 model for the evolution of collision parameters based oialrig
body dynamics. This model is able to track collisions suffi-
ciently accurate, if the initial collision parameters hdeen
estimated well enough. The main focus of this work therefore
observationmodel transition model recursive term is to improve the detection of failure events and to effidient
Particle filters are widely used as a sample based implemermstimate the initial parameters.
tation of this recursive filter. They represent the stateheft  To address the problem of low sampling probabilities for
system by a set of weighted sampieés= { (s, w[)}. with ~ important parts of the state spad@hrun et al., 2001 in-
the sample-based representation, the integral in Equation troduced the risk sensitive particle filter that incorpesat
simplifies to a finite sum over the samples resulting from thdearned risk function to force the filter into less likely but
previous iteration. The transition model and the obsesvati important states. While this approach ensures a reasonable
model can be applied directly to predict and weight the indi-amount of samples in the important failure modes, it cannot

Note that this model applies only to

p(st | z0:t, wo:t—1)

= pGar [s0) [ bt i1, uim1) plsioi | 20:-1, u0:e—2) dsi—1()
plet | o)

vidual samples respectively. adapt to the specific situation the robot is in when the sam-
_ _ pling decision is made. We therefore propose to use learned
3.1 Modeling Failure Events and Parameters proposal distributions to be able to make informed guesses

For dynamic systems under the influence of external or interabout the discrete failure mode and the continuous failare p
nal failure events, the statg of the system can be split up rameters online.



3.2 Data-driven Proposal Distributions can easily be sampled from, and provide the transition prob-
In the sequential importance sampling scheme [Beeicet,  abilities needed for the weight correction described above
1999) an arbitrary proposal distribution can be used to di- . )

rectly sample the relevant areas of the state space as lofy Gaussian Processes Proposals for Discrete

as (a) all possible states have a non-zero possibility of be- and Continuous State Variables

ing chosen and (b) the importance weights of the particle% . ;
. : e aussian processes are a powerful tool for learning and rep-
are adjusted appropriately. Proposal distributions tapedd esenting F13ull predictive digtributions for non—linee?mm P

?rgcttr(]-:% rkr:;) Ztegzcrg?etz z%%srﬁ;‘mszigrg/rgiig}; geggt;igges ns[Rasmussen, 199@nd have also proven successful in

- . solving classification problems. Given a training set and pr
driven proposals or detector-mediated proposals (see[Khan : .
et al., 2004). Such proposals aim at approximating the Opti_ors on the function to be learned, the Gaussian process model

; . allows to predict function values at new input locations and
mal proposap(s; | si—1, 2, us—1) which fully includes the | I dicti tainties. We first introdes
most current sensor measuremegntWith the process model also supplies predictive uncertainties. Yve first introd .
defined in Equations 1 and 3. the weidht for partick time ~ '€9"€SSion and classification models as well as their role in
q ' 9 P the general failure detection setting described aboveetn S

t becomes 4 } 4 tion 4.3, we then describe a specific application in detad, t
[i] p(s[f.]t | z1.6)  p(z¢ | s[f,]t,zl:t_l) p(s[f.]t | z1.:1)  detection and tracking of collision events for mobile rabot
m(sth | 214) Pz | 21a1) (st | 214) 4.1 Non-linear Regression
~———
=:1/n Assuming a non-linear functional dependedyetweenmn-
(i) @[] (4] dimensional input vectorg, . .., y, and real-valued targets
I 5t )p_(st [ 5i21) p(slft—l | Z1ie-1) t1...,t, such thatt; = g(y;) + ¢ for independent error
a1 s ) mGsy ] 2ee) termse;, the task is to predict future targets,; at new
—_— input locationsy,, ;. The idea of Gaussian processes is to
=wl, view all target valuegy, ..., t,; as jointly Gaussian dis-
[ [ ] tributed with an(n + j)-dimensional mean and a covariance
— .0 iy P o Tiq) cou(t, ') = k(y,y’) specified via a kernel distance function
n-owiq o p(ee | sg) ; T T . " .
m(al | ol 2l)) k on the input vectors. Predictions for a new query point

(1 [l W1 o] [ ] yn+1 €an thus be performed by conditioning on the known
p(fi | fiZ) ploy | fi7 @2y, 074) (6) targetvalues ... t, see[Neal, 1997. The mearu and

- T . 2 ; T
ﬂ‘f(ft[] | Fy) 7TO(OL] | ft[ I F) varianceo” of the Gaussian predictive distribution foy

] o - turn out to be
wherer is the proposal distribution forto the transition model S
defined in Equation 3 with the failure event model exchanged p=Eln1[t,...,tn) = kOt (7
for 7; and the failure parameter model exchangedfor 02 =V(tpp1 |ty .. ty) = v— kTc—'k  (8)
Here,r; andr, are the learned proposal distributions for the . ) . )
discretef, and the continuous, respectively. The control With C then x n covariance matrix for the given targets,

commands:; have been omitted for clarity, they are straight- the 7-dimensional vector of given target values, dndhe
forward to include. The normalizing factaris constant for n-dimensional vector of covariances between the new target

all particlesi. FurthermoreF, denotes an arbitrary feature Valuet,.1 and the known targets, ..., Z,.. , _
vector extracted at time Any feature vector, as well as In our fallurg detection setting, we can use this regression
any functionsr andr, can be used for this task as long as model to predict the continuous parameters of new failure
the assumptions events. We take extracted featurgsas input vectors and
. failure parameters,; as target$. Given a training set of such
o ms(f | Fy) #0forall fwith p(f | s1.4,21:4-1) # 0 quantities and a properly chosen covariance functipwe

e w,(0| fi, Fy) # 0forall owith p(o | s1.¢,21.4-1) # 0. can compute the predictive distribution, (o, | fi, Fi) =
hold, which means that all possible failure states have to b/ (1 *) as detailed in Equations 7 and 8. This (normal) dis-
assigned a non-zero probability of being chosen. Visuallyfibution naturally meets the requirements for proposat di
speaking, Equation 6 states that after each filter iteratfan tributions named in the previous section. It can be sampled

particle weights have to be multiplied with the current abse from directly, it supplies the likelihoods of sampled vadui
L [4] . . has an infinite support, and it therefore only assigns noa-ze
vation likelihoodp(z; | s;') and with two correction terms

o likelihoods.
for the two learned proposal dlstrlbutlons. To calculatsth An important aspect that has been left out so far is the

correction terms for a specific samplé, we divide the prob-  chojce of covariance function and how its parameters can be
abilities defined in Equations 4 and 5 by the likelihoods ac-set. The covariance function plays an important role in the
cording to which the state variablg%”] and ol[f} have been Gaussian process framework as it represents the prior know!
drawn fromr; andn,. Another precondition for the learned edge about the underlying functign By changing its form

proposals therefore is the availability of likelihoods g&@am-  and parameters, one can control the generalization bahavio
pled values. As we will see in the next section, Gaussian proand smoothness of the predictor. A common choice of covari-
cesses always ensure the non-zero probability assumptiorsnce function (seEMacKay, 1999) that is also used in this
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Figure 2: The collision event training set where two feattakies are mapped to class instances (left), the learnssl ptab-
abilities 7 (F}) using Gaussian process classification (middle), and thheddaregression model for the collision parameters
visualized by a cut through the 2-dimensional pdf that magbsoity deviations to contact points for a collision (rigght

work is and without additional hardware like bumpers or inertial-se
Lo sors. For learning the collision event proposal and the pro-
k N .— ) 1 2 pos_al for the contact point qf the_ robot with the obstacle, we
(v, ¥') i= a0+ vo - exp ( 2 ;wd(yd va) achieve excellent results with simple features based on the
d=

rotational and the translational velocity of the robot. $hu
with a constant component and a non-linear, stationary,ternwe use as input to the Gaussian process classifier the two-
which depends only on the distance between input pointdimensional feature vectdr, = (Awv, Av,.), whereAwv; is

The parameters of the covariance function are called hypethe difference between the translational velocity estauty
parameters of the Gaussian process. They can either be fixéte particle filter and the one estimated by local laser scan
by maximizing the likelihood of the given data points or, matching. Furthermore)w, is the difference of the rota-
for fully Bayesian treatment, can be integrated over usingional velocities respectively. A training set of 500 auim
parameter-specific prior distributions. For our experitaen ically labeled trajectories was generated by simulating ra
reported in Section 5, we employed the latter strategy wittdom collisions with different obstacles using the 3D simu-
Gamma priors on the hyperparameters. We set these priors kator GazebdKoenig and Howard, 2034 Whereas the left
favor smooth regression functions to avoid overfitting te th diagram of Figure depicts the gathered data points, the mid-
training data. The analytically intractable integratiseiothe  dle diagram in the same figure shows the learned class prob-
hyperparameters is approximated using Markov Chain samabilities depending on the two velocity differences desexui
pling and the prediction results are cached on a fine-grainedbove. As can be seen from the left diagraxn, is negative

grid. for nearly all “collision” data points, which corresponds t
_ - the fact that the robot is slowed down when a collision occurs
4.2 Binary Classification The data points for “no collision” are spread widely and do

Binary classification problems can consistently be modeled©t Séparate well from the “collision” data points due tasyoi
in this framework by including for every binary targgta ~ S€NSOr measurements and imperfect labeling of the callisio

real-valued latent variable, such that events. This makes the classification problem a hard one. It
should be stressed, that we use this classifier as a proposal
plti =1) = 1 ©) distribution for collisions rather than as a collision dzte
! 1+e b’ directly, because the features are too ambiguous to allow fo

perfect instantaneous classification. Experiments withah r

which is known as the logistic model that links class proba- : v ; ;
S ; robot (see Section 5) showed that this yields high detection
bilities to real values, selNeal, 1997. The latent variables rates with a low number of false alarms.

can now be given a Gaussian process prior as in the regression
setting and predictions of class probabilities can be peréal

by predicting the corresponding latent variables and extalu te
ing Equation 9. For the failure detection problem, we againte
use feature vectors; as inputs and binary failure labefs
as targets. The predicted class probabilities for new featu
then directly define the failure event proposal f; | F}).

Given a collision event, the continuous collision parame-
rso have to be estimated to simulate the effects on the sys-
m and to continue the tracking process. Since the task is no
to fully track the pushed obstacle over time, a simple model
that abstracts from the obstacle’s geometry and exact pose
has proven sufficient to describe the effects on the robot. A
. . . collision with an unseen obstacle is represented by the ob-
4.3  Learning to Predict Collision Events and stacle massn and the contact point on the front of the
Parameters robot. Therefore, the collision parameters are= (m,c).
In this section, we apply the sequential failure detectipn a We learn the proposal distributien, (0| F}) for the parame-
proach described above to the hard problem of collision deterso; using the same velocity-based features and simulated
tection for mobile robots under noisy sensor measurementsaining set as described above and the Gaussian process re-
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Figure 3 (a): Two correctly Figure 3 (b):  Average deviation Figure 3 (c): Estimation details around a correctly detected

detected collisions (triangles), the of the estimated trajectory from the collision including the manually labeled true collision event.
estimated trajectory (solid line), ground truth in meters for a varying One filter iteration corresponds to 0.1 seconds.
and the ground truth (dotted). number of particles.

gression technique. The right diagram of Fig@rdepicts a  cal abstraction, namely computing the impulse, the resuilti
cut through the learneztdimensional distribution for the col- forces, and ultimately the influence on the robot’s state vec
lision parameter, which is the contact point of the obstacle tor. At the same time, this model describes how the point
on the front of the robot. The point of contact is measuredf contact between the robot and the obstacle changes over
in meters from the center of the robot’s front to the right. Ittime and therefore defines the transition model for failue p
can be seen from the diagram that unexpected clockwise roameters of Equation 3. From our experience, this physical
tations Av, < 0) of the robot are mapped to positive values model achieves the best balance between accuracy and effi-
for the contact point, which corresponds to a collision an th ciency. Simpler models fail to handle important test cases

righthand side of the robot. while more complex models have too many free parameters
to be evaluated in real time.

5 Experimental Results 5.1 Quantitative Evaluation of Failure Detection

Our system has been implemented on a real ActivMedia Pi-  and Tracking Performance

oneer 3DX robot and has been extensively tested in an offic®o quantitatively evaluate the usefulness of our approaeh,

environment. Before presenting experimental results, &e d compared it to a particle filter that implements the same pro-
scribe the motion model we implemented for our localizationcess model with the standard uninformed proposals deskcribe
system. Since this model is not the focus of this work, wein Section 3.1. The parameters of the standard filter were op-

give only a brief overview here. timized for best tracking performance and failure detectio
The most widely used motion model for mobile robots isrates to ensure comparability. We recorded data by manu-
based on the wheel encoder measurementd {$ganetal.,  ally steering the robot through the environment and arrdnge

2003). This information, rather than the the actual controlfor two collisions, one with boxes of milk and the other one
command, is taken as control input_;, which under nor-  with a box of lemonade bottles. Both obstacles were placed
mal circumstances results in accurate predictions of tie peat arbitrary positions and the obstacle heights were too low
formed movement. Under the influence of failures like col-for the laser sensor to detect them. Figure 3(a) depicts-a typ
lisions or wheel slip, however, the motion of the wheels isical test run, where our system successfully tracked the pos
not consistent with the whole robot’'s motion any more. A of the robot and detected the two collisions. On the recorded
more appropriate model for such situations that still is- effi data set, we tested our improved particle filter with Gaussia
cient enough to be evaluated online is based on simple rigigrocess proposals (GP-PF) as well as the standard patticle fi
body dynamics (sefPlagemanret al., 200d). We model ter (Std PF) for different parameter settings. Each filtes wa
the robot as a rigid body in the 2-dimensional plane, repreexecuted 50 times for each parameter setting.

sented by a set of constant values and the variable statarvect Table 1 gives the failure detection performance of the dif-
xy = (posg, posy, posg, vely, vel,) which includes the trans- ferent filters. The detection rate is defined as the number
lational velocityvel; and the rotational velocityel,.. In each  of correctly identified failures relative to the full number
filter iteration, the wheel thrusts are calculated from ttteal ~ The false positives rate is the amount of false alarms rela-
velocity command that was sent to the motors. From this, théive to the number of detections. The ground truth collision
next state vector is computed by numerical simulation usingvents were manually entered and a collision was counted as
the physical relationships between forces, acceleratiad, correctly detected, when the marginal failure likelihood e
speed. Due to space limitations, we refer[Witkin and  ceeded a threshol@ after a maximum of six filter iterations
Baraff, 1997 for details about rigid body physics. With this (0.6 seconds) after the true failure event. The thresBols
model, collisions with another rigid object at a given point optimized independently for each filter to allow an unbiased
of contact can be simulated using the same type of physieomparison.



s PF| sdPF| Gp-PF| gp-pr|  Acknowledgments
150 particles| 950 p.| 50p. | 300 p. This work has been supported by the EC under FP6-004250-
CoSy, by the German Ministry for Education and Research
Detection Rate 85% | 90% | 87% | 98% (BMBF) through the DESIRE project, and by the National
False Positives 76% | 72%| 38% | 14% Science Foundation under NSF CAREER grant [1S-0093406.
References

Tabl_e 1: Detection results with the optimized standar(_jlpart (BBenazeraataI., 2004 E. Benazera, R. Dearden, and

cle filter (Std PF) and our approach that uses Gaussian Pro- g “Narasimhan. Combining particle filters and consistency-

cess Proposals (GP-PF). based approaches. Ii6th Int. Workshop on Principles of
Diagnosis, Carcassonne, France, 2004.

][de Freitaset al., 2003 N. de Freitas, R. Dearden, F. Hutter,

R. Morales-Menendez, J. Mutch, and D. Poole. Diagnosis by

a waiter and a mars explorer. Rroc. of the |IEEE, 2004.

The diagram in Figure 3(b) gives the average deviation o
the tracked poses of the robot compared to the ground truth
trajectory. The ground truth traJeCt.ory was c;om_puted USINGHearden and Clancy, 20DR. Dearden and D. Clancy. Particle fil-
a scan matcher. The results visualized in this diagram Show” o5 or real-time fault detection in planetary rovers.Phoc. of
that our system stays around ten centimeters closer tou&e tr  the Thirteenth Int. Workshop on Principles of Diagnosis, 2002.
trajectory and produces |ess variance in these estimaes th{pgcet, 1998 A. Doucet. On sequential simulation-based meth-
the standard approach. This is mainly due to the fact that the ods for bayesian filtering. Technical report, Signal Processing
failure parameter (here, the point of contact with the atie)a Group, Dept. of Engeneering, University of Cambridge, 1998.
is estimated more accurately. To give an impression abeut thDriessen and Boers, 20p4.N. Driessen and Y. Boers. An effi-
accuracy with which our filter estimates the point of contact cient particle filter for nonlinear jump markov systems.|BEE
and thereby the path of the robot, one failure event is degiict ~ Sem. Target Tracking: Algorithmsand Appl., Sussex, UK, 2004.
in detail in the diagram of Figure 3(c). It can be seen, tha{Girardet al., 200 A. Girard, C.E. Rasmussen, J. @anero Can-

the estimated failure likelihood increases shortly after la- dela, and R. Murray-Smith. Gaussian process priors with uncer-
beled failure event and that the heading angle of the robot is tain inputs - application to multiple-step ahead time series fore-
correctly estimated. casting. InNIPS, 2002.

The detection rates as well as the tracking results shokkhanetal., 2004 Z.Khan, T.R. Balch, and F. Dellaert. An meme-
that learned Gaussian process proposals can indeed iacreas E‘;":Sce\? aartlcle f|ItZe;;orzgch;On&multlple interacting targets. In
the reliability and efficiency of online state estimation ap CV (4), pages 279-290, : .
proaches. The time requirements for the improved particIéKouir:%Zp: d:;?r\:vsa;gr’ égg:kg\ld ';%eg;)geﬁ_”sdoﬁ;;‘)r‘;"ﬁlrg_'rc?;ost'%? n?t?lgtor
T"ter are aro_unde% to 15% hl_gher than for the standard Tech. rep., USC Center for, Robotics and Emb. Systems, 2004.
implementation without Gaussian process proposals. Neve[Kwok etal. 2004 C. Kwok, D. Fox, and M. Meila, Real-time
theless, the Implemefnted system W".[h |200 particles st pr particle filters. InAdvances in Neural Information Processing
cesses one minute of recorded data in less 23a®conds on Systems 15 (NIPS), pages 1057—1064, 2002.

a PC with a 2800 MHz CPU. [MacKay, 1998 D.J.C. MacKay. Introduction to Gaussian pro-

] cesses. IMNeural Networks and Machine Learning, 1998.
6 Conclusions [Neal, 1997 R. Neal. Monte carlo implementation of gaussian pro-

In this paper, we showed that efficient proposal distrigio cess models for bayesian reg_ression a_nd cl_assification. Technical
) - . ) report, Dept. of Computer Science, University of Toronto., 1997.

for particle filters can be learned using Gaussian processs mO[Ngetal 2009 B. Ng, A. Pfeffer, and R. Dearden. Continuous

els and that both discrete as well as continuous state Vesiab = %o b'article filtéringi. InProceedi ngs of | JCAI. 2005.

can be treated in a consistent manner. We applied the a ’

. . . If’F’Iagemanmet al., 2004 C. Plagemann, C. Stachniss, and W. Bur-
proach to the hard problem of online failure detection on mo-" o4 Efficient failure detection for mobile robots using mixed-

bile robots and presented a system for detecting unforseen apstraction particle filters. IEurop. Robotics Symposium 2006.
collisions. Experiments with a real robot demonstratedt th [Rasmussen, 1996C.E. RasmusserEvaluation Of Gaussian Pro-
the developed system is able to track the state of the robot cesses And Other Methods For Non-Linear Regression. PhD the-
more reliably through collision events than an optimized ve  sis, Dept. of Computer Science, Univ. of Toronto, 1996.
sion of the standard particle filter with uninformed progesa [Schwaighofeet al., 2003 A. Schwaighofer, M. Grigoras,
Our system does not require any additional hardware and can V. Tresp, and C. Hoffmann. Gpps: A gaussian process
be trained conveniently using a simulator. positioning system for cellular networks. NiPS, 2003.

While our current system only deals with binary failure [Thrunetal., 2001 S. Thrun, J. Langford, and V. Verma. Risk sen-
variables, we believe that the multi-class case, potdyntial  sitive particle filters. IlNIPS, 2001.
including different simultaneous failures, can be fornteda [Thrunetal.,, 2009 S. Thrun, W. Burgard, and D. FoRrobabilis-
and solved using similar models. For a limited set of such tic Robotics. MIT Press, 2005.
discrete failure modes, the combination of this system witHVermaet al., 2003 V. Verma, S. Thrun, and R. Simmons. Variable
the look-ahead particle filtdde Freitaset al., 2003 may be resolution particle filter. IfProc of IJCAI, 2003.
beneficial. Moreover, in future work, we would like to extend [Witkin and Baraff, 1997 A. Witkin and D. Baraff. An introduc-
our approach to the more general problem domain of learning tion to physically based modeling. IBGGRAPH'97 Course
sampling models for dynamic Bayesian networks. Nates, 1997.



