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Abstract— In probabilistic mobile robotics, the development of 0 ‘ ‘ ‘ ‘ ‘ ‘

Range measurements

measurement models plays a crucial role as it directly influences 15 - Predicted range means -
the efficiency and the robustness of the robot’s performance A St et oss ()
in a great variety of tasks including localization, tracking, and Bl 7

map building. In this paper, we present a novel probabilistic
measurement model for range finders, called Gaussian beam
processes, which treats the measurement modeling task as a 12
nonparametric Bayesian regression problem and solves it using | P ;
Gaussian processes. The major benefit of our approach is its nr . B 5
ability to generalize over entire range scans directly. This way,
we can learn the distributions of range measurements for whole !
regions of the robot’s configuration space from only few recordd 9 - al

or simulated range scans. Especially in approximative approaches
to state estimation like particle filtering or histogram filtering, 8 - ! ‘ ‘ ‘ ‘ L

this leads to a better approximation of the true likelihood
function. Experiments on real world and synthetic data show
that Gaussian beam processes combine the advantages of twarig. 1. The predictive distribution of range measurementsafouncertain
popular measurement models. robot pose within an office environment (heading angle vadnjes5°). Scales

are given in meters. The straight, red lines depict one plessiimge scan in

this setting.
I. INTRODUCTION

Acquiring, interpreting, and manipulating informatiorofin
sensors is one of the fundamental tasks within mobile roboti In this paper, we propose a novel, generative model for
For instance, based on models for the robot's kinematics apid|.4, x), called Gaussian beam processes (GBP), which takes
perception, a robot might be asked to perform tasks suchasgonparametric Bayesian regression view on the measutemen
building a map of the environment, determining its precis@odeling task. We treat the measuremenats= (r;, o),
location within a map, or navigating to a particular placeas a set of samples from a stochastic proggssa) and
In designing robots to operate in the real world, one cannassume the process to be a Gaussian process [1], i.e., any
avoid dealing with the issue of uncertainty. Uncertaintiges finite collection of random variables; is assumed to have a
from sensor limitations, noise, and the fact that most cempljoint Gaussian distribution. Learning in this frameworkane
environments can only be represented and perceived imegording or simulating a training set of range scans and
limited way. It is therefore not surprising that stateJogtart adjusting a predefined covariance function accordinglyis Th
approaches build on probabilistic foundations and model than be done online while the robot is operating or offline.
robot’'s perception as a probability densjtyz|x), wherez is We put special emphasis on the application of GBPs to
an observation angt denotes the state of the robot, e.g., itsmobile robot localization, but nevertheless present thdehim
position relative to the environment. a general form that should be useful in many other applinatio

Among the most widely used types of sensors are ranfgg range sensor. A major benefit of our model in localization
sensors such as laser range finders and sonar sensors. tasies is that it naturally also allows to estimate the distion
popularity of range sensors in research and industry is dp@|A, X) of range measurements for a regidh of the
to the fact that spatial information about the environmeat ¢ pose space. As an example, consider Figure 1. It shows the
directly be acquired and that state-of-the-art sensorvieel predictive distribution of range measurements for a mobile
is quite accurate and reliable. Range sensors measureadistarobot with an uncertain heading angle, i.e., its locatiofixesd,
r; t0 nearby objects along certain directiong (possibly the orientation angle, however, is known only up46°. It
multivariate bearing angles) relative to the sensor. Henaman be clearly seen from the visualized standard deviatibns
for a vectorr = (rq,...,7) Of distance measurementshe range predictions that the model accurately identifies t
with corresponding bearing angle$ = (a;,...,a,,), the distances that can be predicted with high confidence despite
likelihood functionp(z|x) can be rewritten ap(r|.A4, x). of the angular uncertainty in the sensor pose. The ability to



the sensor hardware. Each componémt, ;) of z contains

a distance measurement along a beam with an angle;
relative to the sensor. The angular density of measurements
and the measurement noise can vary greatly depending on the
type of sensor used. The task of sensor modeling is chaligngi

as one has to take various types of uncertainty into account
Fig. 2. The posterior distribution of robot poses is tydicalpproximated sSuch as sensor noise (e.g., due to atmospheric effects), map
by discretizing the pose space (left) or by sampling it (fight and pose uncertainty (e.g., caused by discretization gtror

and environmental dynamics like object displacements.

F re- roach ically extr f r
learn and represent such distributions is of special vatue f,h)me a::]ueerabnaésee t?lscaapnp;)naac n?Zt%ptﬁZrz teo tf:g:u?ezeigntﬁgjd
applications in which the posterior is approximated using g 4 environmental model in order to obtaife|x). Whereas
discrete set of pose hypotheses. In histogram filtering, o, anproaches have been proven to be robust in various app-

example, the pose space is partitioned into a finite set Qlaviong they assume that the features are known befodeha
grid cells (see the left diagram of Figure 2). With the GBR 4 ihat they can be extracted reliably, which might be hard i
model, we can estimate the observation likelihgg@|X')

. . ) unstructured or cluttered environments. Alternative apphes
for a whole grid cellX directly rather than having to nu- Bp

call . 1 ¢ ) ) directly operate on the dense measurements and theretore ar
merically approximatey; [ p(z|x) dx from point estimates ., ji-2pie even in situations in which the relevant featue
p(z]x), x € X, of the likelihood function. This ability is also

unknown.
useful for particle filtering in which the posterior is repesited Beam-based models consider each vajuef the measure-

by a finite set of weighted samples. It is a well-known faghent vectorz as a separate range measurement and represent
that highly peaked likelihood functions have to be regalii 5 one-dimensional distribution by a parametric functie
in practical applications, because the number of partides yanging on the expected range measurement in the respective
limited. A popular way of doing this is to locally average thgaam direction (see Foat al. [2] for example). Such models
likelihood function in the vicinity of each particle (seeeth 5.4 closely linked to the geometry and the physics involved
right diagram of Figure 2), rather than taking point est®sat iy the measurement process. In the remainder of this paper,
at the exact particle locations only. Additionally, the sian e il also denote such models as ray cast models because
process treatment offers the following distinct benefits: they rely on ray casting operations within an environmental
« The model is fully predictive as it is able to predict rangesodel, e.g., an occupancy grid map, to calculate the exgecte
at arbitrary bearing angles, i.e., also for angles in betwegeam lengths. As a major drawback, the traditional approach
two beams of an actual scan and for beams that have beggumes independent beams, which leads to overly peaked
classified as erroneous. For such predictions, the mogRelihood functions when one increases the number of beams

also yields the predictive uncertainties. per measurement (e.g., to increase the spatial resolution)
« Neither the number of range measurements per scan Rerpractice, this problem is dealt with by sub-sampling of
their bearing angles have to be fixed beforehand. measurements, by introducing minimal likelihoods for beam

« By representing correlations between adjacent beamg inflating the measurement uncertainty [3], or by other
using parameterized covariance functions, only few reneans of regularization of the resulting likelihoods (se,,
corded or simulated range scap4;,r;) are required to Arulampalamet al. [4]).
learn an accurate model. Correlation-based methods typically build local maps from

« Gaussian processes are mathematically well-establishgghsecutive scans and correlate them with a global map [5,
There exists a great pool of methods for learning, likes]. A simple and effective approach that is also associated t
lihood evaluation, and prediction. this class of models is the so-called likelihood fields model

The paper is organized as follows. In Section Il, we discuss end point model [7]. Here, the likelihood of a single range
related work. Section Il presents our Gaussian beam psoc#seasurement is a function of the distance of the respeatide e
model. In Section IV, we describe its application to Montgoint of a beam to the closest obstacle in the environmeké Li
Carlo localization and present the results of extensivéuava in the ray cast model, each beam is treated independenily. Th
tions on real world and synthetic data. model lacks a physical explanation, as it can basically “see
through walls”, but it is more efficient than ray cast models
and works well in practice.

Probabilistic measurement models (or observation models)Work that specifically dealt with peaked measurement mo-
are conditional probability distributions(z|x) that characte- dels include Pfaffet al. [8], who adapt the smoothness of
rize the distribution of possible sensor measuremerds’en the likelihood model depending on the region covered by the
the statex of the system. In the context of mobile roboindividual particles, Foxet al. [9], and Kwok et al. [10],
localization with laser range finders, for instansedenotes who adapt the number of particles depending on the progress
the three-dimensional pose (2D location and orientatiothe of the localization process and computational power. These
robot andz stands for a vector of range readings received froapproaches have been developed independently from specific

Il. RELATED WORK



measurement models and should be directly applicable region X' in pose space. In this case, the training eis
GBPs as well. Finally, GBPs are related to Gutierrez-Ostnasimply built by sampling poses from X and simulating the
al.’s [11] neural networks approach to modeling the measuresrresponding range scans. In the following, we will derive
ment of an ultrasonic range sensor, which in contrast to GB#& general model fod-dimensional angular indices; (e.g.,
assumes scans of fixed size. d =1 for planar sensing deviced,= 2 for 3D sensors).

Our GBP model, which is detailed in the following section, Given a training se® of range and bearing samples, we
seeks to combine the advantages of the above mentioweht to learn a model for the non-linear and noisy functional
approaches. It represents correlations between adjaeams dependencyr; = f(ay;) + ¢ with independent, normally
using covariance functions, it respects the geometry awe pldistributed error terms;. The idea of Gaussian processes is
sics of the measurement process, and it provides a natwtal &m view all target values; as jointly Gaussian distributed
intuitive way of regularizing the likelihood function. p(ri, ..., rplaa, ..., a) ~ N(p, K) with a meanp and

Gaussian processes have already received conside@variance matrixs.
ble attention within the robotics community. Schwaigho- The meanu is typically assumed and K is defined by
fer et al. [12] introduced a positioning system for cellulark;; := k(a;, ;) + 02,5, depending on a covariance function
networks based on Gaussian processes. Brebk$[13] pro- % and the global noise variance parametgr The covariance
posed a Gaussian process model in the context of appearafigection represents the prior knowledge about the undeglyi
based localization with an omni-directional camera. Fefunction f and does not depend on the target valuest D.
ris et al[14] applied Gaussian processes to locate a mobffdmmon choices, that we also employ throughout this work,
robot from wireless signal strength. Plagemanal.[15] used are the squared exponential covariance function
Gaussian processes to detect failures on a mobile roba- Ind A2
ed, Bayesian (regression) approaches have been also ddllow kse(ai, o) = UJ% exp <_2€’;> , 1)
for example by Tinget al[16] to identify rigid body dynamics
and Grimeset al[17] to learn imitative whole-body motions. yith Aij = |la; — e, which has a relatively strong smoo-

GBPs are also related to the theory and application @ing effect, and a variant of the Matern type of covariance
Gaussian processes. Most Gaussian processes methodsfi@ltion kar(a, o) =
on the assumption that the noise level is uniform throughout ' )
the domain [18], or at least, its functional dependency is o <1+ VA + ‘/EA”) - exp <—‘/5Aij> @)
known beforehand [19]. Gaussian beam processes contribute L 302 14 '

a novel way of treating input-dependent noise. In this reJspeThese two covariance functions are callst@tionary since

it is most closely re_lated to _Goldbergei al. [20] gpproach they only depend on the distandg; between input locations
and models the variance using a second Gaussian process | S .
- : . : a; anda;. In the definitions abover; denotes the amplitude
addition to a Gaussian process governing the noise-frgmibut : . . o
(or signal variance) and is the characteristic length-scale,
value. In contrast to Goldbergt al, however, we do not

use a time-consuming Markov chain Monte Carlo method ﬁfe [21] fpr a de_:talled discussion. These parameters phis th
; . . ) -~ global noise variance,, are called hyper-parameters of the
approximate the posterior noise variance but a fast mkeslyli

noise approach. This has the additional advantage that 8&?0635' They are typically denoted@s= (o, ¢, o). Since

approach fully stays within the Gaussian process framewdtk?. set of samples from the process are jointly Gaussiart-dist
bp y sy P Uted, predictions ofn new range values* = (ry,...,77),

so that more advanced Gaussian process techniques such, as

: . . . . at given anglesA* = (af,...,a},) can be performed by
online learning, depending outputs, non-stationary dawae ditioni h di ional o . h
functions, and sparse approximations can easily be adapte%on tioning then =+ m- imensiona joint (}augsmn on the

' Known target values of the training sBt This yields anm-

1. GAUSSIAN BEAM PROCESSES dimensional predictive normal distributiarf ~ N (p*, 3*)

We pose the task of estimatingr|A,x) as a regression  p* = E(r*) = K* (K + 03])_1 r ()
problem and model the function that maps beam anglds N N - N —1 T
range measurementsas a stochastic process. In other words, B =V = KT ol - K (K + JTQLI) K “)
we regard the individual measurementsas a collection of with the covariance matrice8 € R™*", K;; = k(a;, o),
random variables indexed by the respective beam angles K* € R™*", K = k(o] o), and K™ € R™*™,
By placing a Gaussian process prior over this function, We;* = k(a, «), and the training targetse R". The hyper-
get a simple yet powerful model for likelihood estimation oparameters of the Gaussian process can either be learned by
range measurements as well as for prediction. Concretaly, naximizing the likelihood of the given data points or, follyu
mobile robot localization, we propose to build GBP modelBayesian treatment, can be integrated over using parameter
online for all robot pose hypotheseas The training seD = specific prior distributions. In this work, we adapt the hype
{(ey,r;)}, for learning such a model is simulated usingarameters by maximizing the marginal likelihood®fusing
ray casting operations relative fousing a metric map of the the hybrid Monte-Carle approach described in [1].
environment. For certain applications, one needs to estima So far, we have introduced the standard Gaussian processes
p(r|A, X), i.e. the distribution of range measurements for amework for regression problems. In the following, we



integrated over for predicting*
p(r*[A", D) (7
— [P VD) plv v A D) vy
Pr Pov
Given the variances andv*, the predictionp,. in Eq. (7) is
a Gaussian with mean and variance as discussed above. The
problematic term is indeeqg, as it makes the integral difficult
to handle analytically. Therefore, Goldbestjal. [20] proposed
a Monte Carlo approximation that alternately samples from
andp, to fit both curve and noise rates. The sampling is quite
time consuming and the expectation can be approximated by

the most likely noise levelg andv*. That is, we approximate
the predictive distribution as

195 20 205 21 215 22 195 20 205 21 215 22

Fig. 3. The effect of modeling non-constant noise on a datao&eange p(r*|A*, D) = p(r*|A*,v,v*, D), (8)
measurements simulated for the case of an uncertain sensatatioa @-5°). Lk  wl A . .
Standard Gaussian process regression (left) assumes ronstae for all Where (v,v*) = arg max ) p(v, V*|A*, D). This will be

bearing anglgs. Modelin‘g heteroscedastic_ity (our modeh;h_enright) yields g good approximation, if most of the probability mass of
e o e e e e . e Smn P(¥.¥*|A". D) s concentrated arountd ). Moreover,the
this setting. noise levels can be modeled using a standard Gaussian proces
Thus, we have two interacting processgs:predicts the noise
levels andg. uses the predicted noise levels in (5) and (6).
To learn the hyperparameters of both processes, we bgsicall
follow an alternating learning scheme in the spirit of the
Expectation-Maximization algorithm: (1) fix the noise lée
and learng, using a standard maximum likelihood estimator;
A. Modeling Non-Constant Noise (2) fix G., estimate the empirical noise levels @f on the
training data and estimated, using them as target data.
Gaussian processes as introduced above assume a congtirdlly, the noise levels are set to the empirical noisesls
noise term, i.e., identically distributed error termsover the of a constant-noise Gaussian process induced on the gainin
domain. For modeling range sensor measurements, howeweta.
the variance of range values in each beam direction is, alongAs covariance functions, we use the Matern type as stated in
with its mean value, an important feature of the soughEquation 2 for the range process and the squared exponential
after distribution of range measurements. To overcomg thige for the noise process. This matches the intuition thet th
we extended the standard Gaussian process frameworkntdse process should exhibit more smoothness than the range
deal with heteroscedasticity, i.e., non-constant noisgu-F process, which was also supported by our experiments. This,
re 3 illustrates the effect of this treatment on the predécti however, is not a mandatory choice. With properly learned
distribution for range values. The left diagram depicts theyperparameters, using the squared exponential function f
standard procedure that assumes a constant noise termbfsth processes yields a nearly as high performance in our
all bearingsce. Our heteroscedastic treatment, depicted in thegpplication.
right diagram, achieves a significantly better fit to the dsgh
while still not over-fitting to the individual samples.

To deal with the heteroscedasticity inherent in our pr

describe a novel way of treating input-dependent noisechvhi
leads to more accurate models in our application domain.

B. Evaluating the Joint Data Likelihood of Observations

_ Form new range measurements= {(c;,r;)};%; indexed
blem domain, we basically follow the approach of Goldbe?)y the beam orientatione;, the model has to estimate the
' y bp data likelihoodp(z|D, ©®) given the training datd and the

et al. [20], V\{ho condmon a standard Gaussian proceges learned covariance paramet@sWe solve this by considering
on latent noise variables sampled from a separate noise Rite predictive distribution for range measuremeritsat the
cessG,. Let v € R™ be such noise variances at thegiven verv same beam orientatiorns® o which is anm-
data points andv* € R™ those for them locations to be Y Lo

predicted, then the predictive distribution changes to dimensional Gaussian distribution as defined by (5) and (6).

As this predictive distribution is a multivariate Gaussiare
. . 1 can directly calculate the observation likelihood for thretad
W= K'(K+K) r, ®)  vectorz by evaluating the density function

S = KY+ K —K*(K+K,) 'K, (6) o mey 2]
plalw, =) = [en¥=E] (9)

where K, = diag(v) and K} = diag(v*). Now, as the noise L STy “)
variancesv andv* cannot be known a-priori, they have to be APl TylE M ZTH



or, in a more convenient form 0.1 \ ‘ : : ~Reguiar : ]

0.075 Sparse r
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log p(z|p*, X*) = —i(z—u) (z—p")

Iteration time [sec]

1
—3 log || — % log(2m) . (10)

C. Regression over Periodic Spaces

In our application, we have to account for the fact that owig. 4. The gain in speed due to sparse matrix calculatiorisowita loss of
input vectorsay; are angular quantities rather than unconstrarecision. Exploiting sparsity reduces the iteration tidesstically, especially
ned real valued vectors. This means that an angular distaffid29er problem sizes.
metric has to be incorporated into the covariance functmn t
avoid discontinuities at-7r. For the one dimensional case (fo

planar sensing devices), we use the proposed GBP model performs compared to state-of-the-

art probabilistic measurement models for laser range finder
la — 3] if o—p| < To this aim, we applied our measurement model to one of the
o, Blla == N (11) classical problems of robotics, mobile robot localizateamd
tracking. We implemented our approachGn+. The platform
Indeed, we also have to adapt the covariance functions themsed was a Pioneer Pll DX8+ robot equipped with a laser
selves to theperiodic structure of the input space. For examrange finder in a typical office environment. As the primary
ple, a periodic variant of the squared exponential covagansensor is a planar sensing device, we only have to deal with
function on the unit circle is one-dimensional bearing angles. To ensure a fair compariso
o 9 we independently optimized the parameters of all modetsgusi
2 |(c; + 27p) — i : -
k(ai, ;) =0F > exp |- , (12) different data in all experiments.
J ! 202 i i i i
We will proceed as follows. First, we briefly review the
Monte Carlo localization scheme and discuss how the GBP

which takes infinitively many influences of a data poin odel fits in there. Then, we present tracking and locabrati
on itself into account. The squared exponential covarianfs . ' ' prese 9
results with a real robot and, finally, we present results

function, however, has a strong locality for relevant valueon simulated data to demonstrate the main benefits of our
of 0 and/. All summands withla; — ;| >= 2 in Eq. (12) h

cannot even be represented using double precision, becat@goach:

their value is too close to zero. We can therefore safelyr@noy ggps for Monte Carlo Localization

the periodicity in practice and only use the standard cavae
function with the modified distance metric of Eq. (11).

2 — |a — @] otherwise .

p=—00

The task of mobile robot localization is to sequentially
estimate the posa of a moving robot in its environment.
D. Efficient Inference by Exploiting Locality The key idea of Monte Carlo localization (MCL) [23], which
ig_elongs to the class of particle filtering algorithms, is to

nary, i.e., they assign small covariance values to thoses pa{paintain a sampl’ed approximation O_f the 'probgbi!ity ,d@n,Sit
of input points which lie far apart. With the given machiné’(x) of the robot_s own Ioca_ltlon. This belief distribution is
precision, this implies that the resulting covariance mag updated sequentially according to
are effectively band Iimit'ed and only have non-zero entrieﬁ(x[t]‘z[lzt]’u[O:tfl]) - 77.p(z[t]b{[ﬂ) . (13)
close to the diagonal. This property can be exploited togpee
up the computations by using optimized algorithms for spars/p(xm|u[t_1],x[t_1]) (x| gl [0t =2)y gy =1
matrix operations. In this work, we used the UMFPACK
package [22], an optimized solver for unsymmetric spar$tere, n is a normalization constant containing the prior
linear systems, which resulted in significantly reduced gom observation likelihoodp(z!"), which is equal for the who-
tation times as shown in Figure 4. The run-times are given i@ sample set and can therefore be neglected. The term
seconds for a full iteration of simulating the scan, buitdinp(x!/[ul=1! x[*~1]) describes the probability that the robot is
the heteroscedastic model, and evaluating the observat&$rpositionx!!l given it executed the actionl*~*! at position
likelihood for a given scan with 31 beams. The gain in speed' /. Furthermore,p(zl|x["l) denotes the probability of
depicted in this figure is due to the sparsity induced by thaaking observatiore!l given the robot’s current location is
limitations of machine precision only. In addition to thtse x!"l. The appropriate estimation of this quantity is the subject
covariances could be truncated actively to much tightendsu Of this paper. Concretely, the update of the belief is redliz
before a notable loss of precision occurs. by the following two alternating steps:
1) In the prediction step, we propagate each sample to a
new location according to the robot's dynamics model
In this section, we will report on our experimental evaluati p(x¢Jus—1,x:—1) given the actionu,_; executed since
on. The intention of this evaluation is to determine how well the previous update.

The covariance functions employed in this work are stat

IV. EXPERIMENTAL RESULTS
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Fig. 5. Pose tracking and localization results with a re@btdn an office environment using a 180 degrees field of vievafi§ures (a) and (b) give the
tracking displacement error (y-axis) in meters for an indrepeumber of iterations. The errors are averaged @%emuns on the same trajectory. Subfigure (c)
shows the global localization performances.

2) In the correction step the new observation; is in- The MCL measurement update step for the whole filter
tegrated into the sample set. This is done by adjustinging GBPs can be summarized as follows:
the weight of each sample according to the likelihood

p(z¢|x;) of sensingz; given the robot pose;. Algorithm 1 GBPs-based Measurement Update for MCL
for all particlesx do
The measurement modg(z|x) plays a crucial role in the GenerateD using ray casting in the given map at robot
correction step of the particle filter. Typically, very peak locations sampled fromV'(x, oy ).

models require a large number of particles and induce a high Build local GBPs usingD and the global covarianc€.
risk of filter divergence. Even when the particles populate Compute alllog p(z| GBP) and weight the particles.
the state space densely, the likelihoods of an observatiorend for

might differ by several orders of magnitude. As the particle
are drawn proportionally to the importance weights, which

themselves are calculated as the likelihoodzpfgiven the B. Results on Tracking and Localizing a Real Robot

posex; of the correspondlng pa.rt|cle, a minor @fference "N To demonstrate the tracking and global localization perfor
x; can already result in a large difference in likelihoods.sThi

.mance of the GBP approach, we implemented Algorithm 1

”;] twrn, WOUII_d result |nAthe depletion of SUCE a“partll(cls "&nql evaluated it using real data acquired with a Pioneer
the re-sampling step. As a consequence, the “peakedn DX8+ robot equipped with a laser range scanner in a

of a measurement model should depend on the numbert ical office environment. The experiments described hege

_pl)_ﬁrtmles aviulab:je Iar;icthe S'Ze" of tt?]e spra\ce .tot be dCOIV eé signed to investigate how well our GBP approach performs
e ray cast model (RC) as well as the end point model ( comparison to the widely used ray cast model and the

have parameters for controlling their smoothness, whichbea end point model. While our approach is computationally more

optimized for specific scenarios. In the following, we détser demanding than the alternative ones, it still runs closed-r
how GBPs can be appllc_ad tO.MCL and how the smqothneﬁﬁ]e for mobile robot tracking. Here, a full iteration inding
of the model can be defined in terms of an easy to mterprseéan simulation and model building takes approximately0.0
parameter. seconds.

As mentioned in Section Ill, we estimatéz|x) by building In the first set of experiments, we assess the position
a GBP model for the robot pose online and evaluating tracking performance of the MCL filter using the different
the data likelihood ofz according to Section 1lI-B. For measurement models. The robot started in the corridor of an
building the GBP model, we construct a training getof office environment and traversed a path through all adjacent
simulated range measurements relativexto~ N(x,0x) rooms. Figure 5(a) depicts the average localization ewor f
using an occupancy grid map of the environment. The randdhis experiment with 31 laser beams. As can be seen, the GBP
perturbations added te account for the desired smoothnesmodel and the end point model show similar, good localizatio
of the model as motivated above. Indeed, the pose variapmrformance and both outperform the ray cast model. When
parametero, introduced here, more naturally quantifies thesing more beams for the same task, the difference to the ray
level of regularization of GBPs compared to other models, aast model gets even more pronounced, see Figure 5(b). Due
it is directly specified in the space of robot locations. Note the ray cast model’s inability to deal with dependencies
that no sensory information is discarded at this point. Fbetween beams, the risk of filter divergence increases with a
sufficiently high sampling densities, one could sgt = 0 growing number of beams used. In another experiment with
to get the fully peaked model. 181 beams, the GBP model and the end point model showed
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(a) Office room environment: All methods show (b) Highly cluttered environment: The ray cast(c) Observation log likelihood induced by the GBP
similar performances and outperform the uni-model (green) performs better than uniformmodel for a single simulated scan on a discretized
form model (pink) which assigns the same like-(pink) but less well than the end point modelpose space in a typical office room. It shows a
lihood value to all grid cells. Lower KL-D values (blue). Our GBP model (red) significantly out- convex shape and the true robot pose (cross) is in
are better. performs the other methods in this environmentthe area of maximal values.

Fig. 6. Localization performance for a mobile robot in termstef Kullback-Leibler divergence (KLD), which measures th&tatice of the discretized pose
belief distribution to the known ground truth (lower valua® better). The experiments were simulated in an office (a)iradcluttered environment (b).
The KLD (y-axis) is shown for a varying number of laser beamsis). The baseline model (uniform) assigns the same log liietis to all grid cells,
i.e., it does not use any sensor information at all. Subfigayesifows a typical likelihood function induced by our Gaaasbeam process (GBP) model.

a similar behavior as before. The ray cast model, however,. discretize the space of robot poses using a three dimen-

diverged even earlier then with 61 beams. sional grid (2D location and heading) and let each grid
In a second set of experiments we investigated the robust- cell represent one pose hypothegis

ness of our GBP approach for global localization. Here, the« select a cell index to contain the true robot pose €

task is to find the pose of a moving robot within an environ- X},

ment using a stream of wheel encoder and laser measurements. randomly drawm test poses within this celt and

The environment used consists of a long corridor and 8 rooms simulate corresponding range measurement vecgrs

containing chairs, tables and other pieces of furniturdofal, using a given occupancy grid map.

the map is 20 meters long and 14 meters wide. The results Now, we evaluate the observation likelihoop&,, |X;)

are summarized in Figure 5(c), which shows the number of for each grid cell and each test observation and sum up

successful localizations after 8 integrations of measaergm the individual observation likelihoods per cell.

for the three measurement models and for different numbers Finally, we normalize the whole likelihood grid and

of particles used. In the experiment, we assumed that the compute the KL-DDgf, = 37, p(zm|X;)-log %

localization was achieved when more than 95 percent of the g 3 pinary ground truth grid, where all likelihood mass

particles differed in average at most 30 cm from the true s concentrated at the celj i.e., the true robot pose.

location of the robot. As can be seen from the diagram, the )

GBP model performs slightly better than the ray cast modePr computing the KL-D measure, we employ the standard

and both outperform the end point model. trick of adding an extremely small value to each cell for
_ _ _ _ dealing with empty cells. The specific choice of this value
C. Results on Simulated Data in a Static Setting did not have a notable influence on the measure.

In the previous section, we have evaluated the measureFigure 6(c) depicts such a likelihood grid for the GBP model
ment models in the standard way for mobile robots, i.eas well as the true robot location in an office environment. It
we have evaluated their performances in real-world tragkitan be seen that the observation likelihood is nicely peaked
and localization tasks. Although this is closest to the a@ctuaround the true robot pose and that the GBP model yields a
application of the models (and should therefore round off asmooth likelihood function. The KL-D results for this roomea
other evaluation strategy), it has also one major drawbadkven in Figure 6(a). The diagram shows that all three models
several external factors influence the evaluation, suchhas achieve comparable good performances when recovering the
choice of filtering algorithm, the sampling and resamplingose distribution in this situation. Additionally, we pltte
strategies, and the order in which places are visited aloKd-D for the uniform model taken as a baseline, which assigns
a trajectory. To investigate the strengths and weaknessesh® same, constant likelihood value to all cells. In highly
the measurement models independently from specific trgckicluttered environments such as a laboratory room with many
algorithms, we ran a different set of experiments in a statihairs and tables, however, the GBP model clearly outpador
setting. Here, we use the Kullback-Leibler divergence B)L- the other two models. As shown in Figure 6(b), the KL-D is
on a discretized pose space to measure how well the differaiways significantly lower and decreases with a high number
models are able to reconstruct a pose distribution givertligs of laser beams. The ray cast model shows even an increasing
corresponding laser measurements. More precisely, fdn edd_-D with increasing numbers of laser beams due to its lack of
measurement model, we smoothness. In both experiments, we used a relatively €oars
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