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Abstract— In probabilistic mobile robotics, the development of
measurement models plays a crucial role as it directly influences
the efficiency and the robustness of the robot’s performance
in a great variety of tasks including localization, tracking, and
map building. In this paper, we present a novel probabilistic
measurement model for range finders, called Gaussian beam
processes, which treats the measurement modeling task as a
nonparametric Bayesian regression problem and solves it using
Gaussian processes. The major benefit of our approach is its
ability to generalize over entire range scans directly. This way,
we can learn the distributions of range measurements for whole
regions of the robot’s configuration space from only few recorded
or simulated range scans. Especially in approximative approaches
to state estimation like particle filtering or histogram filtering,
this leads to a better approximation of the true likelihood
function. Experiments on real world and synthetic data show
that Gaussian beam processes combine the advantages of two
popular measurement models.

I. I NTRODUCTION

Acquiring, interpreting, and manipulating information from
sensors is one of the fundamental tasks within mobile robotics.
For instance, based on models for the robot’s kinematics and
perception, a robot might be asked to perform tasks such as
building a map of the environment, determining its precise
location within a map, or navigating to a particular place.
In designing robots to operate in the real world, one cannot
avoid dealing with the issue of uncertainty. Uncertainty arises
from sensor limitations, noise, and the fact that most complex
environments can only be represented and perceived in a
limited way. It is therefore not surprising that state-of-the-art
approaches build on probabilistic foundations and model the
robot’s perception as a probability densityp(z|x), wherez is
an observation andx denotes the state of the robot, e.g., its
position relative to the environment.

Among the most widely used types of sensors are range
sensors such as laser range finders and sonar sensors. The
popularity of range sensors in research and industry is due
to the fact that spatial information about the environment can
directly be acquired and that state-of-the-art sensor hardware
is quite accurate and reliable. Range sensors measure distances
ri to nearby objects along certain directionsαi (possibly
multivariate bearing angles) relative to the sensor. Hence,
for a vector r = (r1, . . . , rm) of distance measurements
with corresponding bearing anglesA = (α1, . . . ,αm), the
likelihood functionp(z|x) can be rewritten asp(r|A,x).

Fig. 1. The predictive distribution of range measurements foran uncertain
robot pose within an office environment (heading angle variesby±5

◦). Scales
are given in meters. The straight, red lines depict one possible range scan in
this setting.

In this paper, we propose a novel, generative model for
p(r|A,x), called Gaussian beam processes (GBP), which takes
a nonparametric Bayesian regression view on the measurement
modeling task. We treat the measurementsz = (ri,αi)

m
i=1

as a set of samples from a stochastic processp(r|α) and
assume the process to be a Gaussian process [1], i.e., any
finite collection of random variablesrj is assumed to have a
joint Gaussian distribution. Learning in this framework means
recording or simulating a training set of range scans and
adjusting a predefined covariance function accordingly. This
can be done online while the robot is operating or offline.

We put special emphasis on the application of GBPs to
mobile robot localization, but nevertheless present the model in
a general form that should be useful in many other applications
for range sensor. A major benefit of our model in localization
tasks is that it naturally also allows to estimate the distribution
p(r|A,X ) of range measurements for a regionX of the
pose space. As an example, consider Figure 1. It shows the
predictive distribution of range measurements for a mobile
robot with an uncertain heading angle, i.e., its location isfixed,
the orientation angle, however, is known only up to±5◦. It
can be clearly seen from the visualized standard deviationsof
the range predictions that the model accurately identifies the
distances that can be predicted with high confidence despite
of the angular uncertainty in the sensor pose. The ability to



Fig. 2. The posterior distribution of robot poses is typically approximated
by discretizing the pose space (left) or by sampling it (right).

learn and represent such distributions is of special value in
applications in which the posterior is approximated using a
discrete set of pose hypotheses. In histogram filtering, for
example, the pose space is partitioned into a finite set of
grid cells (see the left diagram of Figure 2). With the GBP
model, we can estimate the observation likelihoodp(z|X )
for a whole grid cellX directly rather than having to nu-
merically approximate 1

|X |

∫

X
p(z|x) dx from point estimates

p(z|x), x ∈ X , of the likelihood function. This ability is also
useful for particle filtering in which the posterior is represented
by a finite set of weighted samples. It is a well-known fact
that highly peaked likelihood functions have to be regularized
in practical applications, because the number of particlesis
limited. A popular way of doing this is to locally average the
likelihood function in the vicinity of each particle (see the
right diagram of Figure 2), rather than taking point estimates
at the exact particle locations only. Additionally, the Gaussian
process treatment offers the following distinct benefits:

• The model is fully predictive as it is able to predict ranges
at arbitrary bearing angles, i.e., also for angles in between
two beams of an actual scan and for beams that have been
classified as erroneous. For such predictions, the model
also yields the predictive uncertainties.

• Neither the number of range measurements per scan nor
their bearing angles have to be fixed beforehand.

• By representing correlations between adjacent beams
using parameterized covariance functions, only few re-
corded or simulated range scans(Aj , rj) are required to
learn an accurate model.

• Gaussian processes are mathematically well-established.
There exists a great pool of methods for learning, like-
lihood evaluation, and prediction.

The paper is organized as follows. In Section II, we discuss
related work. Section III presents our Gaussian beam process
model. In Section IV, we describe its application to Monte
Carlo localization and present the results of extensive evalua-
tions on real world and synthetic data.

II. RELATED WORK

Probabilistic measurement models (or observation models)
are conditional probability distributionsp(z|x) that characte-
rize the distribution of possible sensor measurementsz given
the statex of the system. In the context of mobile robot
localization with laser range finders, for instance,x denotes
the three-dimensional pose (2D location and orientation) of the
robot andz stands for a vector of range readings received from

the sensor hardware. Each component(αi, ri) of z contains
a distance measurementri along a beam with an angleαi

relative to the sensor. The angular density of measurements
and the measurement noise can vary greatly depending on the
type of sensor used. The task of sensor modeling is challenging
as one has to take various types of uncertainty into account
such as sensor noise (e.g., due to atmospheric effects), map
and pose uncertainty (e.g., caused by discretization errors),
and environmental dynamics like object displacements.

Feature-based approaches typically extract a set of features
from the range scanz and match them to features contained
in an environmental model in order to obtainp(z|x). Whereas
such approaches have been proven to be robust in various app-
lications, they assume that the features are known beforehand
and that they can be extracted reliably, which might be hard in
unstructured or cluttered environments. Alternative approaches
directly operate on the dense measurements and therefore are
applicable even in situations in which the relevant features are
unknown.

Beam-based models consider each valueri of the measure-
ment vectorz as a separate range measurement and represent
its one-dimensional distribution by a parametric functionde-
pending on the expected range measurement in the respective
beam direction (see Foxet al. [2] for example). Such models
are closely linked to the geometry and the physics involved
in the measurement process. In the remainder of this paper,
we will also denote such models as ray cast models because
they rely on ray casting operations within an environmental
model, e.g., an occupancy grid map, to calculate the expected
beam lengths. As a major drawback, the traditional approach
assumes independent beams, which leads to overly peaked
likelihood functions when one increases the number of beams
per measurement (e.g., to increase the spatial resolution).
In practice, this problem is dealt with by sub-sampling of
measurements, by introducing minimal likelihoods for beams,
by inflating the measurement uncertainty [3], or by other
means of regularization of the resulting likelihoods (see,e.g.,
Arulampalamet al. [4]).

Correlation-based methods typically build local maps from
consecutive scans and correlate them with a global map [5,
6]. A simple and effective approach that is also associated to
this class of models is the so-called likelihood fields model
or end point model [7]. Here, the likelihood of a single range
measurement is a function of the distance of the respective end
point of a beam to the closest obstacle in the environment. Like
in the ray cast model, each beam is treated independently. This
model lacks a physical explanation, as it can basically “see
through walls”, but it is more efficient than ray cast models
and works well in practice.

Work that specifically dealt with peaked measurement mo-
dels include Pfaffet al. [8], who adapt the smoothness of
the likelihood model depending on the region covered by the
individual particles, Foxet al. [9], and Kwok et al. [10],
who adapt the number of particles depending on the progress
of the localization process and computational power. These
approaches have been developed independently from specific



measurement models and should be directly applicable to
GBPs as well. Finally, GBPs are related to Gutierrez-Osunaet
al.’s [11] neural networks approach to modeling the measure-
ment of an ultrasonic range sensor, which in contrast to GBPs
assumes scans of fixed size.

Our GBP model, which is detailed in the following section,
seeks to combine the advantages of the above mentioned
approaches. It represents correlations between adjacent beams
using covariance functions, it respects the geometry and phy-
sics of the measurement process, and it provides a natural and
intuitive way of regularizing the likelihood function.

Gaussian processes have already received considera-
ble attention within the robotics community. Schwaigho-
fer et al. [12] introduced a positioning system for cellular
networks based on Gaussian processes. Brookset al.[13] pro-
posed a Gaussian process model in the context of appearance-
based localization with an omni-directional camera. Fer-
ris et al.[14] applied Gaussian processes to locate a mobile
robot from wireless signal strength. Plagemannet al. [15] used
Gaussian processes to detect failures on a mobile robot. Inde-
ed, Bayesian (regression) approaches have been also followed
for example by Tinget al.[16] to identify rigid body dynamics
and Grimeset al.[17] to learn imitative whole-body motions.

GBPs are also related to the theory and application of
Gaussian processes. Most Gaussian processes methods rely
on the assumption that the noise level is uniform throughout
the domain [18], or at least, its functional dependency is
known beforehand [19]. Gaussian beam processes contribute
a novel way of treating input-dependent noise. In this respect,
it is most closely related to Goldberg’set al. [20] approach
and models the variance using a second Gaussian process in
addition to a Gaussian process governing the noise-free output
value. In contrast to Goldberget al., however, we do not
use a time-consuming Markov chain Monte Carlo method to
approximate the posterior noise variance but a fast most-likely-
noise approach. This has the additional advantage that our
approach fully stays within the Gaussian process framework
so that more advanced Gaussian process techniques such as
online learning, depending outputs, non-stationary covariance
functions, and sparse approximations can easily be adapted.

III. G AUSSIAN BEAM PROCESSES

We pose the task of estimatingp(r|A,x) as a regression
problem and model the function that maps beam anglesα to
range measurementsr as a stochastic process. In other words,
we regard the individual measurementsri as a collection of
random variables indexed by the respective beam anglesαi.
By placing a Gaussian process prior over this function, we
get a simple yet powerful model for likelihood estimation of
range measurements as well as for prediction. Concretely, for
mobile robot localization, we propose to build GBP models
online for all robot pose hypothesesx. The training setD =
{(αi, ri)}n

i=1 for learning such a model is simulated using
ray casting operations relative tox using a metric map of the
environment. For certain applications, one needs to estimate
p(r|A,X ), i.e. the distribution of range measurements for a

region X in pose space. In this case, the training setD is
simply built by sampling posesx from X and simulating the
corresponding range scans. In the following, we will derive
the general model ford-dimensional angular indicesαi (e.g.,
d = 1 for planar sensing devices,d = 2 for 3D sensors).

Given a training setD of range and bearing samples, we
want to learn a model for the non-linear and noisy functional
dependencyri = f(αi) + ǫi with independent, normally
distributed error termsǫi. The idea of Gaussian processes is
to view all target valuesri as jointly Gaussian distributed
p(r1, . . . , rn|α1, . . . ,αn) ∼ N (µ,K) with a meanµ and
covariance matrixK.

The meanµ is typically assumed0 and K is defined by
kij := k(αi,αj)+σ2

nδij , depending on a covariance function
k and the global noise variance parameterσn. The covariance
function represents the prior knowledge about the underlying
function f and does not depend on the target valuesr of D.
Common choices, that we also employ throughout this work,
are the squared exponential covariance function

kSE(αi,αj) = σ2
f exp

(

−
∆2

ij

2ℓ2

)

, (1)

with ∆ij = ‖αi − αj‖, which has a relatively strong smoo-
thing effect, and a variant of the Matern type of covariance
function kM (αi,αj) =

σ2
f

(

1 +

√
5∆ij

ℓ
+

√
5∆2

ij

3ℓ2

)

· exp

(

−
√

5∆ij

ℓ

)

. (2)

These two covariance functions are calledstationary, since
they only depend on the distance∆ij between input locations
αi andαj . In the definitions above,σf denotes the amplitude
(or signal variance) andℓ is the characteristic length-scale,
see [21] for a detailed discussion. These parameters plus the
global noise varianceσn are called hyper-parameters of the
process. They are typically denoted asΘ = (σf , ℓ, σn). Since
any set of samples from the process are jointly Gaussian distri-
buted, predictions ofm new range valuesr∗ = (r∗1 , . . . , r∗m),
at given anglesA∗ = (α∗

1, . . . ,α
∗
m) can be performed by

conditioning then + m-dimensional joint Gaussian on the
known target values of the training setD. This yields anm-
dimensional predictive normal distributionr∗ ∼ N (µ∗,Σ∗)

µ
∗ = E(r∗) = K∗

(
K + σ2

nI
)−1

r (3)

Σ∗ = V (r∗) = K∗∗ + σ2
nI − K∗

(
K + σ2

nI
)−1

K∗T (4)

with the covariance matricesK ∈ R
n×n, Kij = k(αi,αj),

K∗ ∈ R
m×n, K∗

ij = k(α∗
i ,αj), and K∗∗ ∈ R

m×m,
K∗∗

ij = k(α∗
i ,α

∗
j ), and the training targetsr ∈ R

n. The hyper-
parameters of the Gaussian process can either be learned by
maximizing the likelihood of the given data points or, for fully
Bayesian treatment, can be integrated over using parameter-
specific prior distributions. In this work, we adapt the hyper-
parameters by maximizing the marginal likelihood ofD using
the hybrid Monte-Carle approach described in [1].

So far, we have introduced the standard Gaussian processes
framework for regression problems. In the following, we



Fig. 3. The effect of modeling non-constant noise on a data setof range
measurements simulated for the case of an uncertain sensor orientation (±5

◦).
Standard Gaussian process regression (left) assumes constant noise for all
bearing angles. Modeling heteroscedasticity (our model, onthe right) yields
lower predictive uncertainties at places with low expectednoise levels such
as the wall in front. The straight, red lines depict one possible range scan in
this setting.

describe a novel way of treating input-dependent noise, which
leads to more accurate models in our application domain.

A. Modeling Non-Constant Noise

Gaussian processes as introduced above assume a constant
noise term, i.e., identically distributed error termsǫi over the
domain. For modeling range sensor measurements, however,
the variance of range values in each beam direction is, along
with its mean value, an important feature of the sought-
after distribution of range measurements. To overcome this,
we extended the standard Gaussian process framework to
deal with heteroscedasticity, i.e., non-constant noise. Figu-
re 3 illustrates the effect of this treatment on the predictive
distribution for range values. The left diagram depicts the
standard procedure that assumes a constant noise term for
all bearingsα. Our heteroscedastic treatment, depicted in the
right diagram, achieves a significantly better fit to the dataset
while still not over-fitting to the individual samples.

To deal with the heteroscedasticity inherent in our pro-
blem domain, we basically follow the approach of Goldberg
et al. [20], who condition a standard Gaussian processesGc

on latent noise variables sampled from a separate noise pro-
cessGn. Let v ∈ R

n be such noise variances at then given
data points andv∗ ∈ R

m those for them locations to be
predicted, then the predictive distribution changes to

µ
∗ = K∗ (K + Kv)

−1
r , (5)

Σ∗ = K∗∗ + K∗
v − K∗ (K + Kv)

−1
K∗T

, (6)

whereKv = diag(v) andK∗
v = diag(v∗). Now, as the noise

variancesv andv
∗ cannot be known a-priori, they have to be

integrated over for predictingr∗

p(r∗|A∗,D) (7)

=

∫

p(r∗|A∗,v,v∗,D)
︸ ︷︷ ︸

pr

· p(v,v∗|A∗,D)
︸ ︷︷ ︸

pv

dvdv∗ .

Given the variancesv andv
∗, the predictionpr in Eq. (7) is

a Gaussian with mean and variance as discussed above. The
problematic term is indeedpv as it makes the integral difficult
to handle analytically. Therefore, Goldberget al. [20] proposed
a Monte Carlo approximation that alternately samples frompr

andpv to fit both curve and noise rates. The sampling is quite
time consuming and the expectation can be approximated by
the most likely noise levels̃v andṽ

∗. That is, we approximate
the predictive distribution as

p(r∗|A∗,D) ≈ p(r∗|A∗, ṽ, ṽ∗,D) , (8)

where (ṽ, ṽ∗) = arg max(ṽ,ṽ∗) p(ṽ, ṽ∗|A∗,D). This will be
a good approximation, if most of the probability mass of
p(ṽ, ṽ∗|A∗,D) is concentrated around(ṽ, ṽ∗). Moreover, the
noise levels can be modeled using a standard Gaussian process.
Thus, we have two interacting processes:Gn predicts the noise
levels andGc uses the predicted noise levels in (5) and (6).
To learn the hyperparameters of both processes, we basically
follow an alternating learning scheme in the spirit of the
Expectation-Maximization algorithm: (1) fix the noise levels
and learnGc using a standard maximum likelihood estimator;
(2) fix Gc, estimate the empirical noise levels ofGc on the
training data and estimatedGn using them as target data.
Initially, the noise levels are set to the empirical noise levels
of a constant-noise Gaussian process induced on the training
data.

As covariance functions, we use the Matern type as stated in
Equation 2 for the range process and the squared exponential
one for the noise process. This matches the intuition that the
noise process should exhibit more smoothness than the range
process, which was also supported by our experiments. This,
however, is not a mandatory choice. With properly learned
hyperparameters, using the squared exponential function for
both processes yields a nearly as high performance in our
application.

B. Evaluating the Joint Data Likelihood of Observations

For m new range measurementsz = {(αi, ri)}m
i=1 indexed

by the beam orientationsαi, the model has to estimate the
data likelihoodp(z|D,Θ) given the training dataD and the
learned covariance parametersΘ. We solve this by considering
the predictive distribution for range measurementsr

∗ at the
very same beam orientationsα∗

1, . . . ,α
∗
m, which is anm-

dimensional Gaussian distribution as defined by (5) and (6).
As this predictive distribution is a multivariate Gaussian, we
can directly calculate the observation likelihood for the data
vectorz by evaluating the density function

p(z|µ∗,Σ∗) =
[

(2π)
m

2 |Σ∗| 12
]−1

· (9)

exp

(

−1

2
(z − µ

∗)T Σ∗−1(z − µ
∗)

)



or, in a more convenient form

log p(z|µ∗,Σ∗) = −1

2
(z − µ

∗)T Σ∗−1(z − µ
∗)

−1

2
log |Σ∗| − m

2
log(2π) . (10)

C. Regression over Periodic Spaces

In our application, we have to account for the fact that our
input vectorsαi are angular quantities rather than unconstrai-
ned real valued vectors. This means that an angular distance
metric has to be incorporated into the covariance function to
avoid discontinuities at±π. For the one dimensional case (for
planar sensing devices), we use

‖α, β‖a :=

{

|α − β| if |α − β| ≤ π

2π − |α − β| otherwise .
(11)

Indeed, we also have to adapt the covariance functions them-
selves to theperiodic structure of the input space. For exam-
ple, a periodic variant of the squared exponential covariance
function on the unit circle is

k(αi, αj) = σ2
f

∞∑

p=−∞

exp

(

−|(αi + 2πp) − αj |2
2ℓ2

)

, (12)

which takes infinitively many influences of a data point
on itself into account. The squared exponential covariance
function, however, has a strong locality for relevant values
of σ2

f andℓ. All summands with|αi −αj | >= 2π in Eq. (12)
cannot even be represented using double precision, because
their value is too close to zero. We can therefore safely ignore
the periodicity in practice and only use the standard covariance
function with the modified distance metric of Eq. (11).

D. Efficient Inference by Exploiting Locality

The covariance functions employed in this work are statio-
nary, i.e., they assign small covariance values to those pairs
of input points which lie far apart. With the given machine
precision, this implies that the resulting covariance matrices
are effectively band limited and only have non-zero entries
close to the diagonal. This property can be exploited to speed
up the computations by using optimized algorithms for sparse
matrix operations. In this work, we used the UMFPACK
package [22], an optimized solver for unsymmetric sparse
linear systems, which resulted in significantly reduced compu-
tation times as shown in Figure 4. The run-times are given in
seconds for a full iteration of simulating the scan, building
the heteroscedastic model, and evaluating the observation
likelihood for a given scan with 31 beams. The gain in speed
depicted in this figure is due to the sparsity induced by the
limitations of machine precision only. In addition to this,the
covariances could be truncated actively to much tighter bounds
before a notable loss of precision occurs.

IV. EXPERIMENTAL RESULTS

In this section, we will report on our experimental evaluati-
on. The intention of this evaluation is to determine how well

Fig. 4. The gain in speed due to sparse matrix calculations without a loss of
precision. Exploiting sparsity reduces the iteration timesdrastically, especially
for larger problem sizes.

the proposed GBP model performs compared to state-of-the-
art probabilistic measurement models for laser range finders.
To this aim, we applied our measurement model to one of the
classical problems of robotics, mobile robot localizationand
tracking. We implemented our approach inC++. The platform
used was a Pioneer PII DX8+ robot equipped with a laser
range finder in a typical office environment. As the primary
sensor is a planar sensing device, we only have to deal with
one-dimensional bearing angles. To ensure a fair comparison,
we independently optimized the parameters of all models using
different data in all experiments.

We will proceed as follows. First, we briefly review the
Monte Carlo localization scheme and discuss how the GBP
model fits in there. Then, we present tracking and localization
results with a real robot and, finally, we present results
on simulated data to demonstrate the main benefits of our
approach.

A. GBPs for Monte Carlo Localization

The task of mobile robot localization is to sequentially
estimate the posex of a moving robot in its environment.
The key idea of Monte Carlo localization (MCL) [23], which
belongs to the class of particle filtering algorithms, is to
maintain a sampled approximation of the probability density
p(x) of the robot’s own location. This belief distribution is
updated sequentially according to

p(x[t]|z[1:t],u[0:t−1]) = η · p(z[t]|x[t]) · (13)
∫

p(x[t]|u[t−1],x[t−1]) · p(x[t−1]|z[1:t−1],u[0:t−2]) dx[t−1] .

Here, η is a normalization constant containing the prior
observation likelihoodp(z[t]), which is equal for the who-
le sample set and can therefore be neglected. The term
p(x[t]|u[t−1],x[t−1]) describes the probability that the robot is
at positionx

[t] given it executed the actionu[t−1] at position
x

[t−1]. Furthermore,p(z[t]|x[t]) denotes the probability of
making observationz[t] given the robot’s current location is
x

[t]. The appropriate estimation of this quantity is the subject
of this paper. Concretely, the update of the belief is realized
by the following two alternating steps:

1) In the prediction step, we propagate each sample to a
new location according to the robot’s dynamics model
p(xt|ut−1,xt−1) given the actionut−1 executed since
the previous update.



 0

 0.5

 1

 1.5

 2

 0  200  400  600  800

av
er

ag
e 

tr
an

sl
at

io
n 

er
ro

r

iteration step

GP Model
Ray Cast Model
End Point Model

(a) Pose tracking errors for the different measu-
rement models using31 laser beams.
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(b) With 61 laser beams, the filter using the ray
cast model diverges after400 steps.
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Fig. 5. Pose tracking and localization results with a real robot in an office environment using a 180 degrees field of view. Subfigures (a) and (b) give the
tracking displacement error (y-axis) in meters for an increasing number of iterations. The errors are averaged over25 runs on the same trajectory. Subfigure (c)
shows the global localization performances.

2) In the correction step, the new observationzt is in-
tegrated into the sample set. This is done by adjusting
the weight of each sample according to the likelihood
p(zt|xt) of sensingzt given the robot posext.

The measurement modelp(z|x) plays a crucial role in the
correction step of the particle filter. Typically, very peaked
models require a large number of particles and induce a high
risk of filter divergence. Even when the particles populate
the state space densely, the likelihoods of an observation
might differ by several orders of magnitude. As the particles
are drawn proportionally to the importance weights, which
themselves are calculated as the likelihood ofzt given the
posext of the corresponding particle, a minor difference in
xt can already result in a large difference in likelihoods. This,
in turn, would result in the depletion of such a particle in
the re-sampling step. As a consequence, the “peakedness”
of a measurement model should depend on the number of
particles available and the size of the space to be covered.
The ray cast model (RC) as well as the end point model (EP)
have parameters for controlling their smoothness, which can be
optimized for specific scenarios. In the following, we describe
how GBPs can be applied to MCL and how the smoothness
of the model can be defined in terms of an easy to interpret
parameter.

As mentioned in Section III, we estimatep(z|x) by building
a GBP model for the robot posex online and evaluating
the data likelihood ofz according to Section III-B. For
building the GBP model, we construct a training setD of
simulated range measurements relative tox ∼ N (x,σx)
using an occupancy grid map of the environment. The random
perturbations added tox account for the desired smoothness
of the model as motivated above. Indeed, the pose variance
parameterσx introduced here, more naturally quantifies the
level of regularization of GBPs compared to other models, as
it is directly specified in the space of robot locations. Note
that no sensory information is discarded at this point. For
sufficiently high sampling densities, one could setσx = 0
to get the fully peaked model.

The MCL measurement update step for the whole filter
using GBPs can be summarized as follows:

Algorithm 1 GBPs-based Measurement Update for MCL
for all particlesx do

GenerateD using ray casting in the given map at robot
locations sampled fromN (x,σx).
Build local GBPs usingD and the global covarianceC.
Compute alllog p(z|GBP) and weight the particles.

end for

B. Results on Tracking and Localizing a Real Robot

To demonstrate the tracking and global localization perfor-
mance of the GBP approach, we implemented Algorithm 1
and evaluated it using real data acquired with a Pioneer
PII DX8+ robot equipped with a laser range scanner in a
typical office environment. The experiments described hereare
designed to investigate how well our GBP approach performs
in comparison to the widely used ray cast model and the
end point model. While our approach is computationally more
demanding than the alternative ones, it still runs close to real-
time for mobile robot tracking. Here, a full iteration including
scan simulation and model building takes approximately 0.011
seconds.

In the first set of experiments, we assess the position
tracking performance of the MCL filter using the different
measurement models. The robot started in the corridor of an
office environment and traversed a path through all adjacent
rooms. Figure 5(a) depicts the average localization error for
this experiment with 31 laser beams. As can be seen, the GBP
model and the end point model show similar, good localization
performance and both outperform the ray cast model. When
using more beams for the same task, the difference to the ray
cast model gets even more pronounced, see Figure 5(b). Due
to the ray cast model’s inability to deal with dependencies
between beams, the risk of filter divergence increases with a
growing number of beams used. In another experiment with
181 beams, the GBP model and the end point model showed



(a) Office room environment: All methods show
similar performances and outperform the uni-
form model (pink) which assigns the same like-
lihood value to all grid cells. Lower KL-D values
are better.

(b) Highly cluttered environment: The ray cast
model (green) performs better than uniform
(pink) but less well than the end point model
(blue). Our GBP model (red) significantly out-
performs the other methods in this environment.

(c) Observation log likelihood induced by the GBP
model for a single simulated scan on a discretized
pose space in a typical office room. It shows a
convex shape and the true robot pose (cross) is in
the area of maximal values.

Fig. 6. Localization performance for a mobile robot in terms of the Kullback-Leibler divergence (KLD), which measures the distance of the discretized pose
belief distribution to the known ground truth (lower valuesare better). The experiments were simulated in an office (a) andin a cluttered environment (b).
The KLD (y-axis) is shown for a varying number of laser beams (x-axis). The baseline model (uniform) assigns the same log likelihoods to all grid cells,
i.e., it does not use any sensor information at all. Subfigure (c) shows a typical likelihood function induced by our Gaussian beam process (GBP) model.

a similar behavior as before. The ray cast model, however,
diverged even earlier then with 61 beams.

In a second set of experiments we investigated the robust-
ness of our GBP approach for global localization. Here, the
task is to find the pose of a moving robot within an environ-
ment using a stream of wheel encoder and laser measurements.
The environment used consists of a long corridor and 8 rooms
containing chairs, tables and other pieces of furniture. Intotal,
the map is 20 meters long and 14 meters wide. The results
are summarized in Figure 5(c), which shows the number of
successful localizations after 8 integrations of measurements
for the three measurement models and for different numbers
of particles used. In the experiment, we assumed that the
localization was achieved when more than 95 percent of the
particles differed in average at most 30 cm from the true
location of the robot. As can be seen from the diagram, the
GBP model performs slightly better than the ray cast model
and both outperform the end point model.

C. Results on Simulated Data in a Static Setting

In the previous section, we have evaluated the measure-
ment models in the standard way for mobile robots, i.e.,
we have evaluated their performances in real-world tracking
and localization tasks. Although this is closest to the actual
application of the models (and should therefore round off any
other evaluation strategy), it has also one major drawback:
several external factors influence the evaluation, such as the
choice of filtering algorithm, the sampling and resampling
strategies, and the order in which places are visited along
a trajectory. To investigate the strengths and weaknesses of
the measurement models independently from specific tracking
algorithms, we ran a different set of experiments in a static
setting. Here, we use the Kullback-Leibler divergence (KL-D)
on a discretized pose space to measure how well the different
models are able to reconstruct a pose distribution given just the
corresponding laser measurements. More precisely, for each
measurement model, we

• discretize the space of robot poses using a three dimen-
sional grid (2D location and heading) and let each grid
cell represent one pose hypothesisXi,

• select a cell indext to contain the true robot posext ∈
Xt,

• randomly draw m test poses within this cellt and
simulate corresponding range measurement vectorszm

using a given occupancy grid map.
• Now, we evaluate the observation likelihoodsp(zm|Xi)

for each grid cell and each test observation and sum up
the individual observation likelihoods per cell.

• Finally, we normalize the whole likelihood grid and
compute the KL-DDKL =

∑

i p(zm|Xi)·log
(

p(zm|Xi)
δi=t

)

to a binary ground truth grid, where all likelihood mass
is concentrated at the cellt, i.e., the true robot pose.

For computing the KL-D measure, we employ the standard
trick of adding an extremely small value to each cell for
dealing with empty cells. The specific choice of this value
did not have a notable influence on the measure.

Figure 6(c) depicts such a likelihood grid for the GBP model
as well as the true robot location in an office environment. It
can be seen that the observation likelihood is nicely peaked
around the true robot pose and that the GBP model yields a
smooth likelihood function. The KL-D results for this room are
given in Figure 6(a). The diagram shows that all three models
achieve comparable good performances when recovering the
pose distribution in this situation. Additionally, we plotthe
KL-D for the uniform model taken as a baseline, which assigns
the same, constant likelihood value to all cells. In highly
cluttered environments such as a laboratory room with many
chairs and tables, however, the GBP model clearly outperforms
the other two models. As shown in Figure 6(b), the KL-D is
always significantly lower and decreases with a high number
of laser beams. The ray cast model shows even an increasing
KL-D with increasing numbers of laser beams due to its lack of
smoothness. In both experiments, we used a relatively coarse



Model KL-D

UNI 0.69
RC 0.00
EP 0.24

GBP 0.00

Fig. 7. In contrast to RC and GBP, the end point model (EP) cannot reliably
distinguish between rooms A and B of the SDR building (left image). Since
it only considers the end points of scans, it ignores the solid obstacle on the
right-hand side of room B. Consequently, the resulting posebelief distribution
shows a high KL-divergence to the ground truth (right) whileRC and GBP
achieve near optimal performances.

grid with grid cell areas of approximately0.037m2.
Recall from the beginning that the end point model ignores

the obstacles along the beam and replaces the ray casting
operation of beam models by a nearest neighbor search.
Figure 7 depicts a real situation in which this can lead to
divergence of the localization process. To more quantitatively
investigate this situation, we evaluated the different approaches
in their capabilities to correctly classify laser scans simulated
in room A as belonging to this room. As can be seen from
the table on the right side of Figure 7, which contains the KL-
D on a two cell grid (one cell for each room), the end point
model produces a larger error than the ray cast model and the
GBP model. This is mainly due to the fact that the end points
of beams from room A also fit room B. The KL-D has been
calculated for 100 simulated scans on a two cell grid, where
each grid cell spans1m2 in the center of room A respectively
room B.

V. CONCLUSIONS

In this paper, we introduced Gaussian beam processes as a
novel probabilistic measurement model for range finder sen-
sors. The key idea of our approach is to view the measurement
modeling task as a Bayesian regression problem and to solve
it using Gaussian processes. As our experiments with real and
simulated data demonstrate, Gaussian beam processes provide
superior robustness compared to the ray cast model and the
end point model by combining the advantages of both.

The model’s ability to perform justified range predictions
in arbitrary directions without having to consult a map is
a promising starting point for future research. This might,
for instance, allow to interpolate between measurements in
settings where sensors only provide a sparse coverage of the
environment.
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