
Heteroscedastic Gaussian Process Regression
for Modeling Range Sensors in Mobile Robotics

Christian Plagemann, Kristian Kersting, Patrick Pfaff, Wolfram Burgard
Univ. of Freiburg, Dept. of Computer Science, D-79110 Freiburg, Germany

{plagem,kersting,pfaff,burgard}@informatik.uni-freiburg.de

In probabilistic approaches to mobile robot navigation, the development of measurement models plays a
crucial role as it directly influences the efficiency and the robustness of the robot’s performance in a great
variety of tasks including localization, tracking, and mapbuilding [1]. Among the most popular types of sensors
used are range finders, which measure distances to nearby obstacles relative to certain (possibly multivariate)
bearing angles. Probabilistic measurement models for thiskind of sensor, such as beam models (aka. ray-casting
models) and likelihood fields (aka. end point models), typically assume independency between individual range
measurements. This leads to a series of practical limitations such as overly peaked observation likelihood
functions for high density range scans or degrading performance in highly cluttered environments.

To overcome this, we propose a novel probabilistic measurement model for range finders, called Gaussian
Beam Processes. Gaussian Beam Processes treat the measurement modeling task as a nonparametric Bayesian
regression problem and solve it using Gaussian processes [2]. The major advantage of this approach lies in
the smoothness of the model, resulting from the representation of correlations between adjacent beams using
covariance functions. Moreover, the Gaussian process treatment results in a sound probabilistic measurement
model with a pool of well-established techniques for likelihood estimation and range prediction for an arbitrary
number of beams. Standard Gaussian processes, however, assume a constant noise term over the domain. For
modeling range sensor measurements, the variance of range values in each beam direction is, along with its
mean value, an important feature of the sought-after distribution of range measurements. Inspired by Goldberg
et al. [3], we therefore extended the standard Gaussian process framework to deal with heteroscedasticity, i.e.,
non-constant noise. Like Goldberget al., we model the log noise variances explicitly using a second Gaussian
process. In contrast to their work, however, we do not use a time consuming Markov chain Monte Carlo method
to estimate the posterior noise variances but a fast most-likely-noise approach.

We implemented the proposed system and evaluated it using a real robot as well as simulation for one of the
classical tasks of robotics, namely mobile robot localization. The experimental results using a particle filter for
mobile robot localization demonstrate the effectiveness of Gaussian Beam Processes in comparison to previous
approaches.
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Figure 1: Standard GP regression (left) assuming constant noise and our heteroscedastic extension (middle)
dealing with non-constant noise. Scales are given in meters. The concentric lines depict possible range mea-
surements. Modeling heteroscedasticity yields lower predictive uncertainties at places with low expected noise
levels such as the walls in front. The right plot depicts the ratio of successful localizations of a real robot after 8
integrations of measurements for a varying number of particles. As can be seen from the diagram, our Gaussian
Beam Process model increases the global localization performance compared to state of the art approaches.
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Figure 2: Localization performance for a mobile robot in terms of the Kullback-Leibler divergence (KLD),
which measures the distance of the discretized pose belief distribution to the known ground truth (lower values
are better). The experiments were simulated in an office (left) and in a cluttered environment (right). The KLD
(y-axis) is shown for a varying number of laser beams (x-axis). The baseline model (uniform) assigns the same
log likelihoods to all possible poses. In the office environment (left), all methods perform similarly well. In
the highly cluttered environment, however, Gaussian Beam Processes significantly outperform the others. The
error bars indicate the standard deviations from 10 independent runs.
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Figure 3: Pose tracking results for a real robot in an office environment using an 180 degrees field of view. The
tracking displacement errors (y-axis) in meters are given for an increasing number of iterations (x-axis) using
31 laser beams (left) and 61 laser beams (right). The errors are averaged over25 runs on the same trajectory. As
can be seen from the right diagram, the ray cast model often leads to divergence for larger numbers of beams.
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