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In probabilistic approaches to mobile robot navigatiore tlevelopment of measurement models plays a
crucial role as it directly influences the efficiency and thbustness of the robot’s performance in a great
variety of tasks including localization, tracking, and niding [1]. Among the most popular types of sensors
used are range finders, which measure distances to neartaclelsselative to certain (possibly multivariate)
bearing angles. Probabilistic measurement models fokihésof sensor, such as beam models (aka. ray-casting
models) and likelihood fields (aka. end point models), tgllycassume independency between individual range
measurements. This leads to a series of practical limitatguch as overly peaked observation likelihood
functions for high density range scans or degrading pefdoica in highly cluttered environments.

To overcome this, we propose a novel probabilistic measeneémodel for range finders, called Gaussian
Beam Processes. Gaussian Beam Processes treat the mesguneeling task as a nonparametric Bayesian
regression problem and solve it using Gaussian procesged iz major advantage of this approach lies in
the smoothness of the model, resulting from the representaf correlations between adjacent beams using
covariance functions. Moreover, the Gaussian processresd results in a sound probabilistic measurement
model with a pool of well-established techniques for likelbd estimation and range prediction for an arbitrary
number of beams. Standard Gaussian processes, howewsneaasonstant noise term over the domain. For
modeling range sensor measurements, the variance of rahgesvin each beam direction is, along with its
mean value, an important feature of the sought-after tidion of range measurements. Inspired by Goldberg
et al. [3], we therefore extended the standard Gaussian procsgWwork to deal with heteroscedasticity, i.e.,
non-constant noise. Like Goldbegpal., we model the log noise variances explicitly using a secoadsSian
process. In contrast to their work, however, we do not usama tionsuming Markov chain Monte Carlo method
to estimate the posterior noise variances but a fast masirtnoise approach.

We implemented the proposed system and evaluated it usisyj eobot as well as simulation for one of the
classical tasks of robotics, namely mobile robot localimat The experimental results using a particle filter for
mobile robot localization demonstrate the effectivend<$saussian Beam Processes in comparison to previous
approaches.
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Figure 1: Standard GP regression (left) assuming constEsérand our heteroscedastic extension (middle)
dealing with non-constant noise. Scales are given in mefigre concentric lines depict possible range mea-
surements. Modeling heteroscedasticity yields lower ipté uncertainties at places with low expected noise
levels such as the walls in front. The right plot depicts titeorof successful localizations of a real robot after 8
integrations of measurements for a varying number of dagtidAs can be seen from the diagram, our Gaussian
Beam Process model increases the global localization peaioce compared to state of the art approaches.

45 7 Baseline (random likelihoods) —— 1 205 | " Baseline (random likelihoods) —— |
< RC s ° RC
ER = g 2L LF
= L GBP z GBP
T 35 T 175}
=3 =3
& 3 & 155w
(=] =2 %

o 25F o 125G

o o * ¥

g 2 g 1

S 151 & 075 f,

[ [

> > 0.5 -

S : i S ozl

2 05 I . i 2 "
oL i ‘ ‘ ‘ ‘

10 20 30 40 50 60 70 80 0 50 100 150 200 250
Number of test beams Number of test beams

Figure 2: Localization performance for a mobile robot imerof the Kullback-Leibler divergence (KLD),
which measures the distance of the discretized pose béigibdition to the known ground truth (lower values
are better). The experiments were simulated in an officg @efl in a cluttered environment (right). The KLD
(y-axis) is shown for a varying number of laser beams (xJaXibe baseline model (uniform) assigns the same
log likelihoods to all possible poses. In the office envir@min(left), all methods perform similarly well. In
the highly cluttered environment, however, Gaussian Besmd3ses significantly outperform the others. The
error bars indicate the standard deviations from 10 indégetruns.
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Figure 3: Pose tracking results for a real robot in an offiaBrenment using an 180 degrees field of view. The
tracking displacement errors (y-axis) in meters are givgrah increasing number of iterations (x-axis) using
31 laser beams (left) and 61 laser beams (right). The errerm@raged ova5 runs on the same trajectory. As
can be seen from the right diagram, the ray cast model oftefs|® divergence for larger numbers of beams.



