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Abstract

As robotic systems are becoming more complex and as they are developed for increasingly

realistic environments, the role of machine learning within robotics becomes even more

central than it has been. Robot learning tasks typically raise a number of hard requi-

rements for learning methods including accurate estimation of uncertainty, dealing with

inhomogeneously sampled data, computational efficiency, and high modeling accuracy.

We show in this thesis that Gaussian processes as a machine learning method have the

potential to address these issues. Gaussian processes are a Bayesian approach to function

regression, that is, they allow to place a prior distribution over the space of functions. The

approach has become one of the standard tools for solving non-linear regression problems,

which are central to many machine learning problems. While the modeling capabilities

of Gaussian processes are as high as for state-of-the-art alternatives, the basic concept is

exceptionally clear and easy to implement.

We present Gaussian process-based solutions to a wide variety of problems encountered in

robotics. This includes the modeling of laser and gas sensors, the interpretation of camera

images, the detection of failures during mobile robot navigation, and the estimation of

probabilistic terrain maps from noisy range measurements. Furthermore, we introduce an

approach that allows a robot to learn a model of its own body from scratch using only

visual self-observation. In each of the studied problem domains, our solutions have been

evaluated empirically using real and simulated data.

As a contribution to machine learning in general, we study and improve extensions of

the standard Gaussian process model, which can be used flexibly to solve non-robotics

learning tasks also. This includes an approach to dealing with spatially-varying observation

noise and one for adapting the function smoothness locally. We furthermore derive sparse

approximations for these extensions to be able to apply the models to large data sets and

in online settings.





Zusammenfassung

Durch die rapide zunehmende Komplexität von Robotersystemen und ihrer Einsatzum-

gebungen kommt dem maschinellen Lernen als Grundlagentechnologie eine noch höhere

Bedeutung innerhalb der Robotik zu als dies in der Vergangenheit der Fall war. Relevante

Lernprobleme in der Robotik stellen hohe Anforderungen an die eingesetzten Lernverfah-

ren. Dies beinhaltet ein hohes Maß an Modellierungsgenauigkeit, den verlässlichen Umgang

mit Unsicherheiten, Speicher- und Zeiteffizienz, sowie Robustheit gegenüber fehlenden und

verrauschten Daten. Mit dieser Arbeit zeigen wir, dass Gauß-Prozesse als Verfahren zur

Regressionsanalyse das Potential haben, diesen Anforderungen in relevanten Anwendun-

gen gerecht zu werden. Gauß-Prozesse sind ein etablierter und konzeptionell klarer Ansatz

aus der Statistik, mit dessen Hilfe Verteilungen über Funktionen definiert und praktische

Regressionsprobleme gelöst werden können.

Ausgehend von den hohen Anforderungen der Robotik leiten wir eine Reihe von Erwei-

terungen für Gauß-Prozesse her, die sich auch außerhalb der Robotik als leistungfähig

erwiesen haben. Dies beinhaltet einen neuen Ansatz zur Modellierung von inhomogenem

Meßrauschen sowie einen Ansatz zur lokalen Adaption der Funktionsglattheit an die ge-

gebenen Daten. Darüber hinaus werden Approximationen der erweiterten Modelle zur

Effizienzsteigerung behandelt, die das Lernen auf großen Datenmengen und unter Resour-

cenbeschränkungen möglich macht. Diese Erweiterungen stellen einerseits einen Beitrag

zum maschinellem Lernen im Allgemeinen dar und helfen andererseits, eine breitgefächerte

Menge an Robotikproblemen zu lösen. Die in dieser Arbeit ausführlich behandelten Proble-

me umfassen die Modellierung von Laser- und Gassensoren, die Interpretation von Kame-

rabildern, die automatische Fehlerdetektion für mobile Roboter, sowie die Erstellung von

probabilistischen Geländemodellen. Desweiteren stellen wir einen Ansatz vor, durch den

ein Roboter seine eigene kinematische Struktur durch visuelle Selbstobservation modellie-

ren und kontrollieren kann. Für jede dieser Problemstellungen wurde ein experimenteller

Vergleich zu existierenden Lösungen durchgeführt und eine Diskussion der Vorteile des

Gauß-Prozess Ansatzes geführt.
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Chapter 1

Introduction

Machine learning and probabilistic modeling have a strong impact on robotics research

and their importance is increasing further as systems are becoming more complex and

as they are deployed to less-constrained environments. State-of-the-art robotic systems

are designed to solve tasks such as recognizing and manipulating objects, understanding

natural scenes, navigating in populated environments, playing soccer in teams, driving in

traffic, or walking on uneven terrain. It is immediately apparent, that such domains cannot

be modeled by human experts in all necessary detail. Even seemingly simple subproblems

such as the interpretation of range measurements from a precise laser sensor are often hard

to solve due to the complexity of realistic environments and the inherent uncertainties in

key variables (e.g., the sensor location). Other popular sensors, like cameras or radio-

frequency identification (RFID) antennas, additionally complicate the perception task by

having higher noise rates and by measuring the quantities of interest only indirectly. For

this reason, a current trend in robotics research and engineering is (a) to model depen-

dencies probabilistically taking the uncertainties on multiple levels into account and (b)

to employ advanced machine learning techniques for fitting the models to collected data.

The goal of this thesis is to contribute to the understanding of robot learning problems,

especially within probabilistic contexts, and to evaluate and improve the Gaussian pro-

cess (GP) model as a tool for solving them. Many relevant robot learning problems can be

posed as regression problems, that is, as learning the mapping from index vectors to tar-

get values given a set of observed data points so that generalization to unobserved parts

of the space is possible and observation noise is reduced. In this thesis, we argue that

the Gaussian process approach to regression provides a particularly flexible and powerful

framework for solving robot learning problems. Gaussian processes have a long tradition in

statistics and geoscience, but have gained popularity as a practical machine learning tool
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just in the last decade [Rasmussen and Williams, 2006b]. GPs are a Bayesian approach to

function regression, i.e., they allow to place a prior distribution over the space of functions.

While the modeling capabilities of Gaussian processes are as high as for state-of-the-art

alternatives, the basic concept is exceptionally clear and easy to understand.

We present Gaussian process-based solutions to a wide variety of learning problems en-

countered in robotics, including perception, state estimation, self-modeling, and terrain

mapping. In general, we take the probabilistic approach in order to deal with the noise

and uncertainties inherent in such domains. We show that the Gaussian process model

is advantageous especially in this context since it directly provides uncertainty estimates

for its predictions covering the observation noise as well as the uncertainty arising from

missing observations. This feature enables the tight integration with other probabilistic

approaches such as Monte Carlo localization or occupancy grid mapping.

As a contribution to the general field of machine learning, we studied and improved ex-

tensions of the standard Gaussian process model, which proved helpful also in a number

of non-robotics learning tasks. This includes an extension for dealing with inhomogeneous

observation noise and one for learning and representing spatially-varying smoothness. In

both cases, we model the hidden, location-dependent variables—noise and smoothness

respectively—by means of additional, latent Gaussian processes and give efficient approx-

imations for learning these from training data. We furthermore discuss ways of achieving

sparse Gaussian process approximations making the model applicable to large data sets

and in online settings.

1.1 Contributions

With this work, we contribute to robotics research by developing solutions to a number of

relevant and hard robot learning problems that arise in the context of perception, state

estimation, self-modeling, and terrain mapping. The diversity of problems to which we have

applied Gaussian processes successfully may been seen as an indication for the flexibility

of the approach. Specifically, we address in this work:

• Online failure detection for mobile robots (Chapter 3)

• Body scheme learning from visual self-observation (Chapter 4)

• Gas distribution mapping (Chapter 5)

• Robust laser-based Monte Carlo localization (Chapter 7)

• Range sensing from monocular vision (Chapter 8)

• Probabilistic terrain mapping and path planning (Chapters 9 and 10)
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Additionally, we contribute to machine learning research by developing extensions of the

Gaussian process framework within the following areas and by advancing the understanding

of the methods in real-world settings:

• Heteroscedastic GPs—modeling input-dependent noise (Chapter 6)

• Nonstationary GPs—modeling input-dependent smoothness (Chapters 9 and 11)

• Sparse Approximations—scaling to large data sets (Chapters 10 and 11)

Based on existing theoretic concepts discussed in the literature, our approaches are de-

signed to meet the requirements of robot learning tasks including accurate estimation of

uncertainty, computational efficiency, and high modeling accuracy.

The results of this work furthermore include a software toolbox for Matlab and C/C++ as

well as a collection of benchmark data sets. This and additional multimedia material is

contained on the website http://robreg.org/gprl.

Publications

The work presented in this thesis is based on the following publications in conference

proceedings and journals. They are given in reverse chronological order, grouped by their

main subject.

Gaussian Processes for Machine Learning

C. Plagemann, K. Kersting, and W. Burgard. Nonstationary gaussian process regression using point

estimates of local smoothness. In Proc. of the European Conference on Machine Learning (ECML),

Antwerp, Belgium, 2008.

K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely heteroscedastic gaussian process regres-

sion. In International Conference on Machine Learning (ICML), Corvallis, Oregon, USA, 2007.

Modeling Sensors and Perception

P. Pfaff, C. Stachniss, C. Plagemann, and W. Burgard. Efficiently learning high-dimensional observation

models for monte-carlo localization using gaussian mixtures. In Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Nice, France, 2008.

M. Luber, K. Arras, C. Plagemann, and W. Burgard. Tracking and classification of dynamic objects: An

unsupervised learning approach. In Robotics: Science and Systems (RSS), Zurich, Switzerland, 2008.

C. Plagemann, F. Endres, J. Hess, C. Stachniss, and W. Burgard. Monocular range sensing: A non-

parametric learning approach. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),

Pasadena, CA, USA, 2008.

P. Pfaff, C. Plagemann, and W. Burgard. Gaussian mixture models for probabilistic localization. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), Pasadena, CA, USA, 2008.
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P. Pfaff, C. Plagemann, and W. Burgard. Improved likelihood models for probabilistic localization based

on range scans. In Proc. of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS),

San Diego, CA, USA, 2007.

C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Gaussian beam processes: A nonparametric bayesian

measurement model for range finders. Robotics: Science and Systems (RSS), Atlanta, GA, USA, 2007.

C. Plagemann, T. Müller, and W. Burgard. Vision-based 3d object localization using probabilistic models

of appearance. In Pattern Recognition, 27th DAGM Symposium, Vienna, Austria, volume 3663 of

Lecture Notes in Computer Science, pages 184–191. Springer, 2005.

State Estimation and Mapping

S. Grzonka, C. Plagemann, G. Grisetti, and W. Burgard. Look-ahead proposals for robust grid-based slam
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In Robotics: Science and Systems (RSS), Zurich, Switzerland, 2008.

J. Sturm, C. Plagemann, and W. Burgard. Unsupervised body scheme learning through self-perception.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Pasadena, CA, USA, 2008.
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with gaussian process proposals. In Proc. of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI), Hyderabad, India, 2007.
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1.2. Collaborations 5

Relational Modeling

K. Kersting, C. Plagemann, A. Cocora, W. Burgard, and L. De Raedt. Learning to transfer optimal

navigation policies. Advanced Robotics. Special Issue on Imitative Robots, 21(9), 2007.

C. Meyer-Delius, C. Plagemann, G. von Wichert, W. Feiten, G. Lawitzky, and W. Burgard. A probabilistic

relational model for characterizing situations in dynamic multi-agent systems. In Proc. of the 31st An-

nual Conf. of the German Classification Society on Data Analysis, Machine Learning, and Applications

(GfKl), Freiburg, Germany, 2007.

A. Cocora, K. Kersting, C. Plagemann, W. Burgard, and L. De Raedt. Learning relational navigation

policies. KI - Künstliche Intelligenz, Themenheft Lernen und Selbstorganisation von Verhalten, 3:12–

18, Böttcher IT Verlag, Bremen, Germany, 2006.

A. Cocora, K. Kersting, C. Plagemann, W. Burgard, and L. De Raedt. Learning relational navigation

policies. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Beijing, China, 2006.

1.2 Collaborations

Parts of this thesis have resulted from collaboration with colleagues and researchers from

other institutions. We are grateful for their advice, ideas, and hard work they put into the

joint projects. Specifically, Heteroscedastic GPs (Chapter 6) and many of the machine-

learning–related concepts were developed jointly with Kristian Kersting. Terrain regres-

sion, especially the application to path planning and legged robot locomotion (Chapter 10),

was studied jointly with Nicholas Roy. Together with Dieter Fox, we developed the con-

cepts underlying the learning of sampling models for dynamic Bayesian networks intro-

duced in Chapter 3. Nonstationary covariance functions and their applications to terrain

modeling (Chapter 9) were originally addressed in the co-supervised MSc thesis of Tobias

Lang. Sparse approximations, especially the segmentation-based approaches (Chapters 10

and 11), were originally studied in the co-supervised MSc thesis of Sebastian Mischke.

Our approach to monocular range sensing (Chapter 8) is based on joint work with Felix

Endres and Jürgen Hess. Range sensor models (Chapter 7) were studied in cooperation

with Patrick Pfaff. The approach to gas distribution modeling (Chapter 5) was developed

in a joint project with Cyrill Stachniss and Achim Lilienthal. Body scheme learning for

manipulation (Chapter 4) was investigated jointly with Jürgen Sturm.

1.3 Outline

This thesis is structured in three main parts.

In Part I: Gaussian Process Regression in Robotics, we first review the Gaussian process

model for regression and compare it to related approaches (Chapter 2). Then we show how

the model can be used to solve problems concerning sampling models for dynamic Bayesian
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networks (Chapter 3) and robotic self-modeling for manipulation (Chapter 4). A Gaussian

process-based mixture model for mapping gas distributions is presented in Chapter 5.

In the second part, Modeling Input-Dependent Noise, we introduce a novel approach to

heteroscedastic regression, i.e., the modeling of input-dependent observation noise (Chap-

ter 6). Based on this model, we present solutions to robot perception problems that

arise with range sensors (Chapter 7), and we develop a system for predicting range from

monocular camera images (Chapter 8).

In the third part, Modeling Input-Dependent Smoothness, we introduce a nonstationary GP

approach to terrain modeling, which locally adapts its smoothness prior to the data (Chap-

ter 9). In Chapter 10, we apply an extended model, which employs sparse approximations

to deal with large data sets, to the problem of learning terrain models for legged robot

locomotion. Finally, in Chapter 11, we derive a general nonstationary Gaussian process

model from first principles and present an evaluation on simulated and real-world data.

Chapter 12, finally, recapitulates the contributions of the thesis and discusses its results.

We will furthermore discuss future research directions for the individual topics as well as

for the Gaussian process approach in general.
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1.4 Symbols and Notation

Symbol Description

x scalar variable

x vector

Ux local neighborhood of x

[x]i i-th element of x

A matrix

[A]ij element in the i-th row and j-th column of A

{. . . } set

(. . . ) vector

〈. . . 〉 tuple (ordered set)

diag(x),x ∈ Rn n× n matrix with x on the diagonal

|A| determinant of A

I identity matrix

p(x) probability density function for the variable x

P (E) probability of an event E

N (µ, σ2) normal distribution with mean µ and variance σ2

E(x),V(x) expectation and variance of a random variable x

cov(x, y) covariance of the random variables x and y

pt = (xt, yt, θt) ∈ R ×R× (−π : π]
pose of mobile robot consisting of its location and ori-
entation relative to an environment

zt, t ∈ N time-indexed sensor measurement

z = 〈(ri,αi)〉mi=1 range scan that consists of m beam measurements ri
indexed by beam orientations αi.

zs:t = {zs, . . . , zt} sequence of sensor measurements

ut action / motion command issued at time t

Bt = {〈s[i]t , w
[i]
t 〉}ni=1 belief state (set of weighted state samples)

f(·) regression function / process.

fi = f(xi) the function evaluated at input location xi

GPy Gaussian process over the variable y

GPℓ,GPz Latent Gaussian processes over (log) length-scales ℓ
and log noise rates z = log(σ2

n)

D = {(xi, yi)}ni=1,
xi ∈ Rd, y ∈ R training set consisting of target samples yi, which are

indexed by corresponding input vectors xi
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Symbol Description

X = {xi}ni=1,xi ∈ Rd set of training points xi

D = 〈X,y〉,
X ∈ Rn×d,y ∈ Rn

alternative notation in matrix-vector form

y∗, f∗,x∗,
y∗ = (y∗1 , . . . , y

∗
m)⊤

new target to be predicted, the corresponding latent
function value, and its input location

ki,j = k(xi,xj) covariance function

Kxx ∈ Rn×n covariance matrix

kx∗x ∈ Rn vector of covariates between the query target y∗ at x∗

and the training targets y at X

σn noise level which the observed targets are affected by

θ hyperparameters

θSE = 〈σf , ℓ〉 hyperparameters of the square exponential (SE) co-
variance function, consisting of the signal variance (or:
amplitude) and the characteristic length-scale

θℓ = 〈σf , σℓ, σn〉 hyperparameters of the latent length-scale process
GPℓ (using the square exponential (SE) covariance
function)

L objective function for optimization, typically derived
from the logarithm of the marginal data likelihood of
the training set

Abbreviation Description

BN Bayesian network

CV cross validation

CDF cummulative distribution function, Fx(t) := P ({x < t})
CPD conditional probability distribution, p(x|y)
DBN dynamic Bayesian network

DF discrete filter (also: histogram filter)

DOF degree of freedom

GP Gaussian process

GPP Gaussian process proposal

KF Kalman filter

MCL Monte Carlo localization

NLPD negative log predictive density

NN neural network

PDF probability density function

PF particle filter

RBF radial basis function

RBPF Rao-Blackwellized particle filter

SE squared exponential

sMSE standardized mean squared error

w.l.o.g without loss of generality
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Chapter 2

Basics

We review the Gaussian process approach to regression as the central framework

for the remainder of the thesis and discuss its relation to alternative models.

As stated in the introduction, the goal of this thesis is to study how to build artifical

systems with advanced learning capabilities. One of the central problems that arises in

this context is the so-called regression problem, that is, learning about a function x 7→ y

that maps points x from an index space to real-valued targets y. Realizations of these

variables can be given, for example, (a) in form of an explicit training set supplied by a

tutor, (b) from own observations, or (c) as realizations of variables in own internal models—

such as the value function in a reinforcement learning context. In the following, we first

formalize the non-linear regression problem in Sec. 2.1, then we describe the Gaussian

process model as an approach to solving it in Sec. 2.2, and discuss the relationship of the

model to alternative ones from the literature in Sec. 2.3.

2.1 The Non-Linear Regression Problem

In supervised regression, we are given a training set D = {(xi, yi)}ni=1 with xi ∈ Rd and

yi ∈ R, of n observed tuples (xi, yi). The xi are used as indices to the set, called inputs,

and the yi are values of interest, called targets. The task is to make predictions about

new targets y∗ given the corresponding inputs x∗. As D does not contain all possible x

in general and there might be more than one possible response y to an input x (i.e., for

a noisy relationship between x and y), we face a problem of induction [Mitchell, 1997].

That is, one has to make additional assumptions about the distribution of data points in

order to get a well-posed problem. More visually, we have to assume some relationship
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between observed and unobserved variables in order to make predictions about the latter

ones. Such additional assumptions are called the inductive bias of the learning algorithm.

The bias chosen for regression tasks in often based on the concept of similarity, that is,

similar indices x are more likely to be associated to the same target y than dissimilar ones.

More formally, non-linear regression analysis1 aims at learning a model for the noisy rela-

tionship

y = f(x) + ǫ , (2.1)

which is composed of a systematic component f(·) and a noise component ǫ. The noise

terms are typically assumed i.i.d. Gaussians, ǫ ∼ N (0, σ2
n), but this does not have to be

the case in general.

The parametric approach to the regression problem is to assume that f comes from a cer-

tain family of parametric functions {fθ} and to reason in the space of parameter vectors θ.

Such models include for example the linear model f(x) = x⊤w in which θ is the vector of

coefficients w and artifical neural networks (ANNs) for which θ encodes the weights and

other parameters of the network (see also Sec. 2.3). In the following section, we introduce

Gaussian processes as an approach to the regression problem that does not assume a fi-

nite parameterization of the function f . Rather, it allows to place a prior directly over

the space of functions, thus defining the inductive bias independently from any structural

assumption about f .

2.2 Gaussian Process Models

The goal is to derive a probabilistic model for recovering the systematic component f(·)
in Eq. (2.1) from noisy data, that is, we seek a model for p(f(x)|x) given the noise

model p(ǫ). Since f(·) is a continuous function—thus having infinitely many dimensions—

and we do not want to make a parametric assumption about it, we need a distribution

over functions to define the inductive bias. A flexible way of placing distributions over

functions is given by the Gaussian process model, which is defined as follows.

Definition: A Gaussian process is a collection of random variables, any of which have a

joint Gaussian distribution.

More formally, if we assume that {(xi, fi)}ni=1 with fi = f(xi) are samples from a Gaussian

process and define f = (f1, . . . , fn)⊤, we have

f ∼ N (µ,K) , µ ∈ Rn,K ∈ Rn×n . (2.2)

1The term “regression” is often used with the linear case in mind. Therefore, we explicitely include
“non-linear” in our descriptions to make clear that we are dealing with the more general case.
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For simplicity of notation, we can assume µ = 0, since the expectation is a linear operator

and, thus, for any deterministic mean function m(x), the Gaussian process over f(x) :=

f(x)−m(x) has zero mean (see [Rasmussen and Williams, 2006b, Sec. 2.7]).

The interesting part of the model is indeed the covariance matrix K. It is specified by

[K]ij := cov(fi, fj) = k(xi,xj) using a covariance function k which defines the covariance

of any two function values {fi, fj} sampled from the process given their input vectors

{xi,xj} as parameters.

Intuitively, the covariance function specifies how similar two function values f(xi) and

f(xj) are depending only on the corresponding inputs. Popular covariance functions used

in practice include the squared exponential

kSE(xi,xj) = σ2
f exp

[

−1

2

|xi − xj|2
ℓ2

]

(2.3)

and a variant of the Matérn type of covariance function

kM (xi,xj) = σ2
f

(

1 +

√
5|xi − xj|

ℓ
+

√
5|xi − xj|2

3ℓ2

)

· exp

(

−
√

5|xi − xj |
ℓ

)

. (2.4)

Both functions are stationary, that is, they only depend on the relative distance |xi−xj | of
the input vectors rather than on their absolute locations. Thus, the so-called length-scale ℓ

defines the global smoothness of the function f . Both functions are also isotropic, i.e.,

the different dimensions of x are all treated in the same way. σf denotes the amplitude

(or signal variance) parameter. These parameters, along with the global noise variance σ2
n

that is assumed for the noise component [see Eq. (2.1)], are known as the hyperparameters

of the process. They are denoted as θ = 〈σf , ℓ, σn〉.

Making Predictions

Given the definition of a Gaussian process as a collection of jointly Gaussian distributed

random variables, it is relatively straight-forward to derive a closed-form solution for pre-

dicting new function values f∗ at input locations x∗, that is, estimating

p(f∗|x∗,D) .

Here, D = {(xi, yi)}ni=1 denotes the set of observed input/target pairs. For convenience, we

denote with f∗ the vector of m function values f∗i to be predicted and with X∗ the matrix

containing the corresponding index vectors x∗
i , i = 1, . . . ,m, in the rows. Since any set of

samples from the process is jointly Gaussian distributed, the set {f1, . . . , fn, f
∗
1 , . . . , f

∗
m} is
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also:

(

f

f∗

)

∼ N
(

0,

[

Kxx Kxx∗

K⊤
xx∗

Kx∗x∗

])

. (2.5)

Here, we used the notation Kxx ∈ Rn×n with [Kxx]ij = k(xi,xj) and Kxx∗
∈ Rn×m with

[Kxx∗
]ij = k(xi,x

∗
j ) as well as Kx∗x∗

∈ Rm×m with [Kx∗x∗
]ij = k(x∗

i ,x
∗
j). As we do not

know the latent, noisy-free function values f in Eq. (2.5), but only have the corresponding

noisy observations y = (y1, . . . , yn)⊤ available, we consider

(

y

f∗

)

∼ N
(

0,

[

Kxx + σ2
nI Kxx∗

K⊤
xx∗

Kx∗x∗

])

, (2.6)

where I is the identity matrix. Conditioning Eq. (2.6) on the known y can be done

analytically—applying the marginalization and conditioning rules for the Gaussian distri-

bution, see [Rasmussen and Williams, 2006b, A.2]. This yields the sought-after result for

the predictive distribution

f∗|X∗,D ∼ N (µ∗,Σ∗) (2.7)

with

µ∗ = Kxx∗
(Kxx + σ2

nI)
−1y (2.8)

Σ∗ = Kx∗x∗
−Kxx∗

(Kxx + σ2
nI)

−1K⊤
xx∗

. (2.9)

Note from Eq. (2.8) that the posterior mean of the Gaussian processes can take arbitrary

values depending on the training data set D and the query locations X∗—although we

have assumed a zero-mean prior process. In practice, the mean of the GP prior is often

irrelevant, at least as long as sufficiently many training points have been observed in the

proximity of the query locations. Also note that predicting new observations y∗ rather

than function values f∗ is easy. Due to the assumption of independent additive noise, one

just has to add the noise variance to the diagonal entries of Σ∗,

y∗|X∗,D ∼ N (µ∗,Σ∗ + σ2
nI) , (2.10)

with µ∗ and Σ∗ as defined in Eq. (2.8) and (2.9). For simplicity of notation, we will

w.l.o.g. often consider single predictions only in the remainder of this thesis. The predictive

distribution in this case is

y∗|x∗,D ∼ N (µ∗, σ
2
∗) (2.11)
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with

µ∗ = k⊤
xx∗

(Kxx + σ2
nI)

−1y (2.12)

σ2
∗ = k(x∗,x∗)− k⊤

xx∗

(Kxx + σ2
nI)

−1kxx∗
+ σ2

n , (2.13)

where kxx∗
∈ Rn with [kxx∗

]i = k(xi,x∗).

2.2.1 Properties and Remarks

Gaussian processes belong to the so-called nonparametric methods. This does, of course,

not imply that the model completely lacks parameters. Rather, the term “nonparametric”

means that the hypothesis space cannot be parameterized by a finite set of parameters.

This is clearly not possible for GPs as we cannot give a finite representation for a single

hypothesis, i.e., for a function. Note that for these reasons, the term “hyperparameters”

is typically used for the parameters of the covariance function.

Alternative to the function-space view on Gaussian processes, which was outlined above,

the model can be derived from a different starting point as we now briefly restate (see

also [Rasmussen and Williams, 2006b, Kuss, 2006]). Following the so-called weight-space

view, one can project the inputs x of the linear model f(x) = x⊤w into a high-dimensional

feature space φ(x), then place a Gaussian prior on the weights, and marginalize out the

weights to effectively remove the explicit representation of the functions. This yields

the same regression model as derived above while highlighting that the GP’s covariance

function subsumes both the feature transform as well as the priors on the weights.

For a third way of deriving the GP model, which is similar to the weight-space approach,

consider an artifical neural feedforward network with one hidden layer. If we place Gaussian

prior distributions on the network’s parameters, let the number of hidden units go to

infinity, and simultaneously scale down the prior variances of the output weights, then we

achieve a distribution over output functions, in which each set of function values is jointly

Gaussian distributed, i.e., which is a Gaussian process [MacKay, 2003, Ch. 45].

The relationship between the Gaussian process model and parametric models can be stud-

ied using the so-called equivalent kernel (EK) [Sollich and Williams, 2004]. Here, the GP

mean predictions [see Eq. (2.12)] are expressed as dot products µ(x∗) = h(x∗)
Ty (here for

the 1D case) of the vector of target values y and weight vectors h(x∗). The weight function

h(x∗), aka the equivalent kernel, depends on the query location x∗, on the covariance func-

tion k, and also on the actual distribution and density of points in D. Due to the inversion

of the covariance matrix in Eq. (2.12), the EK is hard to estimate even for the comparably

simple case of the stationary squared exponential kSE . Sollich and Williams [2004] derive
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Figure 2.1: Left: The equivalent kernel (EK) for computing the GP mean prediction µ∗ at
x∗ = 0 using the squared exponential covariance function and equidistantly sampled data. Middle:
Functions f drawn randomly from the prior corresponding to the kernel on the left. Right: Enlarged
section of the middle diagram including noisy samples y drawn from the GP.

an approximation for this case, which we have used to visualize the EK in the left diagram

in Fig. 2.1. The diagram shows the EK computed for the query location x∗ = 0 using

the squared exponential covariance function kSE and an equidistantly sampled D. It can

be seen that the shape of the EK differs considerably from the shape of the covariance

function [i.e., a Gaussian, see Eq. (2.3)], but some properties, like being strongly localized,

remain.

To give an intuition for GP priors over functions in practice, we sampled three functions

using the same covariance function and plotted the results in the middle diagram in Fig. 2.1.

The right diagram depicts an enlarged section including noisy samples from the prior.

2.2.2 Learning the Model from Data

In the GP model, we encode the prior knowledge about the distribution of target functions

in the covariance function and the assumption about the observation noise. Inference of the

posterior distribution for a given data set can then be performed analytically as described

above. Learning a Gaussian process model thus amounts to finding an appropriate kernel

for the problem, i.e., the form and parameterization of the covariance function. This

process is termed model selection. Note that some literature is rather vague on what

“learning a GP model” actually refers to. While most works—including this one—refer

to this as the model selection problem, some others assume given, fixed kernel parameters

and discuss only the analytic posterior inference step (inverting the covariance matrix,

etc.) as “learning”.

The learning objective is to find the model that explains the observed data best. Concretely,

given a parametric covariance function, we seek to find the vector of hyperparameters θ
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Figure 2.2: Two alternative GP models fitted to a 1D data set. The learning procedure that
resulted in the model on the right found a noise rate hyperparameter close to the true value. The
log predictive likelihood of this model is significantly higher than the one for the left model, which
overestimates the noise.

that maximizes the conditional evidence

θ∗ = argmax
θ

p(y|X,θ) . (2.14)

Since the elements of y in D are independent samples from the Gaussian process, p(y|X,θ)

takes the convenient form of a multivariate Gaussian density,

p(y | X,θ) =
[

(2π)
n
2 |Ky|

1
2

]−1
· exp

(

−1

2
(y − µ∗)

⊤K−1
y (y −µ∗)

)

, (2.15)

with Ky = Kxx + σ2
nI. In logarithmic space, we get

log p(y | X,θ) = −1

2
(y − µ∗)

⊤Ky
−1(y − µ∗)−

1

2
log |Ky| −

n

2
log(2π) . (2.16)

In the remainder of the thesis, unless noted otherwise, we learn the GP models by max-

imizing this function w.r.t. the hyperparameters θ using conjugate gradient-based line

searches with random restarts. This procedure is part of the Gaussian processes toolbox

by Rasmussen and Williams [2006a]. Details about how the partial derivatives of the

objective function can be derived are given in Chapter 11 as well as in [Rasmussen and

Williams, 2006b, Ch. A.3].

Figure 2.2 visualizes two GP models fitted to a simulated data set. While the hyperpa-

rameters of both models are at local optima of the marginal data likelihood [Eq. (2.15)],

the right model achieves a significantly higher value.

For an alternative way of performing learning and inference in the Gaussian process model

that does not assume fixed hyperparameters, Neal [1999] places prior distributions on the
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hyperparameters and describes an approximation of the integrals over hyperparameters

based on Markov chain Monte Carlo (MCMC) sampling.

2.3 Related Approaches

Gaussian processes are related to various other machine learning techniques, either be-

cause they aim at solving the same problems or by building on similar foundations. The

history of the idea behind the Gaussian process model dates back to Wiener [1964], Kol-

mogoroff [1941], O’Hagan [1978], and others (see also [Rasmussen and Williams, 2006b,

Sec. 2.8]). In the following, we discuss the most-closely related approaches and describe

their relationship to the GP model. More details about the individual methods can be

found, for example, in [Hastie et al., 2001], [Rasmussen and Williams, 2006b, Sec. 7.5,

Ch. 6], or in [MacKay, 2003]. For a detailed and quantitative comparison of GPs with a

subset of the following methods, we refer to Rasmussen [1996].

Kernel smoothing predicts function values by computing the weighted average of training

targets in the local neighborhood of the query location. The weights defining the size

and “fuzziness” of the neighborhood are given by a kernel function, which is typically

parameterized by the distance in input space. The GP model—although it may appear

similar at first sight—differs from this approach fundamentally since it considers the joint

distribution of the target values, which is (n+1)–dimensional for a single prediction and n

training points. Whereas the GP mean prediction can also be interpreted as a weighted

sum of the target values, there is a notable difference to kernel smoothing in that the

weight vector is not built from the kernel function directly. Rather, it is formed in a

more complicated way [see Eq. (2.8)] involving, e.g., to invert the covariance matrix. As

can be seen from the equivalence kernel of a given GP model, which was discussed above

briefly, this weight vector has interesting properties, such as automatically adapting to the

density of data points in the neighborhood and to the proximity of the query location to

the boundary of the training set.

Linear regression is a parametric approach, which fits a linear function to the whole training

set according to an error measure. If the coefficients (or “weights”) of the linear function

are given a prior distribution rather than being fixed, one obtains the Bayesian linear

model, which is the natural starting point for developing the Gaussian process model from

first principles [Rasmussen and Williams, 2006b, Ch. 2].

Local regression [Cleveland and Devlin, 1988] fits linear (or polynomial) models to the

local neighborhood around the query location as opposed to the whole data set. As for

kernel smoothing, the extent of the neighborhood is defined by a weight function. The
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role of the distance metric used for defining the local neighborhoods corresponds to the

covariance function in the GP model, but not in a direct way, as outlined above for the

kernel smoothing approach. A recent extension of the local regression approach is locally

weighted projection regression [Vijayakumar et al., 2005b], which was specifically designed

for learning in high-dimensional spaces. Note, that kernel smoothing can be seen as a

special case of local regression, in which the local linear/polynomial models are constrained

to be constant functions. Also note that for this reason, some authors do not make the

distinction and subsume both methods under the term kernel smoothing.

Radial basis function (RBF) networks [Orr, 1996] basically take the weighted averaging

approach of kernel smoothing, but place the local kernels (here: “basis functions”) ac-

cording to a separate set of center points, rather than centering them around the training

points in kernel smoothing. The model thus has the number of center points and their

locations as additional parameters. Example 45.4 in [MacKay, 2003] nicely shows that the

(parametric) RBF model converges to a (nonparametric) Gaussian process, if one lets the

number of basis functions per unit length approach infinity while reducing their widths

accordingly.

Smoothing spline regression [Wahba, 1990, Schoenberg, 1964] is an interpolation method

which fits a piecewise polynomial function to the data set by minimizing both function

roughness and interpolation accuracy. Spline smoothing can also be used in a Bayesian

setting [Biller and Fahrmeir, 1997] and, as shown for instance by MacKay [2003, Ch. 45.1],

the posterior mean of the GP model can be interpreted as a spline.

Artificial neural networks (ANNs) [Haykin, 1998] can also be applied for solving non-linear

regression problems. Feedforward networks are directed graphs that pass information

from an input layer of nodes through one or several hidden layers to an output layer.

In general, the value at each node is computed from its predecessors by computing the

weighted sum of their values according to the set of edge weights followed by applying a

non-linear transformation to the result. Standard ways of learning the weights in a given

network have been presented, e.g., by Werbos [1994], Rumelhart and McClelland [1986],

and Riedmiller and Braun [1992]. Putting ANNs in a Bayesian framework, in which the

network’s parameters are not fixed but given prior distributions, Neal [1996] made the

interesting observation that certain ANNs with one hidden layer converge to a GP prior

over functions [Rasmussen and Williams, 2006b, Sec. 7.5] as the number of hidden nodes

approaches infinity.

Kriging [Krige, 1951, Matheron, 1973, Opsomer et al., 1997] is a different expression

for Gaussian process regression used in geostatistics and spatial statistics. The model is

equivalent to Gaussian process regression as formalized in Sec. 2.2.



20 Chapter 2. Basics



Chapter 3

Learning Sampling Models for

Dynamic Bayesian Networks

We present an approach to learning sampling functions for dynamic Bayesian

networks. Our approach can handle continuous as well as discrete state vari-

ables and it is easy to integrate, e.g., into a particle filter. We motivate and

evaluate our approach on the task of online failure detection for mobile robots.

Dynamic Bayesian networks (DBNs) [Murphy, 2002] are widely used to model the dynamic

behavior of artifical and natural systems. In a DBN, the variables of interest are indexed by

time and related to one another using conditional probability distributions (CPDs), which

in general span multiple time frames to describe the dynamics. The result is a (typically

sparse) network of local dependencies for which efficient learning and inference mechanisms

have been developed. A particularly flexible and often-used inference technique is the

application of the so-called particle filters (PFs). They represent the state of the system

by a finite set of weighted samples and perform inference by updating the sample set

iteratively using the DBN structure, the conditional models, and the set of observed (thus

constant) variables.

In this chapter, we present a novel way of improving the generation of state samples in

particle filters. This step has to be performed frequently and it has a major influence on

the efficiency and robustness of the filter. In particular, we consider data-driven sampling,

that is, the generation of state hypotheses at locations that are most promising given recent

sensor measurements. Our contribution is to show how sampling policies can be learned

from past experience—using Gaussian process regression for continuous state variables and
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Figure 3.1: Dynamic Bayesian network for the mobile robot domain.

classification for discrete ones. Given the GP’s ability to also estimate the uncertainty of

its predictions, we can derive a sound way of integrating these informed proposals into the

particle filtering framework. As a result, the estimation process is more robust since the

sampling density is higher in the important parts of the state space while it is also more

efficient because less samples are “wasted” in unlikely regions.

As a running example and test-bed for our approach, we consider the problem of online fail-

ure detection and recovery for a mobile robot. Concretely, we face the task of (a) localizing

an autonomous, wheeled robot relative to a known environment, (b) to detect collisions

with (unseen, movable) obstacles online and (c) to estimate their physical parameters (e.g.,

location and weight) such that they can be dealt with safely. Our system does not require

additional hardware such as inertial sensors or bumper rings, which may be expensive or

otherwise unfavorable in certain domains, e.g., for aerial blimps. The proposed algorithm

has been implemented on a real robot and can be executed online. We discuss results

from several test runs in realistic scenarios in which we compared the achievable detection

rates and pose tracking quality of our system with an optimized standard particle filter

implementation without informed proposals.

In the following, we first formalize the sequential state estimation problem in Sec. 3.1

and describe how to solve it using particle filters. We then introduce the concept of

Gaussian process proposals and focus specifically on the mobile robot localization and

collision detection problem outlined above. In Sec. 3.3, we present experimental results

and discuss related work in Sec. 3.4.

3.1 Sequential State Estimation

One of the fundamental problems in robotics and engineering is to estimate the state of

a system given a sequence of acquired sensor measurements and action commands that

have been executed. In order to perform this task sequentially, i.e., in an iterative way

whenever new information is available, the system is typically modeled using a dynamic

Bayesian network (DBN). Assuming a discretization of time—either by modeling iterations

of equal duration or by taking the finite set of measurement and action events—there is a
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finite set of time-indexed variables that has to be modeled. The DBN factorizes the joint

posterior over these variables to a (typically sparse) network of dependent variables and

their corresponding conditional probability distributions. Here, these ’local models’ can

be limited to a specific time frame or they can span several to model the system’s behavior

over time.

Mobile Robot Localization

In the case of mobile robot localization, for instance, the (dynamic) state of the system is

the 3D pose st = (xt, yt, θt) of the robot relative to its environment. Additional variables

include the sensor measurements z1:t as well as the action commands u0:t−1 that have been

issued—w.l.o.g. assuming time-synchronous state, action, and measurement variables for

ease of notation. A typical DBN for such a system is composed of a prior distribution

over poses p(s0), a transition model p(st+1|st, ut) and an observation model p(zt|st). Fig-

ure 3.1 shows how these CPDs are connected to yield the typical DBN for state estimation

problems. In models defined by such a graph, each variable is independent from all others

given its direct predecessors (see [Murphy, 2002] for a general discussion of graphical mod-

els). Given the modeled independence assumptions, the state posterior can be formulated

recursively as

p(st | z1:t, u0:t−1) =

∫

p(st | st−1, zt, ut−1) p(st−1 | z0:t−1, u0:t−2) dst−1

= ηt · p(zt | st)
︸ ︷︷ ︸

obs. model

·
∫

p(st | st−1, ut−1)
︸ ︷︷ ︸

transition model

p(st−1 | z0:t−1, u0:t−2)
︸ ︷︷ ︸

recursive term

dst−1 ,(3.1)

where ηt is a normalizing factor, which is equal for all st and, thus, has little importance

here. In order to achieve a tractable approximation of Eq. (3.1), one has to make additional

assumptions about the distributions involved. Important classes of such approximations

include

Discrete filters (DF) where the state space is discretized—typically using a regular

grid—which turns the integral in Eq. (3.1) into a sum over possible predecessors,

Kalman filters (KF) for which the distributions over states p(st| . . .) and the observa-

tion model are assumed Gaussian and the transition model is linear, and

Particle filters (PF) which represent the distributions over states by a weighted set of

state hypotheses which are manipulated individually according to the transition and

observation models.



24 Chapter 3. Learning Sampling Models for Dynamic Bayesian Networks

Particle filters are flexible in terms of distributions that can be represented, they are easy

to implement, and they can convert heuristics into provably correct algorithms through

the concept of proposal distributions (see Chapter 5 in [Murphy, 2002]).

3.1.1 Particle Filters for Bayesian Filtering

Particle filters seek to approximate the integral in Eq. (3.1) using Monte Carlo integra-

tion. Concretely, they represent distributions over states p(st| . . .) by sets of weighted

samples Xt = {〈s[i]t , w
[i]
t 〉}ni=1. Starting from a prior distribution X0 ∼ p(s0), the particle

set is updated sequentially by executing the following steps in each iteration:

1. Sampling: The next generation of particles {s[i]t } is obtained from the generation

{s[i]t−1} by sampling from a proposal distribution π.

2. Importance Weighting: Importance weights w
[i]
t are assigned to the individual parti-

cles according to

w
[i]
t =

target

proposal
=
p(s

[i]
1:t | z1:t, u1:t)

π(s
[i]
1:t | z1:t, u1:t)

∝ p(zt | s[i]t )p(s
[i]
t | s

[i]
t−1, ut)

π(st | s[i]1:t−1, z1:t, u1:t)
· w[i]

t−1 (3.2)

The weights account for the fact that the proposal distribution π is in general not

equal to the target distribution of successor states. It can be shown that for all

proposal functions π with p(x) > 0⇒ π(x) > 0 and the weight update (3.2), the PF

algorithm is guaranteed to approximate the correct posterior for n→∞ [Doucet et

al., 2001].

3. Resampling: Particles are drawn with replacement proportional to their importance

weight.

In the special case of π ≡ p(st|st−1, ut), that is, if sampling is performed according to the

transition model, the relationship between Eq. (3.1) and the filtering procedure can be

seen directly. Therefore, the recursive weight update (3.2) simplifies to a multiplication

of all particle weights with the respective observation likelihoods p(zt|s[i]t ). For a formal

derivation of the particle filtering principle, see for example [Thrun et al., 2005] or [Doucet

et al., 2001]. Note that resampling exchanges likelihoods by frequencies without altering the

represented distribution. In the limit of infinitively many and densely-sampled particles,

the representation of a distribution by non-constant importance weights is equivalent to

the one where all weights are equal, but the particle density varies accordingly. Thus, the

purpose of the resampling step is to distribute more particles to the probable areas of the

state space and less to the improbable ones.
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Figure 3.2: DBN for the mobile robot domain extended to include a discrete failure mode ft and
the failure-dependent continuous variables ot.

The robustness and efficiency of particle filters strongly depends on the proposal distri-

bution π that is used to sample the new state hypotheses in the sampling step. If the

proposal distribution differs too much from the true posterior, there is a high risk of fil-

ter divergence. On the other hand, if π is too flat (e.g., uniform in the extreme case)

many particles are drawn in areas of low likelihood and, thus, computational resources are

wasted.

In the following section, we extend the mobile robot DBN to include a discrete failure mode

variable and additional continuous variables for the failure’s parameters. As this increases

the dimensionality of the state space and also adds highly unlikely transitions (failures

occur only rarely), the transition model becomes a sub-optimal choice as proposal distri-

bution. For this reason, we then introduce an informed proposal distribution, which utilizes

information about the failure mode contained in the most recent sensor measurement to

yield better pose estimates.

3.1.2 Modeling Failures using Hybrid DBNs

In realistic environments, there typically exist external influences that can cause drastic

changes to the behavior of a dynamic system. Consider for example a mobile robot colliding

with an undetected obstacle while executing a motion command. Such situations can be

modeled by extending the DBN by a discrete failure mode variable ft and additionally

continuous failure-dependent state variables ot (see Fig. 3.2). We assume the commonly

used constant failure rate model (see [Ng et al., 2005]), in which failure events do not

depend on the other state variables, but rather occur according to an individually specified

prior distribution. Since the observations are independent of the failure state (ft, ot) given

the state st of the robot, the observation model remains p(zt | st). The state transition
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model can be factorized as

p(st, ft, ot | st−1, ft−1, ot−1, ut−1) =

p(ft | ft−1)
︸ ︷︷ ︸

failure event model

· p(ot | ft, st−1, ot−1)
︸ ︷︷ ︸

failure parameter model

· p(st | ot, st−1, ut−1)
︸ ︷︷ ︸

transition model

. (3.3)

The constant failure rate model states that failure events are distributed exponentially

depending on a failure rate parameter λ, i.e.,

p(ft) = 1− e−λ·(t−t̃) , (3.4)

where t̃ denotes the time of the last failure event. For such a model, the mean time

between failures becomes MTBF = 1
λ . For realistic failure rates λ, this model results in

extremely low failure probabilities per filter iteration. Assume, for example, a mean time

of 30 minutes between collisions of a service robot with unseen obstacles. This implies

λ = 1
1 800s = 0.000 5 and with a filter frequency of δt = 0.1 seconds yields a failure

probability of p(ft | ¬ft−1) ≈ 0.000 056 within one iteration. For such a small value, just

one of 20 000 particles would be sampled to a failure mode on average, if the transition

model was used directly as proposal distribution for this variable. Thus, one would either

need an extremely large particle set or would risk that failures remain undetected. This

problem is amplified by the fact that not only the discrete failure mode has to be sampled,

but also the unknown continuous failure parameters. Since in general, there is no prior

knowledge about the parameters of randomly occurring failures, we assume a uniform

distribution

p(ot | ft, xt−1, ot−1) = U[omin,omax](ot) (3.5)

over a certain interval. Note that this model applies only to the case where the system

transitions into a failure state. The evolution of failure parameters within a failure state is

typically governed by a much more peaked distribution similar to the motion model of the

robot. In Sec. 3.3, we describe our model for the evolution of collision parameters based

on rigid body dynamics. This model is able to track collisions sufficiently accurate, if the

initial collision parameters have been estimated well enough. The goal here is to improve

the detection of failure events and to estimate the initial parameters efficiently.

3.2 Gaussian Processes Proposals

To address the problem of low sampling probabilities for important parts of the state space,

Thrun et al. [2001] introduced the risk sensitive particle filter that incorporates a learned

risk function to force the filter into less likely but important states. While this approach
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ensures a reasonable amount of samples in the important failure modes, it cannot adapt to

the specific situation the robot is in when the sampling decision is made. In contrast, we

propose to use learned proposal distributions that provide informed guesses about what

the states with higher posterior probabilities are.

Data-driven Proposal Distributions

In sequential importance sampling [Doucet, 1998], an arbitrary proposal distribution can

be used to sample the relevant areas of the state space as long as (a) all possible states

have a non-zero possibility of being chosen and (b) the importance weights of the particles

are adjusted appropriately. Proposal distributions that depend on the most recent sensor

measurements or on features extracted by separate algorithms are typically denoted as

data-driven proposals or detector-mediated proposals [Khan et al., 2004]. Such proposals

aim at approximating the optimal proposal p(st | st−1, zt, ut−1) which includes the most

current sensor measurement zt. It can be shown [Murphy, 2002] that such a fully informed

proposal minimizes the variance of the importance weights making it the optimal choice.

Weight correction [see Eq. (3.2)] is easy to implement also in the failure detection model,

if one assumes a proposal π that factorizes according to the transition model (3.3). In this

case, the (corrected) weight of a particle i at time t becomes

w
[i]
t =

p(s
[i]
1:t | z1:t)

π(s
[i]
1:t | z1:t)

=
p(zt | s[i]1:t, z1:t−1) p(s

[i]
1:t | z1:t−1)

p(zt | z1:t−1)
︸ ︷︷ ︸

=:1/η

π(s
[i]
1:t | z1:t)

= η · p(zt | s
[i]
t ) p(s

[i]
t | s

[i]
t−1)

π(s
[i]
t | s

[i]
1:t−1, z1:t)

· p(s
[i]
1:t−1 | z1:t−1)

π(s
[i]
1:t−1 | z1:t−1)

︸ ︷︷ ︸

=w
[i]
t−1

= η · w[i]
t−1 · p(zt | s

[i]
t ) · p(x

[i]
t | o

[i]
t , x

[i]
t−1)

π(x
[i]
t | s

[i]
1:t−1, z

[i]
1:t)
·

p(f
[i]
t | f

[i]
t−1)

πf (f
[i]
t | s

[i]
1:t−1, z

[i]
1:t)
· p(o

[i]
t | f

[i]
t , x

[i]
t−1, o

[i]
t−1)

πo(o
[i]
t | s

[i]
1:t−1, z

[i]
1:t)

. (3.6)

Here, we left out the control variables u for the sake of brevity. The normalizing factor η

is constant for all particles i and, thus, can be neglected. πf denotes the proposal for the

failure event and πo the one for the failure parameters. Visually speaking, Eq. (3.6) states,

that after each filter iteration, the particle weights have to be multiplied with the current

observation likelihood p(zt | s[i]t ) and with two correction terms for the two learned proposal

distributions πf and πo. To calculate these correction terms for a specific sample s
[i]
t , we
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follow the importance sampling principle and divide the likelihoods defined in Eq. (3.4)

and (3.5) by the likelihoods according to which the state variables f
[i]
t and o

[i]
t have been

drawn from πf and πo.

In our approach, we propose to learn πf and πo from data to accommodate for the fact that

zt might carry useful information about the current ft and ot despite of their extremely

low a priori likelihoods. Formally, the task is to learn a mapping from a feature vector Ft

extracted from 〈s[i]1:t−1, z
[i]
1:t〉 to the variables ft and ot. In theory, any feature vector Ft as

well as any learned models πf and πo can be used as a proposal as long as the assumptions� πf (ft | Ft) 6= 0 for all f with p(f | s1:t, z1:t−1) 6= 0� πo(ot | ft, Ft) 6= 0 for all o with p(o | s1:t, z1:t−1) 6= 0.

hold, which means that all possible failure states are assigned a non-zero probability of

being chosen. Another precondition for the learned proposals therefore is that a full

predictive distribution for proposed states is available which can be sampled from.

Gaussian process predictions, being normal distributions, naturally meet these require-

ments for proposal distributions: They can be sampled from directly, they supply the

likelihoods of sampled values, they have an infinite support, and they therefore assign

non-zero likelihoods to all possible states.

3.2.1 Learning Collision-Proposals from Data

We place Gaussian process priors on the functions πf and πo that we seek to learn from

data and use the feature vectors Ft (explained in the following) as the corresponding

indices. In principle, we could use all available filter information as the index feature:

Ft = 〈s[i]1:t−1, z
[i]
1:t〉. In practice, however, learning is more efficient, if we extract lower-

dimensional features Ft from 〈s[i]1:t−1, z
[i]
1:t〉 so that there is a high correlation between Ft

and the variables to be predicted, i.e., ft and ot.

In our test scenario, we consider a mobile robot navigating in an office environment that

eventually collides with obstacles, that are not detectable by its sensors directly (e.g., a low

doorstep or a smaller object on the ground). Here, ft denotes the (binary) collision event

variable and ot is a real-valued variable representing the point of impact on the front of the

robot. We found that a suitable feature vector Ft for learning proposals for these hidden

failure states is given by the discrepancy (∆vt,∆vr) between the current motion estimate

in st (velocity and heading) w.r.t. a purely sensor-driven estimate of these quantities from

zt. The sensor-driven estimate of velocity and heading, for instance, can be obtained using

an inertial sensor or a laser scan-matcher. We have used the latter in our experiments.

Intuitively, Ft := (∆vt,∆vr) captures the amount of translational and rotational deviation
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Figure 3.3: Left: The system learns the relationship between failure variables and sensor mea-
surements in simulation. Right: The system implemented on a real robot utilizes this knowledge
to detect collisions with obstacles that remain undetected by its sensors.

of the robots’ belief about its motion state from the measures one. It can be expected that

this feature carries information about whether a collision with an undetected obstacle has

occurred or not.

For gathering training data, we simulated 500 automatically labeled trajectories of a mo-

bile robot colliding with different, randomly placed obstacles using the 3D, high-fidelity

simulator Gazebo [Koenig and Howard, 2004]. The left image in Fig. 3.3 depicts a typi-

cal randomly generated situation during training. Given this training set, we learned the

Gaussian process models for the functions Ft 7→ ft and Ft 7→ ot. Since ft is a binary

variable rather than a real-valued one, the learning and inference mechanisms described

in Sec. 2.2 cannot be applied directly. Rather, such classification problems can be solved

in the GP framework by including for every binary target ti a real-valued latent variable

li, such that

p(ti = 1) =
1

1 + e−li
. (3.7)

This is known as the logistic model, which links class probabilities to real values, see [Neal,

1997]. The latent variables can now be given a Gaussian process prior as in the regression

setting and predictions of class probabilities can be performed by predicting the corre-

sponding latent variables and evaluating Eq. (3.7) (see [Rasmussen and Williams, 2006b,

Ch. 3] for a detailed discussion of Gaussian process classification).

For learning the classification model for ft as well as the regression model for ot, we

used the MCMC-based implementation of Gaussian process regression and classification

of Neal [1999] and employed the squared exponential covariance function kSE (see Chap-

ter 2). Neal’s toolbox implements the fully Bayesian approach, in which the hyperparam-
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(a) Failure classification data set
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(b) Failure parameter data set and regression result
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Figure 3.4: The data sets and learning results for the failure models. Plot (a) shows the collision
event training set, where two feature values are mapped to class instances. Plot (c) shows the the
learned class probabilities πf (Ft) using Gaussian process classification and (b) plots the learned
regression model for the collision parameters visualized by a cut through the 2D regression function
that maps velocity deviations to contact points for a collision.

eters are not fixed but integrated over according to prior distributions assigned to them.

Other implementations, like the Matlab-based one by Rasmussen and Williams [2006b],

achieved comparable results but were harder to integrate into our C/C++-based implemen-

tation of particle filtering for state estimation.

Figure 3.4(a) depicts the gathered data points for the (binary) failure event variable ft. As

can be seen from the diagram, ∆vt is negative for nearly all “collision” data points, which

corresponds to the fact that the robot is decelerated when a collision occurs. The data

points for “no collision” are spread widely and do not separate well from the “collision”

data points due to noisy sensor measurements and imperfect automatic labeling of the

collision events. This makes the classification problem a hard one. Figure 3.4(c) shows
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the learned class probabilities depending on the two velocity differences described above.

It should be stressed, that this classifier is used as a proposal distribution for collisions

in the particle filter rather than as a collision detector directly. It can be seen clearly

from, e.g., Fig. 3.4(a) that the available features are too ambiguous to allow for acceptable

instantaneous classification. Experiments with a real robot (see Sec. 3.3) showed that the

sequential state estimation-based approach, in contrast, yields high detection rates with a

low number of false alarms.

Given a collision event, the continuous collision parameters ot are estimated to simulate

the effects of the failure on the system and to continue the tracking process. Since the task

is not to fully track the pushed obstacle over time, a simple model that abstracts from

the obstacle’s geometry and exact pose has proven sufficient to describe the effects on the

robot. A collision with an unseen obstacle is represented by the obstacle mass m and the

contact point ct on the robot’s front. Therefore, the collision parameters are ot = (m, ct)

in the considered setting. We learn the proposal distribution πo(ot|Ft) for the parameters

ot using the same velocity-based features and simulated training set as described above

and the Gaussian process regression technique. Figure 3.4(b) depicts a cut through the

learned 2D distribution for the collision parameter ct which is the contact point of the

obstacle on the front of the robot. The point of contact is measured in meters from the

center of the robot’s front to the right. It can be seen from the diagram that unexpected

clockwise rotations (∆vr < 0) of the robot are mapped to positive values for the contact

point, which corresponds to a collision on the righthand side of the robot.

3.3 Experimental Results

Our system has been implemented on an ActivMedia Pioneer 3DX robot and tested exten-

sively in an office environment. The right photo in Fig. 3.3 illustrates a typical situation.

Before presenting experimental results, we describe the motion model we implemented for

our localization system. Since this model is not the focus of this work, we give only a brief

overview here.

The most widely used motion model for mobile robots is based on the wheel encoder mea-

surements (see [Thrun et al., 2005]). These, rather than the the actual control commands,

are taken as control input ut−1, which under normal circumstances result in comparably

accurate predictions of the performed movement. Under the influence of failures like col-

lisions or wheel slip, however, the motion of the wheels is not consistent with the robot’s

motion any more. A more appropriate model for such situations, that still is efficient

enough to be evaluated online, is based on rigid body dynamics (see [Plagemann et al.,

2006]). We model the robot as a rigid body in the 2D plane, represented by a set of con-
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(a) Two correctly detected collisions (triangles),
the estimated trajectory (solid line), and the
ground truth (dotted).

(b) Average deviation of the estimated
trajectory from the ground truth in me-
ters for a varying number of particles.

Figure 3.5: Results of our experimental evaluation with a real robot colliding with undetected
obstacles.

stant values and the variable state vector xt = (posx, posy, posθ, velt, velr) which includes

the translational velocity velt and the rotational velocity velr. In each filter iteration,

the wheel thrusts are calculated from the actual velocity command that was sent to the

motors. From this, the next state vector is computed by numerical simulation using the

physical relationships between forces, acceleration, and speed. Due to space limitations,

we refer to Witkin and Baraff [1997] for details about rigid body physics. With this model,

collisions with another rigid object at a given point of contact can be simulated using the

same type of physical abstraction, namely computing the impulse, the resulting forces,

and ultimately the influence on the robot’s state vector. At the same time, this model

describes how the point of contact between the robot and the obstacle changes over time

and therefore defines the transition model for failure parameters of Eq. (3.3). From our

experience, this physical model achieves the best balance between accuracy and efficiency.

Simpler models fail to handle important test cases while more complex models have too

many free parameters to be evaluated in real time.

Quantitative Evaluation of Failure Detection and Tracking Performance

To evaluate the usefulness of our approach quantitatively, we compared it to a particle filter

that implements the same process model with the standard uninformed proposals described

in Sec. 3.1.2. The parameters of the standard filter were optimized for best tracking
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Figure 3.6: Detection results with the optimized standard particle filter (STD-PF) and our ap-
proach that uses Gaussian process proposals (GP-PF).

performance and failure detection rates to ensure comparability. We recorded data by

manually steering the robot through the environment and arranged for two collisions, one

with milk cartons and the other one with a case of lemonade bottles. Both obstacles were

placed at arbitrary positions and the obstacles’ height were too low for the laser sensor to

detect them. Figure 3.5(a) depicts a typical test run where the system successfully tracked

the pose of the robot and detected the two collisions. We tested our improved particle filter

with Gaussian process proposals on the recorded data set and term this approach GP-PF

in the following. As a benchmark, also the standard particle filter (Std PF) was evaluated

for different parameter settings. Each filter was executed 50 times for each parameter

setting.

Figure 3.6 gives the failure detection performance of the different filters. The detection

rate is defined as the number of correctly identified failures relative to the full number.

The false positives rate is the amount of false alarms relative to the number of detections.

The ground truth collision events were manually entered and a collision was counted as

correctly detected, when the marginal failure likelihood exceeded a threshold Θ after a

maximum of six filter iterations (0.6 seconds) after the true failure event. The threshold Θ

was optimized independently for each filter to ensure unbiased comparison.

The diagram in Fig. 3.5(b) gives the average deviation of the tracked poses of the robot

compared to the ground truth trajectory. The ground truth trajectory was computed using

a scan matcher. The results visualized in this diagram show that our system stays around

ten centimeters closer to the true trajectory and produces less variance in these estimates
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Figure 3.7: Measurements and filter estimates during a typical collision event. Between iteration
90 and 95, the robot hits an undetected obstacle.

than the standard approach. This is mainly due to the fact that the failure parameter

(here, the point of contact with the obstacle) is estimated more accurately. To give an

impression about the accuracy with which the system estimates the point of contact and

the path of the robot, one failure event is depicted in detail in the diagram in Fig. 3.7. It

can be seen, that the estimated failure likelihood increases shortly after the labeled failure

event and that the heading angle of the robot is estimated correctly.

The detection rates as well as the tracking results show that learned Gaussian process

proposals can indeed increase the reliability and efficiency of online state estimation ap-

proaches. The time requirements for the improved particle filter are around 10% to 15%

higher than for the standard implementation without Gaussian process proposals. Nev-

ertheless, the implemented system with 200 particles is able to process one minute of

recorded data in less than 23 seconds on a PC with a 2800 MHz CPU.

3.4 Related Work

The term ”fault detection” is commonly referred to as the detection of an abnormal con-

dition that may prevent a functional unit from performing a required function [Leveson,

1995]. Most works in the fault detection and isolation literature deal with internal faults

such as defects in hardware or software. Model-based diagnosis has been approached

from within the AI community using symbolic reasoning with a focus on large systems

with many interacting components and from the control theory community concentrating

on fewer components with complex dynamics and higher noise levels [Krysander, 2003].

Krysander proposed a hybrid model consisting of discrete fault modes that switch between

differential equations to describe system behavior. The diagnosis system is designed for
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large systems with low noise levels, where instantaneous statistical tests are sufficient to

identify a faulty component.

The close coupling between a mobile system and its environment makes it hard to de-

tect abnormal behavior only using instantaneous statistical tests without tracking possible

failure modes over time [Dearden and Clancy, 2002]. For this reason, probabilistic state

tracking techniques have been applied to this problem. Particle filters represent the be-

lief about the state of the system by a set of state samples [Thrun et al., 2005]. In

particle filter based approaches to fault diagnosis, the system is typically modeled by a

non-linear Markov jump process [Driessen and Boers, 2004] or a dynamic mixture of linear

processes [de Freitas et al., 2003]. The look-ahead particle filter introduced in the latter

work also approximates the optimal proposal distribution by considering the most recent

sensor measurements, but, in contrast to our work, focuses on the case of discrete failure

modes without continuous failure parameters. Benazera et al. [2004] combine consistency-

based approaches, i.e., the Livingstone system, with particle filter based state estimation

techniques. Verma et al. [2003] introduce the variable resolution particle filter for failure

detection. Their approach is to build an abstraction hierarchy of system models. The

models of consideration build a partition of the complete state space and the hierarchy is

defined in terms of behavioral similarity. A different kind of model abstraction hierarchy

based on explicit model assumptions was developed in [Plagemann et al., 2006] to detect

failures online.

Tresp [2000] deal with learning the conditional probability distributions (CPDs) in

Bayesian networks using Gaussian process mixtures. They do not deal with issues con-

cerning dynamic systems, nonparametric state estimation, and the role of proposal distri-

butions. Approaches that deal with the time efficiency of particle filters include [Kwok et

al., 2002] in which real-time constraints are considered for single system models or tech-

niques in which a Rao-Blackwellized particle filter is used to coordinate multiple models

for tracking moving objects [Kwok and Fox, 2004].

3.5 Conclusion

In this chapter, we showed that efficient proposal distributions for particle filters can be

learned using Gaussian process models and that both discrete as well as continuous state

variables can be treated in a consistent manner. We applied the approach to the problem

of online failure detection for mobile robots and presented a system for detecting unforseen

collisions. Experiments with a real robot demonstrated, that the developed system is able

to track the robot’s state more reliably through collision events than an optimized version

of the standard particle filter with uninformed proposals. Our system does not require any
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additional hardware and can be trained conveniently using a simulator.

Furthermore, the approach was presented in a generic way, describing how to learn sam-

pling functions for variables in dynamic Bayesian networks. It is expected, that the general

approach can be beneficial also in other applications involving sampling-based estimation.



Chapter 4

Body Scheme Learning for

Manipulation

We present an approach to learning the body scheme of a robotic manipula-

tor arm from scratch using self-observations with a single monocular camera.

We introduce a flexible model based on Bayesian networks that allows to si-

multaneously find the robot’s kinematic structure and to learn the underlying

conditional density functions. Here, Gaussian process regression is used for

learning the local kinematic transformations from data.

Kinematic models are widely used in practice, especially in the context of robotic manip-

ulation [Craig, 1989, Choset et al., 2005]. These models are typically derived analytically

by an engineer [Rosales and Gan, 2004] and rely heavily on prior knowledge about the

robot’s geometry and kinematic parameters. As robotic systems become more complex

and versatile or are even delivered in a completely reconfigurable way, there is a grow-

ing demand for techniques allowing a robot to automatically learn body schemes with no

or only minimal human intervention. Clearly, such a capability would not only facilitate

the deployment and calibration of new robotic systems but also allow for autonomous

re-adaptation when the body scheme changes, e.g., due to deformations of robot parts or

due to material fatigue. Additionally, to make proper use of tools, a robot should be able

to incorporate the tool into its own body scheme and to adapt the gained knowledge in

situations in which the tool is grabbed differently. Finally, components of the robot might

get exchanged or replaced by newer parts such that the overall system model no longer

complies with original engineering.
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Figure 4.1: Left: Our 6-DOF robotic manipulator arm learns and monitors its own body scheme
using an external monocular camera and visual markers. Right: A similar, simulated 7-DOF-
manipulator consisting of 10 body parts..

Neuro-physiological evidence indicates that humans as well as higher primates learn and

adapt their internal models continuously and autonomously using self-perception [Meltzoff

and Moore, 1997]. Brain scan studies of monkeys that have been trained to use tools re-

vealed that the tool itself even gets integrated into their body schemes over time [Maravita

and Iriki, 2004]. Mirror neurons, as found in brain area F5, map proprioceptive sensations

to tactile and visual ones and thereby seem to serve as a neurological representation of the

body scheme [Holmes and Spence, 2004]. Moreover, they seem to translate external visual

stimuli, for example from a demonstrator, into proprioceptive ones, and thereby play an

important role in imitation and imitation learning.

In this chapter, we investigate how to equip robots with the ability to learn and adapt their

own body schemes and kinematic models using exploratory actions and self-perception

only. Figure 4.1 shows the experimental setups used for developing our approach. The left

image depicts the real demonstrator system; the right image shows a visualization of the

simulated counter-part. We propose to learn a Bayesian network for the robot’s kinematic

structure including the forward and inverse models relating action commands and body

pose. More precisely, we start with a fully connected network containing all perceivable

body parts and available action signals, perform random “motor babbling,” and iteratively

reduce the network complexity by analyzing the perceived body motion. At the same time,

we learn Gaussian process regression models for all individual dependencies in the network,

which can later be used to predict the body pose when no perception is available or to

allow for gradient-based posture control.
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Our approach addresses all of the following practical problems that frequently arise in

robotic manipulation tasks in a single framework:� Prediction: If both the structure and the conditional probability distributions

(CPDs) of the Bayesian network are known, the robot should be able to predict

the expected resulting body configuration for a given action command.� Control: Conversely, given a target body pose, the robot should be able to generate

appropriate action commands that will lead to this pose.� Model testing: Given both a prediction and an observation of the current body

pose, the robot should be able to estimate the accuracy of its own pose predictions.

Model accuracy can, for example, be defined in terms of the prediction error in scene

coordinates or by considering the data likelihood.� Learning: Given a sequence of action signals and the corresponding body postures,

the Bayesian network and its parameters should be learned from the data.� Discovering the network structure: When the structure of the Bayesian network

is unknown, the robot should be able to build it from the available local models which

explain the observed data best.� Failure detection and model adaptation: When the robot’s physiology changes,

e.g., when a joint gets blocked or is deformed, or a visual marker is changed, this

should be detected efficiently so that only the affected local parts of the Bayesian

network need to be replaced.

We will now introduce our Bayesian framework for representing body schemes, then discuss

failure awareness and life-long adaptation in Sec. 4.2, and present experimental results

obtained with real and simulated manipulator arms, which demonstrate that our approach

is able to quickly learn compact and accurate models and to robustly deal with noisy

observations. We finish the chapter with a discussion of related work and conclusions.

4.1 A Bayesian Framework for Kinematic Chains

A robotic body scheme describes the relationship between available action signals

〈a1, . . . , am〉, self-observations 〈Y1, . . . ,Yn〉, and the configurations of the robot’s body

parts 〈X1, . . . ,Xn〉. In our concrete scenario, in which we consider the body scheme of a

robotic manipulator arm in conjunction with a stationary, monocular camera, the action

signals ai ∈ R are real-valued variables corresponding to the joint angles. Whereas the

Xi ∈ R
6 encode the 6-dimensional poses (3D Cartesian position and 3D orientation) of

the body parts w.r.t. a reference coordinate frame, the Yi ∈ R
6 are observations of the



40 Chapter 4. Body Scheme Learning for Manipulation

body parts—generally noisy and potentially missing. Throughout this chapter, we use

capital, bold letters to denote the pose variables to highlight that these also uniquely de-

fine homogeneous transformation matrices, which can be concatenated and inverted. Note

that we do not assume direct feedback/proprioception telling the robot how well joint i

has approached the requested target angle ai. Formally, we seek to learn the probability

distribution

p(X1, . . . ,Xn,Y1, . . . ,Yn | a1, . . . , am) , (4.1)

which in this form is intractable for all but the simplest scenarios. It is therefore typically

assumed that each observation variable Yi is independent from all other variables given

the true configuration Xi of the corresponding body part and that they can thus be fully

characterized by an observation model p(Yi | Xi). Furthermore, if the kinematic structure

of the robot was known, a large number of pair-wise independencies between body parts

and action signals could be assumed, which in turn would lead to the much simpler,

factorized model

p(X1, . . . ,Xn | a1, . . . , am) =
∏

i

p(Xi | parents(Xi)) . (4.2)

Here, parents(Xi) comprises all body parts and action variables that directly influence

Xi. Note, that the actions are given and, thus, do not depend on other variables in

this model. We now make the factorized structure of the problem explicit by introducing

(hidden) transformation variables ∆i→j := X−1
i Xj for all pairs 〈Xi,Xj〉 of body parts. We

represent the 6D pose vectors X as their equivalent homogeneous transformation matrices,

which means that ∆i→j reflects the (deterministic) relative transformation between Xi and

Xj . Note that various parameterizations of such transformation matrices are possible (e.g.,

by means of the Euler angles, quaternions, or over-parameterized as the full 12D matrices)

and that we thus assume a d-dimensional parameterization of ∆i→j.

Denoting with Zi→j := Y−1
i Yj the transformation relating the observations Yi and Yj

that correspond to Xi and Xj , we define as a local model the subgraph of our network

that defines the relationship between any two body parts Xi and Xj and their dependent

variables, if all other body parts are ignored. The right diagram in Fig. 4.2 shows a

prototypical local model. Here, we denote with Ai→j the set of action variables that have

a direct influence on ∆i→j. Any set of n − 1 local models which forms a spanning tree

over all n body parts defines a model for the whole kinematic structure.

In the following, we explain (a) how to learn local models from data and (b) how to find

the best spanning tree built from these local models that explains the whole robot. We
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Figure 4.2: Left: Example network model linking action signals a1 and a2 to body part locations
X1, X2, and X3 using local models (green circles). The black arrows visualize the current best
minimal spanning tree found during the search for the most compact model. Right: Local model
for two body parts Xi and Xj as well as their dependent variables. Ai→j denotes the set of
independent action variables that cause a local transformation ∆i→j . Yi and Yj are the observed
part locations, and Zi→j is their relative geometric transformation.

consider the single best solution only and do not perform model averaging over possible

alternative structures. Note that in theory, it would be straight-forward to keep multiple

structure hypotheses for prediction and to average over them. Control under structure

uncertainty, however, is a slightly more difficult problem. One would have to consider all

possible structures and assess the individual risks and gains for alternative actions. Then,

the one action sequence would be selected that maximizes the overall gain while keeping all

possible risks low [Stachniss et al., 2005]. In practice, we found that considering only the

most-likely structure is sufficient for the relevant tasks. Our approach is conservative in

this respect since it requires a certain minimal accuracy from all parts of the body scheme

before the model is considered complete.

4.1.1 Local Models

The local kinematic models are the central concept in our body scheme framework. A local

model M (see the right diagram in Fig. 4.2) describes the geometric relationship between

two body parts i and j given a set of action signals Ai→j. We propose to learn this rela-

tionship from data samples acquired while performing random actions and observing their

effects. As the learning framework for solving this supervised regression problem, we apply

Gaussian processes for regression as described in Sec. 2.2. On the real robotic platform

used in our experiments, the action ai correspond to the target angle requested from joint

i. The observations Yi of part locations Xi are obtained by tracking visual markers in 3D

space including their 3D orientation [Fiala, 2004] (see the left image in Fig. 4.1). Note that

the Yi’s are inherently noisy and that missing observations are common—for example in

the case of (self-)occlusion.
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Formally, the task is to learn the local transformations ∆i→j, each linking two body

parts Xi and Xj. Considering the right diagram in Fig. 4.2, a straight-forward approach

would be to infer the true poses Xi and Xj from the noisy observations Yi and Yj, for

instance assuming Gaussian white noise on the observations, Yi ∼ N (Xi, σ
2
sensor ·Id). With

Id we denote the d-dimensional identity matrix and remind that d denotes the chosen

dimensionality of the parameterization of tranformation matrices. In other terms, one

would be following the full Bayesian pathway Yi ← Xi → ∆i→j → Xj → Yj to reason

about ∆i→j.

However, since the absolute positions Xi are irrelevant for describing the relative trans-

formations, we take a slightly different approach by concentrating on the transformations

Zi→j between observations Yi and Yj. We model Zi→j ∼ N (∆i→j, σ
2
sensor-rel · Id), and

thus follow the shorter path {Yi,Yj} ← Zi→j ← ∆i→j, which does not include the Xi

explicitely. The problem of learning a single local model now has the form of the noisy

regression problem as defined in Eq. (2.1), that is, learning the function

fM : R
|A

i→j
| → R

d,

Ai→j 7→ ∆i→j (4.3)

from noisy observations Zi→j. For simplicity, we consider over-parameterized transforma-

tion matrices in the following with d = 12 independent components and learn the functional

mapping for each component separately. Due to this simplification, we cannot guarantee

that all predictions correspond to valid, homogeneous transformation matrices. In prac-

tice, however, invalid transformations occur only rarely and they lie close to similar, valid

transformations, such that a normalization step (orthonormalizing the rotation part using

singular value decomposition) resolves the problem. In the future, we might consider more

efficient parameterizations that come closer to the actual 6-DOF of the transformations.

For solving the regression problem (4.3), we place individual Gaussian process priors

(see Chapter 2) on the 12 variables of the transformation functions fM for all local mod-

els M and choose the squared exponential covariance function [see Eq. (2.3)] to param-

eterize the process. Figure 4.3 shows the x, y, and z components of two different local

models learned from real data using the GP model. In the situation shown in the left

diagram, the action variable (x-axis) physically corresponds to the transformation being

measured (y-axis). Thus, the data set is self-consistent and accurate functions with low

noise levels can be learned. The higher noise level for the z-component is due to larger

measurement error in this direction (i.e. the camera’s line of vision). In the situation

depicted on the right, a local model has been learned for variables that do not have a

direct physical relationship. As a result, the model shows high noise levels and it does not
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Figure 4.3: Left: Example of an accurate local model learned for two body parts and an action
variable. Note the low predictive variance for the x- and y components as well as the higher noise
in the z dimension, which is due to higher measurement uncertainty in this direction. Right: Less
accurate model learned for the same body parts but a different action variable. Such a local model
is less likely to be part of the Bayesian network describing the full kinematic chain of the robot
since, on average, its predictions are less accurate.

explain the data well. Such a local model is likely to be discarded during the search for

the full body model, which is described in the following.

4.1.2 Learning a Factorized Full Body Model

We seek to find a factorized model for the whole kinematic structure [see Eq. (4.2)] that

explains the observed data well and that is not overly complex—such that it can be learned

and evaluated online. To limit complexity, we first discard all local models that are overly

inconsistent with the observed data. We define a local model M to be validM(D) given

a set of observations, if and only if its prediction error is below some threshold θ, i.e.,

ǫpred(D) < θ. Our experiments revealed that a good value for θ is 3σ, where σ is the

standard deviation of the sensor model. The prediction error ǫpred(D|M) is defined as

ǫpred(D | M) :=
1

|D|
∑

(Zi→j ,Ai→j)∈D

ǫpred(Zi→j | Ai→j,M) (4.4)

with

ǫpred(Zi→j | Ai→j,M) :=
1

d

√
∑

z∈Zi→j

(z − µ∗z)2 . (4.5)

Here, µ∗z is the GP mean prediction of component z of transformation µ∗z. Denoting with

C(M) ∈ N the dimensionality of model M, that is, the number |A
i→j
| of action signals
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that the model depends on, we define a model quality measure q(D|M),

log q(D | M) = log[1/ǫpred(D | M)]
︸ ︷︷ ︸

accuracy

−C(M) log 1/θ
︸ ︷︷ ︸

complexity

(4.6)

which is proportional to both the model accuracy and to a penalty term for model com-

plexity. Note that quality measures such as the Bayesian information criterion (BIC) are

not applicable here directly since GP regression is a nonparametric method and, thus,

there is no obvious number of parameters for representing the data sets. Note also that

the marginal data likelihood [see Eq. (2.15)], which is used to learn the parameters of the

covariance function, might serve as an alternative model quality measure. However, since

q(D|M) includes the model dimensionality explicitly and since this makes it easy to order

the search for local models by this criterion, we have used this measure in our experiments.

Finding the Network Topology

If no prior knowledge about the robot’s body structure exists, we initialize a fully con-

nected network model containing a total of
∑m

k=0

(n
2

)(m
k

)
local models (linking n actions

to m transformations). Given a set of self observations, the robot can first eliminate those

local models that are highly inconsistent with the data by evaluating validM(D) as de-

scribed above. The remaining set of valid models is typically still large [e.g., see Fig. 4.4].

Certain ambiguities will, for instance, remain even after infinitely many training sam-

ples. If, for example, pM1(Z1→2 | a1) has been determined to be a valid local model,

then pM2(Z1→2 | a1, a2) will also be. Although these alternative models might not be

distinguishable regarding prediction accuracy for Z1→2, they differ significantly in their

complexity and therefore in their model quality q(D | M).

To resolve such locally ambiguous situations and to also find the best topology on a global

level, we seek to select the minimal subset M ⊂ Mvalid from the superset of all valid

local models Mvalid = {M1, . . .} that covers all body part variables and simultaneously

maximizes the overall model fit q(D | M) :=
∏

M∈M
q(D | M). M can be found efficiently

by computing the minimal spanning tree of Mvalid taking the model quality measure of the

individual local models as the cost function. For our purposes, the spanning tree needs to

cover all body parts but not necessarily all action variables, since some of them might not

have an influence on the robot.

To connect all n body poses in the Bayesian network, exactly (n−1) local models need to be

selected. This yields #structures =
(
#local models

n−1

)
possible network structures to be considered.

In the typical case, where the robot is composed of 1-DOF joints (arbitrarily connected),

this number reduces to the order of O(n3). Regarding the scalability to higher degrees of
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Figure 4.4: In an early learning phase, the robot knows only little about its body structure and,
thus, all possible local models need to be considered in parallel (gray arrows). Using the subset of
valid local models, a minimal spanning tree can be constructed to form a sparse Bayesian network
(dark black arrows). This can subsequently be used as a body scheme for prediction and control.

freedom and longer kinematic chains, the growth of the search space is of less practical

importance than other factors like the observability of local transformations (from a given

camera view point). In practice, straight-forward search heuristics allow us to strongly

focus the search on the relevant parts of the structure space, further reducing this number.

In our experiments, for instance, we searched by processing the lower dimensional models

first. Recall that the quality measure q(D | M) for a local model is composed of the

(data-dependent) prediction accuracy and a (data-independent) complexity penalty. If we

consider two valid local models, i.e., with ǫpred(D | M1|2) < θ, then by the definition of

q(D | M), the quality of a model with lower complexity is always higher compared to a

local model with higher complexity for any D, i.e.,

C(M1) < C(M2)⇐⇒ ∀D : q(D | M1) > q(D | M2) . (4.7)

This is due to the fact that C(M) contains the error threshold θ and that this is also the

upper bound of all prediction errors ǫpred [see Eq. (4.5)]—all models above this threshold

are invalid and thus discarded. Due to (4.7), it is sufficient to evaluate only the first k

complexity layers of local models in Mvalid until a minimal spanning tree is found for the

first time. This spanning tree then corresponds to the global maximum of overall model

quality.

4.1.3 Prediction and Control

Having discussed the learning of local models and the selection of the network structure,

we now show how the resulting model can be used to predict the configuration of the robot

for a given action signal (forward modeling) and how to select actions to achieve a given

configuration (inverse modeling).
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The kinematic forward model can be constructed directly from the local models contained

in M, since these form a tree over all body part variables Xi. We can write

p(X1, . . . ,Xn | a1, . . . , am) =
∏

i

p(Xi | parents(Xi))

= p(Xroot)
∏

Mi→j∈M

pMi→j
(∆i→j | Ai→j)

= p(Xroot)
∏

Mi→j∈M

pMi→j
(X−1

i Xj | Ai→j) , (4.8)

where Xroot is the position of the robot’s trunk, which serves as the reference frame for

all other body parts. We denoted with Mi→j the local model of M which describes

the transformation between Xi and Xj . From p(X1, . . . ,Xn|a1, . . . , am) in the factorized

form, we can now approximate the maximum likelihood (ML) estimate of the resulting

body posture given an action signal by concatenating the geometric transformations of

the individual geometric transformations. See [Ware and Lad, 2003] for how products of

Gaussians can be approximated by a single Gaussian.

Although the inverse kinematic model can in principle be derived by applying Bayes’ rule,

p(a1, . . . , am | X1, . . . ,Xn) =
p(a1, . . . , am)

p(X1, . . . ,Xn)
p(X1, . . . ,Xn | a1, . . . , am)

it is difficult in practice to determine the maximum likelihood (ML) solution for the action

signal a1, . . . , am. This is due to the fact that the goal configuration is typically not fully

specified for all body parts, but rather for the root part and the end-effector only. Thus, the

Bayesian network is constrained at both “ends” only, which results in a high-dimensional

optimization problem.

For this reason, we resort to the following well-known iterative approach, which applies

small changes to the current action signal such that the body posture X1, . . . ,Xn ap-

proaches the target configuration. Since all individual functions fMi
are continuous, and

so is the ML posture estimate f of the forward kinematic model, we can compute the

Jacobian ∇f(a) of the forward model as

∇f(a) =

[
∂f(a)

∂a1
, . . . ,

∂f(a)

∂am

]T

. (4.9)

Given ∇f(a), it is straight-forward to implement a gradient descent-based algorithm that

continuously minimizes the distance function and, thus, controls the manipulator towards

the target configuration. While such a “greedy” controller may get trapped in local min-

ima of the distance function and fails to plan around obstacles in general, it nevertheless
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Figure 4.5: Left: After a different tool is placed in the robot’s end-effector, the model predictions
do not fit the current observations anymore. Right: The current body scheme linking action signals
ai and body parts Xj using local models ∆j→k. Here, a mismatch between the internal model and
recent self-observation has been detected at ∆6→7.

solves many important control tasks and it builds the basis for higher-level path-planning

algorithms, such as probabilistic road-maps.

4.2 Failure Awareness and Life-Long Adaptation

Until now, we have assumed that the robot’s physiology remains unchanged during its

whole life-time. It is clear, however, that in real-world applications, the robot will change

in the course of time. This requires that the robot revises parts of its experience over time,

allowing it to discriminate between earlier and more recent observations. We would like

the robot to detect changes in its physiology by testing the validity of its local models at

different points in time and at different temporal scales. It might even be useful for the

robot to maintain multiple body schemes at different time scales. Consider, for example, a

robot that uses an accurate pre-programmed model over a long period of time, but which

is also able to create and use a new models that takes over as soon as the body structure

of the robot changes (which could be as little as the displacement of one visual marker).

Such a situation is depicted in Fig. 4.5 and Fig. 4.6. In this experiment, we changed the

end-effector body part without notifying the system. The task then was, to automatically

detect the change and to learn a replacement for the non-fitting local model.

For dealing with model changes over time, we consider temporal local models MT that

describe the geometric relationship pT
M(Zi→j | Ai→j, T ) between two observed body parts

Yi and Yj given a subset of the action signal Ai→j ⊂ {a1, . . . , an} and a particular time

interval T . However, the size of the learning problem now also grows exponentially in

time yielding the immense upper bound of
∑m

k=0

(
n
2

)(
m
k

)
2|T | local models to be considered.

As it would be practically infeasible to evaluate all of these local models even for small

periods of time, three additional assumptions can be made such that an efficient algorithm
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Figure 4.6: Continued experiment from Fig. 4.5. The robot samples a local model as replacement
for the mismatching component ∆6→7. Left: The first newly sampled model (∆gp

6→7) has high
uncertainty, because of the missing dependency on action a6. Right: The second sampled model

(∆gp′

6→7) is a more suitable replacement for the mismatching component.

for online application can be implemented:

1. Changes in body physiology are relatively rare events.

2. Changes in physiology happen incrementally.

3. Whatever local models were useful in the past, it is likely that similar—or even the

same—local models will be useful in the future.

Due to Assumption 1, we do not have to re-learn the local models continuously and re-

optimize the network, but rather it is sufficient to monitor the prediction accuracies of the

models until one of them is not evaluated as valid any more. In this case, Assumption 2

states that the network cannot change completely at a given time step, but that we can

recover the new structure by exchanging non-valid local models by re-learned ones indi-

vidually. Furthermore, according to Assumption 3, it is reasonable to begin the search for

new models with those that are similar to previously useful models, i.e., to keep a history

of successful local models and to start searching within this history before learning new

models from scratch.
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These rules were incorporated into an integrated system, that is able to learn a body

scheme from scratch and to exchange local models at a later stage, whenever a misfit

is detected. For rating and ordering alternative local models, we consider the structural

proximity C(M2 | M1) of two local models which we define as the ratio of shared nodes

in the Bayesian network. This way, models that depend on a similar set of variables

are given preference in the search. We now present an experimental evaluation of the

integrated system in simulation and on two real robotic manipulators.

4.3 Experimental Results

We tested our approach in a series of experiments both on a real robot and in simulation.

The goal of our experiments was to verify that

1. physiological changes are detected confidently (blocked joints / deformations),

2. the body scheme is updated automatically without human intervention, and

3. the resulting body scheme can be used for accurate prediction and control.

The two real robots used to carry out the experiments were equipped with a 2-DOF and

with a 6-DOF manipulator, respectively, composed of Schunk PowerCube modules (see

the left picture in Fig. 4.1). With nominal noise values of (σjoints = 0.02◦), the reported

joint positions of the encoders were considered to be sufficiently accurate to compute the

ground truth positions of the body parts from the known geometrical properties of the

robot. Visual perception was implemented using a Sony DFW-SX900 FireWire camera

at a resolution of 1280x960 pixels. Seven black-and-white markers were attached to the

robot’s joints and the ARToolkit vision module [Fiala, 2004] was used to continuously

estimate their 6D poses. The standard deviation of the camera noise was measured to

σmarkers = 44 mm in 3D space, which is acceptable considering that the camera was

located two meters apart from the robot. The prediction errors and errorbars reported in

the following were estimated on an independent test set of |Dtesting| = 15 data samples.

Evaluation of Model Accuracy

To quantitatively evaluate the accuracy of the kinematic models learned from scratch as

well as the convergence behavior of our learning approach, we generated random action

sequences and analyzed the intermediate models using the 2-DOF robot of which the

kinematic model is perfectly known. Figure 4.7 gives the absolute errors of prediction and

control after certain numbers of observations have been processed. For a reference, we

also give the average observation noise, i.e. the absolute localization errors of the visual

markers. As can be seen from the diagram, the body scheme converges robustly within
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Figure 4.7: Prediction and control errors for a kinematic model that is learned from scratch.
Already after 7 samples, the average prediction error is lower than the average localization error of
the visual markers.

the first 10 observations. After about 15 training samples, the accuracy of the predicted

body part positions becomes even higher than the accuracy of the direct observations.

The latter is a remarkable result as it means that, although all local models are learned

from noisy observations, the system is able to “blindly” estimate its configuration more

accurately than immediate perception. The figure also gives the accuracy of the gradient-

based control algorithm. Here, we used an additional marker for defining a target location

for the robot’s end effector. We learned the full body scheme model from scratch as in

the previous experiment and used the gradient-based control algorithm to bring the end

effector to the desired target location. The average positioning error is in the order of the

perception noise (approx. 50 mm, see Fig. 4.7), which is slightly higher than the prediction

error alone.

Scenario 1: Blocked Joint

In a second experiment we used the 6-DOF robot (see the left picture in Fig. 4.1) to

evaluated how well the proposed system can detect a stuck joint and repair its model

accordingly. To this aim, we initialized the body scheme with an accurate, manually cali-

brated model. Upon detection of a model-mismatch, new local models were trained from

|Dtraining| = 30 consecutive training samples recorded after the model was instantiated. In

order for a local model to be valid, its translational and rotational error on the test set

was required to be below a threshold of θtrans = 3σtrans = 150 mm and θrot = 3σrot = 45◦,

with σtrans and σrot the standard deviations of the translational and rotational observation

noise, respectively. New local models were only sampled when no valid spanning tree could
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Figure 4.8: Left: At t = 100, a joint gets blocked, which causes the initial local model
pengineered(Z6→7 | a4) to produce substantially larger prediction errors. At t = 126, the robot
samples a new local model plearned(∆6→7) as replacement. Right: The absolute prediction error
of the combined kinematic model p(Z1→7 | a1, . . . , a4) of our 6-DOF manipulator. This model
is composed of 6 individual local models of which one is replaced by a newly learned model at
t = 126. As can be seen from the plot, the prediction accuracy recovers quickly after each of the
three external events.

be constructed for |Dtesting| consecutive time steps, as this is the time it takes to replace

most or all data samples of the test set.

We generated a large sequence of random motor commands 〈a1, . . . , am〉. Before accepting

a pose, we checked that the configuration would not cause any (self-)collisions and that

the markers of interest would potentially be visible on the camera image. This sequence

was sent to the robot and after each motion command, the observed marker positions

〈Y1, . . . ,Yn〉 were recorded. We allowed for arbitrary 3D motion (just constrained by the

geometry of the manipulator) and thus do not assume full visibility of the markers. In the

rare case of an anticipated or actual (self-)collision during execution, the robot stopped

and the sample was rejected. Analysis of the recorded data revealed that, on average, the

individual markers were visible only in 86.8% of the time with the initial body layout.

In a second run, we blocked the robot’s end-effector joint a4, so that it could not move,

and again recorded a log-file. An automated test procedure was then used to evaluate the

performance and robustness of our approach. For each of 20 recorded runs, a new data

set was sampled from the log-files, consisting of 4 blocks with N = 100 data samples each.

The first and the third block were sampled from the initial body shape, while the second

and the fourth block were sampled from the log-file where the joint got blocked.

The left diagram in Fig. 4.8 shows the absolute errors of the local models predicting the

end-effector pose. As expected, the prediction error of the engineered local model increases

significantly after the end-effector joint gets blocked at t = 100. After a few samples, the

robot detects a mismatch in its internal model and starts to learn a new dynamic model
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Figure 4.9: After the limb length and orientation of the end-effector were changed, the robot
had to sample two local models on average before the spanning tree of the body scheme could be
restored.

(around t = 130), which quickly reaches the same accuracy as the original, engineered

local model. At t = 200, the joint gets repaired (unblocked). Now the estimated error of

the newly learned local model quickly increases while the estimated error of the engineered

local model decreases rapidly towards its initial accuracy. Later, at t = 300, the joint gets

blocked again in the same position, the accuracy of the previously learned local model

increases significantly, and thus the robot can re-use this local model instead of having to

learn a new one.

The precision of the combined model—i.e. the engineered one fused with the one learned

after having detected the failure—are given in the right diagram in Fig. 4.8 for 20 reruns of

the experiment. The hand-tuned initial geometrical model evaluates to an averaged error

at the end-effector of approx. 37 mm. After the joint gets blocked at t = 100, the error

in prediction increases rapidly. After t = 115, a single new local models gets sampled,

which already is enough to bring down the overall error of the combined kinematic model

to approximately 51 mm. Training of the new local model is completed at around t = 135.

Later, at t = 200, when the joint gets un-blocked, the error estimate of the combined kine-

matic model increases slightly, but returns much faster to its typical accuracy: Switching

back to an already known local model requires less data samples than learning a new model

(see Tab. 4.1). At t = 300, the same quick adaption can be observed when the joint gets

blocked again.

Scenario 2: Deformed limb

In a third experiment, we changed the end-effector limb length and orientation and applied

the same evaluation procedure as in the previous subsection. This was accomplished by

placing a tool with an attached marker in the robot’s gripper and changing its configuration
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during the experiment (see Fig. 4.5 and Fig. 4.6). The quantitative results for 20 runs are

given in Fig. 4.9. After the tool gets displaced at t = 100, two local models have to be

sampled on average to repair the kinematic model. The prediction accuracy of the whole

system closely resembles the levels that were obtained in the case of the blocked joint: On

average, we measured an accuracy of 47 mm after recovery. In Tab. 4.1, we summarize

the recovery times for this and the previous experiment. As can be seen from the results,

the system adapts to a blocked joint quicker than to a deformed limb, and recalling a

previously successful model—i.e. the engineered one after ”repair” or the newly learned

one after ”same failure”—is significantly faster than learning from scratch (after ”failure”).

Controlling a Deformed Robot

Finally, we ran a series of experiments to verify that dynamically maintained body schemes

can be used for accurate positioning and control. The experiments were performed on a

simulated 4-DOF manipulator. We defined a 3D trajectory consisting of 30 way-points that

the manipulator should approach using the inverse kinematics derived from its current body

scheme, see Fig. 4.10. When the initial geometric model was used to follow the trajectory

by using the undamaged manipulator, a positioning accuracy of 7.03mm was measured.

When the middle limb was deformed by 45◦, the manipulator with a static body scheme

was significantly off course, leading to an average positioning accuracy of 189.35mm. With

dynamic adaptation enabled, the precision settled at 15.24mm. These results are also

summarized in Tab. 4.2 including the two standard deviations of the errors obtained on 20

runs. The results show that dynamic model adaption enables a robot to maintain a high

positioning accuracy even after substantial changes to its body.

4.4 Related Work

The problem of learning kinematics of robots has been investigated heavily in the past.

For example, Kolter and Ng [2007] enable a quadruped robot to learn how to follow

Table 4.1: Evaluation of the recovery time required after being exposed to different types of
failures. We give the mean recovery times for 20 runs, respectively, and the (±) standard deviation
spread.

Visibility Failure Recovery time after
rate type failure repair same failure

91.9% Joint blocked 16.50 0.45 0.65
± 1.20 ± 0.86 ± 1.15

79.0% Limb deformed 20.20 11.10 12.10
±1.96 ± 0.83 ± 1.64
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Figure 4.10: The manipulator robot with a deformed limb has to follow the blue target trajec-
tory. With a static body model, it suffers from strong derivation (red trajectory). By using our
approach, the body scheme is dynamically adapted, and the trajectory is very well approached
(green trajectory).

omnidirectional paths using dimensionality reduction techniques and based on simulations.

Their key idea is to use the simulator for identifying a suitable subspace for policies and

then to learn with the real robot only in this low-dimensional space. A similar direction

has been explored by Dearden and Demiris [2005], who applied dimensionality reduction

techniques to unveil the underlying structure of the body scheme. Similar to this work,

their approach is formulated as a model selection problem between different Bayesian

networks. Another instance of approaches based on dimensionality reduction is the work

by Grimes et al. [2006] who applied the principal component analysis (PCA) in conjunction

with Gaussian process regression for learning walking gaits on a humanoid robot.

Yoshikawa et al. [2004a] used Hebbian networks to discover the body scheme from self-

occlusion or self-touching sensations. Later, Yoshikawa et al. [2004b] learned classifiers

for body/non-body discrimination from visual data. Other approaches used for example

nearest-neighbor interpolation [Morasso and Sanguineti, 1995] or neural networks [Natale,

Table 4.2: Evaluation of the inverse kinematics experiment in simulation. By sampling new local
models upon the detection of a failures, the robot is able to regain high positioning accuracy.

Body shape Model type Control error

initial (unchanged) static 7.03 ± 10.87
deformed static 189.35 ± 28.36
deformed adaptive 15.24 ± 1.86
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2004]. Recently, Ting et al. [2006] developed a Bayesian parameter identification method

for non-linear dynamic systems, such as a robotic arm or a 7-DOF robotic head.

The approach presented in this chapter is also related to the problem of self-calibration

which can be understood as a subproblem of body scheme learning. When the kinematic

model is given in a parametric form, the parameters can be estimated efficiently, in certain

cases, by maximizing the likelihood of the model given the data [Roy and Thrun, 1999].

Genetic algorithms have been used by Bongard et al. [2006a] for parameter optimization

when no closed form is available. To a certain extend, such methods can also be used to

calibrate a robot that is temporarily using a tool [Nabeshima et al., 2005]. In contrast to

the work presented here, such approaches require a parameterized kinematic model of the

robot.

To achieve continuous self-modeling, Bongard et al. [2006b] recently described a robotic

system that continuously learns its own structure from actuation-sensation relationships.

In three alternating phases (modeling, testing, prediction), their system generates new

structure hypotheses using stochastic optimization, which are validated by generating ac-

tions and by analyzing the following sensory input. In a more general context, Bongard

and Lipson [2007] studied structure learning in arbitrary non-linear systems using similar

mechanisms. In contrast to all the approaches described above, we propose an algorithm

that learns both the structure as well as functional mappings for the individual building

blocks. Furthermore, our model is able to revise its structure and component models

on-the-fly.

4.5 Conclusion

In this chapter, we presented a novel approach to body scheme learning and life-long

adaptation for a robotic manipulation system. Our central idea is to continuously learn

a large set of local kinematic models using nonparametric regression and to search for

the best arrangement of these models to represent the full system. To the best of our

knowledge, this is the first time that such complex kinematic structures have been learned

from scratch using visual self-observation only.

In experiments carried out with a real robot and in simulation, we demonstrated that our

system is able to deal with missing and noisy observations, operates in full 3D space, and is

able to perform relevant tasks like prediction, control, and online adaptation after failures.
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Chapter 5

Mapping Gas Distributions

We develop a Gaussian process mixture model for representing and learning

spatial models of gas distribution. We discuss sparse approximations for large

data sets and give an efficient EM-based learning procedure to fit both the mix-

ture components as well as the gating function that assigns the data points to

them.

Gas distribution modeling has important applications in industry, science, and every-day

life. Mobile robots equipped with gas sensors are deployed, for example, for pollution

monitoring in public areas [DustBot, 2008], surveillance of industrial facilities producing

harmful gases, or inspection of contaminated areas within rescue missions. Although

humans have comparably precise odor sensors allowing to distinguish between around

10 000 odors, it is hard for us to build spatial representations of sensed gas distributions.

Building gas distribution maps is a challenging task in principle due to the chaotic nature of

gas dispersal and, because only point measurements of gas concentration are available. The

complex interaction of gas with its surroundings is dominated by two physical effects. First,

on a comparably large timescale, diffusion mixes the gas with the surrounding atmosphere

achieving a homogeneous mixture of both in the long run. Second, turbulent air flow

fragments the gas emanating from a source into intermittent patches of high concentration

with steep gradients at their edges [Roberts and Webster, 2002]. This chaotic system of

localized patches of gas makes the modeling problem a hard one. In addition, gas sensors

provide information about a small spatial region only since gas sensor measurements require

direct interaction between the sensor surface and the molecules to be analyzed. This makes

gas sensing different to perceiving the environment with other popular robotic sensors like
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Figure 5.1: Gas concentration measurements acquired by a mobile robot in a corridor. The
distribution consists of a rather smooth “background” signal and several peaks, which indicate
high gas concentrations.

laser range finders, with which a larger area can be measured directly.

Figure 5.1 illustrates actual gas concentration measurements recorded with a mobile robot

along a corridor containing a single gas source. The distribution consists of a rather

smooth “background” signal and several peaks, which indicate high gas concentrations.

The challenge in gas distribution mapping is to model this background signal while being

able to cover also the areas of high concentration and their sharp boundaries. Since it is

comparably costly to aquire measurements, one is also interested in reducing the number

of samples needed to build a representation. It is important to note that the noise is

dominated by the large fluctuations of the instantaneous gas distribution and not by the

electronic noise of the gas sensors. From a probabilistic point of view, the task of modeling

a gas distribution can be described as finding a model that best explains the observations

and that is able to accurately predict new ones. Thus, the data likelihood of an independent

test set (i.e. cross validation) is the standard criterion to evaluate such a model.

Simple spatial averaging, which represents a straight-forward approach to the modeling

problem, disregards the different nature of the background noise and the peaks resulting

from areas of high gas concentrations and, thus, achieves only limited prediction accuracy.

On the other hand, precise physical simulation of the gas dynamics in the environment

would require immense computational resources as well as precise knowledge about the

physical conditions, which is not known in most practical scenarios.

To achieve a balance between model accuracy and efficiency, we treat gas distribution

mapping as a supervised regression problem. We derive a solution by means of a sparse

mixture model of Gaussian processes [Tresp, 2000] that is able to handle both physical
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phenomena highlighted above. Formally, we interpret gas sensor measurements obtained

from static sensors or from a mobile robot at locations as noisy samples from a time-

constant distribution. This implies that the gas distribution in fact exhibits a time-constant

structure, an assumption that is often made in unventilated and un-populated indoor

environments [Wandel et al., 2003].

While existing approaches to gas distribution mapping, such as local averaging [Ishida

et al., 1998, Purnamadjaja and Russell, 2005], kernel extrapolation [Lilienthal and Duck-

ett, 2004], or standard GP models represent the average concentration per location only,

our mixture model distinguishes explicitly different components of the distribution, i.e.

concentration layers varying smoothly due to dispersion processes versus those containing

localized patches of gas. This leads to a more accurate prediction of the gas concentration.

Our model actually allows us to do both, computing the average gas concentration per

location (as existing models supply) as well as the multi-modal, predictive densities. As

a by-product, we present a generic algorithm that learns a GP mixture model and at the

same time reduces the model complexity in order to achieve an efficient representation

even for large data sets.

We demonstrate in experiments carried out with real mobile robots that our model has

a lower mean squared error and a higher data likelihood on test data sets than other

methods. Thus, it allows to predict gas concentration at query locations more accurately.

This chapter is organized as follows. After introducing our mixture model in Sec. 5.1,

we explain how to learn the model components from data and how to achieve a sparse

approximation. We then present experimental results involving real mobile platforms

in Sec. 5.3 and discuss related work in Sec. 5.4.

5.1 A Mixture Model for Gas Distributions

The general gas distribution mapping problem given a set of concentration measurements

y1:n acquired at locations x1:n, is to learn a predictive model p(y∗ | x∗,x1:n, y1:n) for gas

concentrations y∗ at a query location x∗. Recalling Sec. 2.2, we approach this problem

in a nonparametric way, i.e., not assuming a parametric form of the underlying function

f : x 7→ y, using Gaussian processes. For real-valued functions f , the model is defined by

a mean function m(·) and a covariance function k(·, ·)

m(x) = E[f(x)] (5.1)

k(xp,xq) = E[(f(xp)−m(xp))(f(xq)−m(xq))] . (5.2)
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In the following, we apply the squared exponential covariance function kSE as defined

in Sec. 2.2. Observations y obtained from the process are assumed to be affected by

Gaussian noise, y ∼ N (m(x), σ2
n). The variables θ = {σf , ℓ, σn} are the so-called hyper-

parameters of the process which have to be learned from data.

Given a set D = {(xi, yi)}ni=1 of training data where xi ∈ Rd are the inputs and yi ∈ R the

targets, the goal in regression is to predict target values y∗ ∈ R at a new input point x∗.

Let X = [x1; . . . ;xn]⊤ be the n×d matrix of the inputs and X∗ be defined analogously for

multiple test data points. In the GP model, any finite set of samples is jointly Gaussian

distributed

[

y

f(X∗)

]

∼ N
(

0,

[

k(X,X) + σ2
nI k(X,X∗)

k(X∗,X) k(X∗,X∗)

])

, (5.3)

where k(·, ·) refers to the matrix with the entries given by the covariance function k(·, ·)
and y the vector of the (observed) targets yi. To make predictions at X∗, we obtain the

predictive mean

f̄(X∗) := E[f(X∗)] = k(X∗,X)
[
k(X,X) + σ2

nI
]−1

y (5.4)

and the (noise-free) predictive variance

V[f(X∗)] = K(X∗,X∗)− k(X∗,X)
[
k(X,X) + σ2

nI
]−1

k(X,X∗) , (5.5)

where I is the identity matrix. The corresponding (noisy) predictive variance for an ob-

servation y∗ can be obtained by adding the noise term σ2
n to the individual components of

V[f(X∗)].

The standard GP model recapitulated above has two major limitations in our problem

domain. First, the computational complexity is high, since to compute the predictive

variance given in Eq. (5.5), one needs to invert the matrixK(X,X)+σ2
nI. This introduces a

complexity of O(n3) where n is the number of training examples. As a result, an important

issue for GP-based solutions to practical problems is the reduction of this complexity. This

can, as we will show in Sec. 5.2, be achieved by artificially limiting the training data set

in a way that introduces small loss in the data likelihood of the whole training set while

at the same time minimizing the runtime. As a second limitation, the standard GP model

generates a uni-modal distribution per input location x. This assumption hardly fits our

application domain in which a relatively smooth “background” signal is typically mixed

with high-concentration “packets” of gas. In the following, we address this issue by deriving

a mixture model of Gaussian processes.
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Mixtures of Gaussian Process Models

The GP mixture model [Tresp, 2000] constitutes a locally weighted sum of several Gaussian

process models. For simplicity of notation, we consider without loss of generality the

case of single predictions only (x∗ instead of X∗). Let {GP1, . . . ,GPm} be a set of m

Gaussian processes representing the individual mixture components. Let P (z(x∗) = i) be

the probability that x∗ is associated with the i-th component of the mixture. Let f̄i(x∗)

be the mean prediction of GP i at x∗. The likelihood of observing y∗ is thus given by

h(x∗) := p(y∗ | x∗) =

m∑

i=1

P (z(x∗) = i) · Ni(y∗;x∗) , (5.6)

where we define Ni(y;x) as the Gaussian density function with mean f̄i(x) and variance

V[fi(x)] + σ2
n evaluated at y. One can sample from such a mixture by first sampling the

mixture component according to P (z(x∗) = i) and then sampling from the corresponding

Gaussian. For some applications such as information-driven exploration missions, it is

practical to estimate the mean and variance for this multi-modal model. The mean E[h(x∗)]

of the mixture model is given by

h̄(x∗) := E[h(x∗)] =

m∑

i=1

P (z(x∗) = i) · f̄i(x∗) (5.7)

and the corresponding variance is computed as

V[h(x∗)] =
m∑

i=1

[
V[fi(x∗)] + (f̄i(x∗)− h̄(x∗))

2
]
· P (z(x∗) = i) . (5.8)

5.2 Learning the Model from Data

Given a training set D = {(xj , yj)}nj=1 of gas concentration measurements yj and the

corresponding sensing locations xj , the task is to jointly learn the assignment z(xj) of

data points to mixture components and, given this assignment, the individual regression

models GP i. Tresp [2000] describes an approach based on Expectation Maximization (EM)

for solving this task. We take his approach, but also seek to minimize the model complexity

to achieve a computationally tractable model even for large training data sets D. This is of

major importance in our application, since typical gas concentration data sets easily exceed

n = 1000 data points and the standard GP model (see Sec. 5.1) is of cubic complexity

O(n3). Different solutions have been proposed for lowering this upper bound, such as

dividing the input space into different regions and solving these problems individually or
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by deriving sparse approximations for the whole space. Sparse GPs [Smola and Bartlett,

2000, Snelson and Ghahramani, 2006a] use a reduced set of inputs to approximate the

full GP model. This new set can be either a subset of the original inputs [Smola and

Bartlett, 2000] or a set of r new pseudo-inputs [Snelson and Ghahramani, 2006a] which

are obtained using an optimization procedure. This reduces the complexity from O(n3)

to O(nr2) with r ≪ n, which in practice results in a nearly linear complexity. In this

section, we describe a greedy forward-selection algorithm integrated into the EM-learning

procedure which achieves a sparse mixture model while also maximizing the data likelihood

of the whole training set D.

5.2.1 Initializing the Mixture Components

In a first step, we subsample n1 data points and learn a standard GP for this set. This

model GP1 constitutes the first mixture component. To cover areas of gas concentration

that are poorly modeled by this initial model, we learn an “error model”, termed GP∆,

that captures the absolute differences between a set of target values and the predictions

of GP1. We then sample points according to GP∆ and use them as initialization for the

next mixture component. In this way, the new mixture is initialized with the data points

that are poorly approximated by the first one. This process is repeated until the desired

number of model components is reached. For typical gas modeling scenarios, we found

that two mixture components are sufficient to achieve good results. In our experiments,

the converged mixture models nicely reflect the bimodal nature of gas distributions, having

one smooth “background” component and a layer of locally concentrated structures.

5.2.2 Iterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be used to obtain a maximum like-

lihood estimate when hidden and observable variables need to be estimated. It consists

of two steps, the so-called estimation (E) step and the maximization (M) step which are

executed alternately.

In the E-step, we estimate the probability P (z(xj) = i) that data point j corresponds

to model i. This is done by computing the marginal likelihood of each data point for all

models individually. Thus, the new P (z(xj) = i) is computed given the previous estimate

as

P (z(xj) = i) ← P (z(xj) = i) · Ni(yj;xj)
∑m

k=1 P (z(xj) = k) · Nk(yj ;xj)
. (5.9)

In the M-step, we update the components of our mixture model. This is achieved by inte-
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grating the probability that a data point belongs to a model component into the individual

GP learning steps (see also [Tresp, 2000]). This is achieved by modifying Eq. (5.4) to

f̄i(X∗) = k(X∗,X)
[
k(X,X) + Ψi

]−1
y , (5.10)

where Ψi is a matrix with

[Ψi]jj =
σ2

n

P (z(xj) = i)
(5.11)

and zeros in the off-diagonal elements. Equation (5.5) is updated accordingly. The matrix

Ψi allows us to consider the probabilities that the individual inputs belong to the corre-

sponding components. Figuratively speaking, the contribution of an unlikely data point

to a model is reduced by increasing the data point specific noise term. If the assignment

probability, on the other hand, is one, only σ2
n remains and the point is fully included as

in the standard GP model.

Learning a GP model also involves the estimation of its hyperparameters θ = {σf , ℓ, σn}.
To estimate them for GP i, we first apply a variant of the hyperparameter heuristic used

by Snelson and Ghahramani [2006a] in their open-source implementation. We extended it

to incorporate the correspondence probability P (z(xk) = i) into this initial guess

ℓ ← max
xj

P (z(xj) = i) ||xj − x̄|| (5.12)

σ2
f ←

∑n
j=1 P (z(xj) = i) (yj − E[y])2

∑n
j=1 P (z(xj) = i)

(5.13)

σ2
n ← 0.25 · σ2

f , (5.14)

where x̄ refers to the weighted mean of the inputs, each xj having a weight of P (z(xj) = i).

To optimize the hyperparameters further given this initial estimate, one could apply, for

example, Rasmussen’s conjugate-gradient–based approach [Rasmussen, 2006] to minimize

the negative log marginal likelihood. In our experiments, however, this approach lead

to serious overfitting and we therefore resorted to cross validation-based optimization.

Concretely, we randomly sample the hyperparameters and evaluate the model accuracy

according to Sec. 5.2.2 on a separate validation set. As a sampling strategy, we draw in

each even iteration new parameters from an uninformed prior and in each odd iteration,

we improve the current best parameters θ′ by sampling from a Gaussian with mean θ′.

The standard deviation of that Gaussian is decreased with the iteration number.
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5.2.3 Learning the Gating Function

In our mixture model, the gating function defines for each data point the likelihood of

being assigned to the individual mixture components. The EM algorithm learns the as-

signment probabilities for all training inputs xj , maximizing the overall data likelihood.

To generalize these assignments to the whole input space (to form a proper gating func-

tion), we place another GP prior on the gating variables. Concretely, we learn a gating

GP for each component i that uses the xj as inputs and the z(xj) obtained from the EM

algorithm as targets. Let f̄ z
i (x) be the prediction of z for GP i. Given this set of m GPs,

we can compute the correspondence probability for a new test point x∗ as

P (z(x∗) = i) =
exp(f̄ z

i (x∗))
∑m

j=1 exp(f̄ z
j (x∗))

. (5.15)

Illustrating Example

To visualize our approach, we now give a simple, one-dimensional example. The left

diagram of Fig. 5.2 shows simulated data points, of which most were sampled uniformly

from the interval [2, 2.5] and some are distributed with a larger spread at two distinct

locations. The same diagram also shows a standard GP model learned on this set, which

is not able to explain the data well. The right diagram of the figure shows GP∆, i.e. the

resulting error model, which characterizes the local deviations of the model predictions

from the data points. Based on this model, a second mixture component is initialized and

used as input to the EM algorithm.

The individual diagrams in Fig. 5.3 illustrate the iterations of the EM algorithm (to be

read from left to right and from top to bottom). They depict the two components of the

mixture model. The learned gating function after convergence of the algorithm is depicted

in the left diagram of Fig. 5.4. The right diagram in the same figure gives the final GP

mixture model. It is clearly visible that the mixture model better represents this data set

than the standard GP model, which assumes a smooth, uni-modal process (see the left

diagram of Fig. 5.2). As a quantitative measure of model quality, we noted the average

negative log likelihood of the data points as -1.70 for the mixture model vs. -0.24 for the

standard GP.

5.3 Experimental Results

We carried out pollution monitoring experiments in a real-world setting, in which a mobile

robot followed a predefined sweeping trajectory covering the area of interest. Along its
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Figure 5.2: Left: The standard GP used to initialize the first mixture component. Right: The
error GP used to initialize the next mixture component.
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Figure 5.3: Components during different iterations of the EM algorithm.
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Figure 5.4: Left: The learned gating function. Right: Resulting distribution of the GP mixture
model.
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path, the robot was stopped for several seconds, 10 s (outdoors) and 30 s (indoors), at

predefined points on a regular grid to acquire measurements. The spacing between the

grid points was set to values between 0.5 m to 2.0 m depending on the topology of the

available space. The sweeping motion was performed twice in opposite directions, and the

robot was driven at a maximum speed of 5 cm/s in between the stops. The gas source was

a small cup filled with ethanol.

The robot was equipped with a SICK laser range scanner used for pose correction, with an

electronic nose, and an anemometer. The electronic nose comprises six Figaro gas sensors

(2 × TGS 2600, TGS 2602, TGS 2611, TGS 2620, TGS 4161) enclosed in an aluminum

tube. This tube was mounted horizontally at the front side of the robot (see also Fig. 5.5).

The electronic nose is actively ventilated through a fan that creates a constant airflow

towards the gas sensors. This lowers the effect of external airflow and the movement of

the robot on the sensor response.

Note that in this work, we concentrate only on the gas concentration measurements and do

not consider the pose uncertainty of the vehicle. One can apply one of the various SLAM

systems available to account for the uncertainty in the robot’s pose.

Three environments with different properties were selected for the pollution monitoring

experiments. The first experiment, termed 3-rooms, was carried out in an enclosed in-

door area that consists of three rooms which are separated by slightly protruding walls

in between them. The area covered by the robot is approximately 14 m × 6 m. There

is little exchange of air with the “outer world” in this environment. The gas source was

placed in the central room and all three rooms were monitored by the robot. The second

location was a part of a corridor with open ends and a high ceiling. The area covered by

the trajectory of the robot is approximately 14 m×2 m. The gas source was placed on the

floor in the middle of the investigated corridor segment. Finally, an outdoor scenario was

considered. Here, the experiments were carried out in an 8 m× 8 m region that is part of

a much bigger open area.

We used the raw sensor readings in all three environments as training sets and applied

our approach to learn the gas distribution models. In all three settings, the robot moved

Table 5.1: Average negative log likelihoods of test data points given the different models. All
results in this table differ significantly (10 repetitions, α = 5%)

Dataset GP GPM GPM avg

3-rooms -1.22 -1.54 -1.50

corridor -0.98 -1.60 -1.58

outdoor -1.01 -1.77 -1.69
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Figure 5.5: Pictures of the robot inspecting three different environments as well as the corre-
sponding sweeping trajectories.
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Initial, uni-modal model Error model

Means of the mixture components Gating function

GPM mean (3D view) Standard GP mean (3D view)

GPM mean (2D view) Standard GP mean (2D view)

GPM Variance (2D view) Standard GP variance (2D view)

Figure 5.6: The 3-rooms dataset with one ethanol gas source in the central room. The room
structure itself is not visualized here. In all plots, blue represents low, yellow reflect medium, and
red refers to high values.
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through the environment twice. We used the first run for learning the model and the second

one for evaluating it. To benchmark our results, we compare against gas distribution

models learned using (a) standard GP regression, (b) a grid-based interpolation approach,

and (c) using kernel extrapolation.

Figure 5.6 shows the learned models for the 3-room dataset. The left plot in the first row

illustrates the mean prediction for the standard GP on the subsampled training set that

defines the first mixture component. The right diagram depicts the error GP representing

the differences between the initial prediction and a set of observations. Based on the error

GP, a new mixture component is initialized and the EM algorithm is carried out. The

means of the two mixture components after convergence are shown in the left diagram of

the seconds row and the learned gating function is visualized in the adjacent diagram on

the right. The left diagram in the third row shows the mean prediction of the final mixture

model. As can be seen, the model consists of a smooth “background” distribution and a

peak of gas concentration—close to the gas source—with a sharp boundary. In contrast

to this, the standard GP (right diagram in the third row) learned using the same data is

overly smooth for this dataset, especially in proximity to the gas source.

Table 5.1 summarizes the negative log likelihoods of the test data (second part of the

dataset, which was not used for training) given our mixture model (GPM) as well as

the standard GP model (GP). We provide two likelihoods for our model, the one given

in Eq. (5.6) (called “GPM” in the table) and the one computed based on the averaged

prediction specified in Eq. (5.7) and Eq. (5.8) (called “GPM avg”). As can be seen, our

GPM method outperforms the standard GP model in all three settings. A t-test on 10

repetitions of the experiments revealed that these results are significant (α = 5%). Two

reasons for the increased model accuracy of GPM w.r.t. standard GPs can be seen in the

2D plots in the last two rows of Fig. 5.6. First, as already mentioned before, the standard

GP overly smoothes the area close to the gas source and, second, its variance estimates

around the source are too low (since standard GPs assume a constant noise rate for the

whole domain).

Figure 5.7 visualizes the final result for the corridor experiment for the GPM model (means

of the mixture components in the left diagram and the gating function on the right). The

raw dataset from this experiment is plotted in Fig. 5.1. In this experiment, the area of

high gas concentration was mapped appropriately also by the standard GP, but again

the variance close to the area of high gas concentration was too small. This can seen

by comparing the two rows in Fig. 5.8, which shows the standard GP results on top and

GPM below. Similar results are also obtained in the outdoor dataset. Mean and variance

predictions of the standard GP and our model are provided in Fig. 5.9.
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Figure 5.7: GPM results in the corridor experiment (see Fig. 5.1 for the raw data). Left: Means
of the GPM components. Right: Learned gating function .

Standard GP predictive mean (left) and variance (right)

GPM predictive mean (left) and variance (right)

Figure 5.8: Models learned from concentration data recorded in the corridor environment. The
gas source was placed at the location (10, 3). The standard GP and our GPM model provide
similar mean estimates. Our approach, however, provides more accurate predictive uncertainties
and thus achieves significantly higher data likelihoods (see Tab. 5.1).
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Standard GP predictive mean Standard GP predictive variance

GPM predictive mean GPM predictive variance

Figure 5.9: Results on the outdoor dataset on a 8 m × 8 m area with an ethanol source in the
center and under the influence of airflow—approximately from south-east to north-west.
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Figure 5.10: Experimental comparison of our GP mixture model with two state-of-the art al-
ternatives in three real-world setting. The bars give the mean squared errors of predicted gas
concentration w.r.t. the measured one on a test set.

In all our experiments, we limited the number of data points in the reduced input set to

n1 = 100 (taken from the first part of the datasets). The datasets itself contained between

2 500 and 3 500 measurements so our model was able to make accurate predictions with

less than 5% of the data. Matrices of that size can be easily inverted and as a result

the overall computation time for learning our model including cross validation, running

Matlab on a standard laptop computer, is around 1 minute for all datasets shown above.

Finally, we compared the mean estimates of our mixture model to the results obtained

with the method of Lilienthal and Duckett [2004] as well as with the standard approach

of using a grid in combination with linear interpolation. The results of this comparison

are shown in Fig. 5.10. As can be seen from the diagram, our method outperforms both

alternative methods.

5.4 Related Work

A common approach to creating representations for time-averaged concentration fields is

to acquire measurements using a fixed grid of gas sensors over a long period of time.

Equidistant gas sensor locations can be used to directly measure and map the average

concentration values according to a given grid approximation of the environment. This

approach was taken by Ishida et al. [1998]—additionally considering partially simultaneous

measurements. A similar method was used in [Purnamadjaja and Russell, 2005], but

instead of the average concentration, the peak concentration observed during a sampling

period of 20 s was considered to create the map.

Consecutive measurements with a single sensor and time-averaging over 2 minutes for

each sensor location were used by Pyk et al. [2006] to create a map of the distribution of
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ethanol. Methods, which aim at determining a map of the instantaneous gas distribution

from successive concentration measurements, rely on the assumption of a time-constant

distribution profile, i.e. on uniform delivery and removal of the gas to be analyzed as

well as on stable environmental conditions. Thus, the experiments of Pyk et al. were

performed in a wind tunnel with a constant airflow and a homogeneous gas source. To

make predictions about locations outside of the directly observed regions, the same authors

apply bi-cubic interpolation in the case of equidistant measurements and triangle-based

cubic filtering in the case, in which the measurement points are not equally distributed.

A problem with such interpolation methods is that there is no means of “averaging out”

instantaneous response fluctuations at measurement locations. Even if response values

are measured close to each other, they will appear independently in the gas distribution

map with interpolated values in between. Consequently, interpolation-based maps tend to

become more and more jagged the more new measurements are added [Lilienthal et al.,

2006].

Histogram-based methods approximate the continuous distribution of gas concentration by

means of binning according to regular grids. Hayes et al. [2002] for instance suggest using

two-dimensional histograms over the number of “odor hits” received in the corresponding

area. “Odor hits” are counted whenever the response level of a gas sensor exceeds a de-

fined threshold. In addition to the dependency of the gas distribution map on the selected

threshold, a disadvantage of processing binary information only is that useful informa-

tion contained in the (continuous) sensor readings is discarded. Further disadvantages of

histogram-based methods for gas distribution modeling are their dependency on a properly

chosen bin size and the lack of generalization across bins or beyond the inspection area.

Gas distribution mapping based on kernel extrapolation can be seen as an extension of the

histogram-based approach. The idea was introduced by Lilienthal and Duckett [2004]. In

this model, spatial integration is carried out by convolving sensor readings and modeling

the information content of the point measurements with a Gaussian kernel. As discussed

in [Lilienthal et al., 2006], this method is related to nonparametric estimation using Parzen

windows.

Model-based approaches [Ishida et al., 1998] infer the parameters of an analytical gas dis-

tribution model from the measurements. They naturally depend on the characteristics

of the assumed model. Complex numerical models based on the simulation of fluid dy-

namics are computationally expensive and require accurate knowledge of the state of the

environment (boundary conditions) which are typically not available in practice. Simpler

analytical models, on the other hand, often make rather unrealistic model assumptions

which hardly fit the real situation. Model-based approaches also rely on well-calibrated
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gas sensors and an established understanding of the sensor-environment interaction. The

majority of approaches proposed in the literature create a two-dimensional representa-

tion and represent time-constant structures in the gas distribution. The complexity of

model-free approaches for converging to a stable representation—either in terms of time

consumption or the number of sensors—scales quadratically with the size of the environ-

ment. To the best of our knowledge, none of the existing approaches jointly models the

variance and the time-average concentration values of the field.

In contrast to the above-mentioned approaches, we apply a Gaussian process-based mix-

ture model to the problem of learning probabilistic gas distribution maps. GPs allow us to

model the dependencies between measurements by means of a covariance function. They

enable us to make predictions at locations not observed so far and do not only provide the

mean gas distribution but also the predictive uncertainty. Our mixture model is further-

more able to model sharp boundaries around areas of high gas concentration. Technically,

we build on Tresp [2000]’s mixture model of GP experts to better deal with spatially vary-

ing properties of the data. Extensions of this technique using infinite mixtures have been

proposed by Rasmussen and Ghahramani [2002] and Meeds and Osindero [2006].

5.5 Conclusion

We considered the problem of modeling gas distributions from sensor measurements by

means of sparse Gaussian process mixture models. Gaussian processes are an attractive

modeling technique in this context since they do not only provide a gas concentration

estimate for each point in the space but also the predictive uncertainty. Our approach

learns a GP mixture model and simultaneously decreases the model complexity by reduc-

ing the training set in order to achieve an efficient representation even for a large number

of observations. The mixture model allows us to explicitly distinguish the different com-

ponents of the spatial gas distribution, namely areas of high gas concentration from the

smoothly varying background signal. This improves the accuracy of the gas concentration

prediction.

Our method has been implemented and tested using gas sensors mounted on a real robot.

With our method, we obtain gas distribution models that better explain the sensor data

compared to techniques such as the standard GP regression for gas distribution mapping.

Our approach and the one of Lilienthal and Duckett [2004] provide similar mean gas

concentration estimates, their approach as well as the majority of techniques in the field,

however, lack the ability of also estimating the corresponding predictive uncertainties.



Part II

Modeling Input-Dependent Noise
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Chapter 6

Heteroscedastic Gaussian Processes

We relax the assumption of constant observation noise and present a novel

Gaussian process model that can adapt its noise rates locally. As experiments

show, this model is significantly more accurate than the standard GP model in

many real-world learning tasks, while it still retains its main benefits.

The standard Gaussian process model for regression as discussed and applied in the pre-

vious chapters constitutes a principled Bayesian framework for learning, model selection,

and density estimation while it still requires only relatively basic matrix algebra. An im-

portant practical problem, that has been addressed in recent literature, is to relax the

assumption of constant noise made in the standard GP model. In many real-world prob-

lems, the local noise rates are important features of data distributions that have to be

modeled accurately. Consider for example the Motorcycle benchmark dataset depicted

in Fig. 6.1. While the standard GP regression model quite accurately estimates the mean

of the sought after distribution, it clearly overestimates the data variance in some areas and

underestimates it in others. In contrast, taking the input-dependent noise into account the

variance in the flat regions becomes low. The main contribution of this chapter is a novel

GP treatment of input-dependent noise. More precisely, we follow Goldberg et al.’s [1998]

approach and model the noise variance using a second GP in addition to the GP governing

the noise-free output value. In contrast to Goldberg et al. , however, we do not apply a

time consuming Markov chain Monte Carlo method to approximate the posterior noise

variance but replace it with an alternative approximation that seeks to find the most likely

local noise rates. This treatment allows us to develop a fast (hard) EM-like procedure for

learning both the hidden noise variances and, in contrast to other approaches, also the

kernel parameters. Experiments on synthetic and real-world data sets show that our most
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Figure 6.1: is an example for input dependent noise. It consists of a sequence of accelerometer
readings through time following a simulated motor-cycle crash.

likely noise approach clearly outperforms standard GP regression and is competitive with

existing heteroscedastic regression approaches. At the same time, our approach is substan-

tially less complex than previous ones and has the additional advantage of fully staying

within the GP regression framework. Extensions to standard GPs such as online learning,

dependent outputs, nonstationary covariance functions, and sparse approximation can be

adapted directly. We will exemplify this by combining our model with the projected process

approximation [Rasmussen and Williams, 2006b], which only represents a small subset of

the data for parameter estimation and inference. As our experiments show, this can keep

memory consumption low and speed up computations tremendously.

We proceed as follows: After first developing our most likely heteroscedastic GP regression

model in Sec. 6.1, we discuss parameter adaptation in Sec. 6.2. Afterwards, we show how

to achieve sparse approximations in Sec. 6.2.1 and present the results of an extensive set

of experiments in Sec. 6.3.

6.1 The Model

Recalling the definitions in Chapter 2.2, the non-linear regression problem is to recover

a functional dependency yi = f(xi) + ǫi from n observed data points D = {(xi, yi)}ni=1.

Here, yi ∈ R are the (noisy) observed output values at input locations xi ∈ Rd. The

task is to learn a model for p(y∗|x∗,D), i.e., the predictive distribution of new target

values y∗ indexed by x∗ depending on the observed data set D. If we assume independent,

normally distributed noise terms ǫi ∼ N (0, σ2
n), where the noise variances σ2

i are modeled

by σ2
i = r(xi), i.e., by a function of x, we get a heteroscedastic regression problem as

studied by Goldberg et al. [1998], in which the noise rate is not assumed constant on the

domain. By placing a Gaussian process prior on f and assuming a noise rate function r(x),
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Figure 6.2: By using a GP prior over the latent local noise rates (left), heteroscedastic GP models
(right) are able to adapt their predictive variances to the data.

the predictive distribution P (y∗|x∗
1, . . . ,x

∗
q) at the query points x∗

1, . . . ,x
∗
q is a multivariate

Gaussian distribution N (µ∗,Σ∗) with mean

µ∗ = E[y∗] = Kx∗x∗
(Kxx + R)−1 y (6.1)

and covariance matrix

Σ∗ = V[y∗] = Kx∗x∗
+ R∗ −Kx∗x (Kxx + R)−1 K⊤

x∗x
. (6.2)

In these equations, we have Kxx ∈ Rn×n, [Kxx]ij = k(xi,xj), Kx∗x ∈ Rq×n, [Kx∗x]ij =

k(x∗
i ,xj), Kx∗x∗

∈ Rq×q, [Kx∗x∗
]ij = k(x∗

i ,x
∗
j), y = (y1, y2, . . . , yn)⊤, R = diag(r) with

r = (r(x1), r(x2), . . . , r(xn))⊤, and R∗ = diag(r∗) with r∗ = (r(x∗
1), r(x

∗
2), . . . , r(x

∗
q))

⊤.

An integral part of this model is the covariance function k(xi,xj) that specifies the co-

variance cov(yi, yj) of the corresponding targets. In this chapter, we will make use of two

common choices, the squared exponential covariance function kSE and the Matérn form

kM (see Chapter 2). These two covariance functions are called stationary, since they only

depend on the distance |xi − xj | between input locations x and x′. In the definitions

above, σf denotes the amplitude (or signal variance) and ℓ is the characteristic length-

scale, see [Rasmussen and Williams, 2006b] for a detailed discussion. These parameters

are called hyper-parameters of the process. They are typically denoted as θ = (σf , ℓ).

Goldberg et al. [1998] do not specify a functional form for the noise level r(x) but place

a prior over it. More precisely, an independent GP is used to model the logarithms of

the noise levels, denoted as z(x) = log (r(x)). This z-process is governed by a different

covariance function kz , parameterized by θz. We will use the notation · to denote variables

of the latent log noise process GPz to make the distinction to their counterparts in the

observed process GPy clearly visible. For instance, we denote with X = x1, . . .xn the

locations of the “training data points” z = {z1, z2, . . . , zn} for the z-process. X can be

chosen in various ways, e.g., by uniformly drawing points from the convex hull of X . In

our experiments and here for notational convenience, we set them to coincide with X of

GPy. Figure 6.2 sketches a prototypical situation with the latent noise process in the left
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diagram and GPy on the right.

Since the noise rates zi are now independent latent variables in the combined regression

model, the predictive distribution for y∗, i.e., the vector of regressands at query points

X∗ = {x∗
1, . . . ,x

∗
q}, changes to P (y∗|X∗,D) =

∫ ∫

p(y∗ | X∗, z, z∗,D) · p(z, z∗|X∗,D) dz dz∗ . (6.3)

Given (z, z∗), the prediction p(y∗|X∗, z, z∗,D) is Gaussian with mean and variance as

defined in Eq. (6.1) and Eq. (6.2). The problematic term is indeed p(z, z∗|X∗,D) as

it makes the integral difficult to handle analytically. Therefore, Goldberg et al. pro-

posed a Monte Carlo approximation. More precisely, given a representative sample

{(z1, z
∗
1), . . . , (zk, z

∗
k)} of (logarithmic) noise rates, the integral in Eq. (6.3) can be ap-

proximated by 1
k

∑k
j=1 p(y∗|X∗, zj, z

∗
j ,D). The sampling is quite time consuming and

the expectation can be approximated by the most likely noise levels (z̃, z̃∗). That is,

we approximate the predictive distribution by p(y∗|X∗,D) ≈ p(y∗|X∗, z̃, z̃∗,D), where

(z̃, z̃∗) = arg max(z̃,z̃∗) p(z̃, z̃∗|X∗,D). This will be a good approximation if most of the

probability mass of p(z, z∗|X∗,D) is concentrated around (z̃, z̃∗). Moreover, computing the

most likely noise level and p(y∗|X∗,D) now requires only standard GP inference, which is

faster than the fully Bayesian treatment.

6.2 Learning Local Noise

So far, we have described our model and how to make predictions assuming that we have

the parameters θz of the z-process and the parameters θ of the noise-free y-process, which

uses the predictions of the z-process as noise variances at the given points. In practice,

we are unlikely to have these parameters a priori and, instead, we would like to estimate

them from data.

The basic observation underlying our approach is very similar to the one underlying the

(hard) EM algorithm: Learning would be easy if we knew the noise level values for all the

data points. Therefore, we iteratively perform the following steps to find the parameters:

1. Given the input data D = {(xi, yi)}ni=1, we estimate a standard, homoscedastic GP1

maximizing the likelihood for predicting y from x.

2. Given G1, we estimate the empirical noise levels for the training data, i.e., z′i =

log (V[yi, G1(xi,D)]), forming a new data set D′ = {(x1, z
′
1), (x2, z

′
2), . . . , (xn, z

′
n)}.

3. On D′, we estimate a second, also homoscedastic GPz
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4. Now, we estimate the combined, heteroscedastic GPy on D using GPz to predict the

(logarithmic) noise levels ri.

5. If not converged, we set GP1 = GPy and go to step 2.

To summarize the procedure, we take the current noise model and complete the data,

i.e., make the noise levels observed. We then fix the completed data cases and use them

to compute the maximum likelihood parameters of GPy. This process is repeated until

convergence. Like the hard EM, the algorithm is not guaranteed to improve the likelihood

in each step and can start oscillating as it considers most-likely completions of the data

only. In our experiments, however, this happened only occasionally and only at reasonably

accurate estimates. Step 2, i.e., the empirical estimation of the noise levels is the most

crucial step of the procedure: Given the data D = {(xi, yi)}ni=1 and the predictive distri-

bution of the current GP estimates, find an estimate of the noise levels V[yi,GP1(xi,D)]

at each xi. Consider a sample yj
i from the predictive distribution induced by the current

GP at xi. Viewing yi and yj
i as two independent observations of the same noise-free, un-

known target, their arithmetic mean (yi − yj
i )

2/2 is a natural estimate for the noise level

at xi. Indeed, we can improve the estimate by taking the expectation with respect to the

predictive distribution. This yields

V[yi,GP1(xi,D)] ≈ s−1
s∑

j=1

1

2
· (yi − yj

i )
2 , (6.4)

where s is the sample size and the yj
i are samples from the predictive distribution induced

by the current GP at xi. This minimizes the average distance between the predictive

distribution and the prototype value yi. For a large enough number of samples (s > 100),

this will be a good estimate for the noise levels.

Note, that there are several alternatives to the way the latent noise levels of our model are

fitted to the data. First, the noise function could be assumed given in an analytical form,

in which case the latent noise GP vanishes and R is constructed analytically instead. As

a second alternative, if the training data set is sufficiently dense, the local noise rates can

be estimated directly from the data using binning or kernel smoothing. In this case, the

local noise estimates directly serve as the “training points” of GPz. The empirical way is

especially robust and easy to implement when multiple target samples yi are given for each

input location xi. In the next chapter, in which we will apply the model to the problem of

regularizing range measurement likelihoods for mobile robot localization, we encounter a

situation where this naturally occurs. As a last alternative, the latent noise rates used in

GPy could be fixed to the mean predictions of GPz instead of integrating over all possible

local noise rates in Eq. (6.3). In this case, we get a tractable approximation of Eq. (6.3), for
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which we can jointly learn θy, θz, and z, e.g. using gradient-based optimization. We will

discuss a similar approach for learning a model dealing with input-dependent smoothness

in Chapter 11.

6.2.1 Sparse Approximations

The heteroscedastic regression model presented in the previous section can be combined

directly with various extensions of the GP model, like online learning, dependent outputs,

nonstationary covariance functions, and sparse approximations. To exemplify this, we

discuss how the projected process approximation of Rasmussen and Williams [2006b] can

be applied to our model to increase its efficiency for large data sets. Section 6.3.3 also

gives experimental results for this extension.

Several approximative models have been proposed for GPs in order to deal with the high

time and storage requirements for large training data sets. In general, existing approaches

select a subset I, |I| = m, of data points (the support set) from the full training set

D, |D| = n, to reduce the complexity of learning, model representation, and inference.

In contrast to simpler approaches that discard D \ I completely, the so-called projected

process (PP) approximation considers a projection of the m-dimensional space of I up to n

dimensions in order to be able to involve all available data points. The key idea is to only

represent m < n latent function values, denoted as fm with fi = f(xi),xi ∈ I, which leads

to smaller matrices that have to be stored and calculated. Then, in the homoscedastic

case where a constant noise level σ2
n is assumed, the “discarded” points tn−m from D \ I

are modeled by

tn−m ∼ N (E[fn−m|fm], σ2
n I) . (6.5)

As detailed in [Rasmussen and Williams, 2006b], this leads to an easy to implement modifi-

cation of the predictive distribution p(y∗|x∗,D). For our heteroscedastic model, we replace

σ2
n I in Eq. (6.5) by the input noise rate matrix R (as defined in Sec. 6.1), which leads

to a straightforward modification of the approximated predictive distribution of the ho-

moscedastic case. An issue not discussed so far is how to select the active set I from

D. While existing approaches make informed selection decisions based on the information

gain or on the predictive variance at prospective points in a greedy fashion, we employed a

simple random sampling strategy for the experiments reported in Sec. 6.3.3. Due to this,

the results reported there can be seen as a lower bound for the performance of our model

under the PP approximation. More importantly, it takes only O(m2n) to carry out the

necessary matrix computations. For a fixed m, this is linear in n as opposed to O(n3) for

standard GPs.
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6.3 Experimental Results

The goal of our experimental evaluation was to investigate to which extent most likely

heteroscedastic GP regression is able to handle input-dependent noise:

(Q1) Is there a gain over standard GP regression?

(Q2) Can it rediscover the hidden noise function?

(Q3) Can it deal with non-smooth noise?

(Q4) Can sparse GP techniques be employed?

We conducted several experiments on benchmark data sets. We implemented our approach

in Matlab using Rasmussen’s and William’s GP toolbox [Rasmussen and Williams, 2006b]

as well as in C++. The benchmark data set experiments were run on a PowerBook G4

using Matlab 7.2 and a squared exponential covariance function. The parameters were

always initialized randomly. As performance measures, we used two different losses. For

traditional reasons, we report on the standardized mean squared error

sMSE =
1

n

n∑

i=1

(yi − µ∗i )2
V(y)

, (6.6)

where µ∗i is the mean of the estimated predictive distribution p(yi|xi) and V(y) is the

empirical variance of the data, which only takes a point prediction into account that

minimizes squared errors. A better loss for our task is the average negative log predictive

density

NLPD =
1

n

n∑

i=1

− log p(yi|xi) , (6.7)

which penalizes over-confident predictions as well as under-confident ones.

6.3.1 Benchmark Data Sets

We evaluated most likely heteroscedastic GP regression on the following benchmark data

sets known from the literature, which have been used to empirically investigate other

heteroscedastic regression methods:

GB: The synthetic data originally used by Goldberg et al. [1998]: 100 points xi were

sampled uniformly from the interval [0, 1] and the targets yi = 2 sin(2πxi) were

corrupted with Gaussian noise, which increases its standard deviation linearly from

0.5 at x = 0 to 1.5 at x = 1.
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Figure 6.3: Size of scallop catch prediction. Left column: Mean and variance estimate for standard
GP regression. Right column: Mean and variance prediction for most likely heteroscedastic GP
regression. Note the difference in both the mean and the variance prediction. Standard GP
regression is unable to adapt to the increase in noise at the location of higher variance.

YW: The synthetic data originally used by [Yuan and Wahba, 2004]: 200 points xi were

sampled uniformly from [0, 1]. The targets were sampled from a Gaussian yi ∼
N (µ(xi), exp(g(xi))) with mean µ(xi) = 2[exp(−30(xi − 0.25)2) + sin(πx2

i )]− 2 and

the logarithm of the standard deviation g(xi) = sin(2πxi).

WI: The synthetic data originally used by [Williams, 1996]: 200 input points xi are drawn

from a uniform distribution on [0, π]. The targets yi are distributed according to a

Gaussian with mean sin(2.5xi) · sin(1.5xi) and standard deviation 0.01 + 0.25(1 −
sin(2.5xi))

2.

LI: The LIDAR data set [Sigrist, 1994] consists of 221 observations from a light detection

and ranging experiment. The logarithm of the ratio of received light from two laser

sources are given for several distances traveled before the light is reflected back to

its source.

For each data set, we performed 10 independent runs. In each run, we randomly split the

data into 90% for training and 10% for testing. Table 6.1 summarizes the experimental

results on the test sets. As one can see, most likely heteroscedastic GP regression is
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always at least as good as GP regression and always significantly improves the estimated

predictive distribution. We observed the same when we investigated Ecker and Heltshe’s

scallop data set [Ecker and Heltshe, 1994]. The set consist of 148 data points concerning

scallop abundance and it is based on a 1990 survey cruise in the Atlantic continental shelf

off Long Island, New York, USA. The input specifies the location (latitude and longitude)

and the target is the size of scallop catch at this location. We performed a 20 times estimate

on 129 randomly selected data points for training and tested the model on the remaining

19 points. On average, GP regression achieved an MSE of 1.93 ± 2.0 and an NLPD of

8.16 ± 0.64. Our heteroscedastic GP regression approach achieved an MSE of 1.03 ± 0.16

and an NLPD of 7.73 ± 1.78. The difference in NLPD is significant (t-test, p = 0.07), the

one in MSE not. To summarize, the results clearly answer (Q1) in an affirmative way.

To investigate (Q2), we ran experiments on all generated data sets, i.e., data sets GB, YW,

and WI. In Fig. 6.4 (top and bottom-left), the average standard deviations of the inferred

noise levels are given. Notice how in all cases the estimated noise is in close agreement

with the data generator. Moreover, they are also in the range of the ones reported in the

literature. Thus, our method is competitive with other heteroscedastic regression methods.

This is clearly an affirmative answer to (Q2).

To summarize, these results show that our method indeed improves GP regression, that

it is able to rediscover the hidden noise function, and that it is competitive with other

heteroscedastic regression approaches.

6.3.2 Non-Smooth Noise

Most likely heteroscedastic Gaussian processes assume the noise function to be smooth.

Here, we will experimentally investigate (Q3), i.e., to which extent they can handle non-

smooth noise functions. To this aim, we followed Cawley et al. [2006] and considered

the step function on [−1, 1]: f(x) = 1 if x > 0 and 0 otherwise. 100 points uniformly

spaced in the interval [−1, 1] have been chosen and the targets have been corrupted with

Table 6.1: Mean test set MSE and NLPD over 10 reruns. In each run, the data set was randomly
split into 90% training and 10% test data points. A ’•’ denotes a significant improvement (t-test,
p = 0.05) over the corresponding value. Values are rounded to the second digit.

Data set MSE NLPD
GP Het GP GP Het GP

GB 0.40 ± 0.20 0.40 ± 0.19 1.57 ± 0.31 1.46 ± 0.30 •
YW 0.88 ± 0.19 0.89 ± 0.18 1.66 ± 0.21 1.37 ± 0.26 •
WI 0.49 ± 0.30 0.49 ± 0.30 0.78 ± 0.35 0.35 ± 0.39 •
LI 0.49 ± 0.30 0.49 ± 0.30 0.78 ± 0.36 0.35 ± 0.39 •
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Figure 6.4: Comparison of the estimated hidden noise rates with the true ones. Solid curves
give the average estimated standard deviation of the noise and dashed curves the corresponding 2σ
confidence intervals. Dashed-dotted curves show the true noises. (Top-left) GB data set: 30 runs
à 60 samples. (Top-right) YW data set: 10 runs, 200 samples. (Bottom-left) WI data set: 10
runs, 100 samples. (Bottom-right) Average variance for the step function (20 runs, 100 samples).

a Gaussian noise of standard deviation 0.1. The optimal predictive variance is very large

around 0. A standard GP with stationary covariance function is in fact unable to model

this. In contrast, the predictive variance of a most likely heteroscedastic GP captures the

misfit around 0 well. Figure 6.4 (bottom-right) shows the estimated variance averaged

over 20 reruns. The peak is at zero and the average of 0.4 is the same as Cawley et al. ’s

result [Cawley et al., 2006] using “leave-one-out heteroscedastic kernel regression.” The

non-zero variance in the flat regions is related directly to the noise in the targets. This

affirmatively answers (Q3).

6.3.3 Sparse Approximations

In order to investigate (Q4), i.e., sparse approximation techniques within most likely het-

eroscedastic GP regression, we ran three sets of experiments.

First, we reconsidered the benchmark data sets from Sec. 6.3.1. For the synthetic data

sets, we sampled 1000 examples in each run; for the LI data set, we used the original data
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set. The data was randomly split into 90% training and 10% test points. 100 random

samples of the training set were used as support set. Table 6.2 summarizes the results. As

one can see, most likely heteroscedastic GP regression is again always at least as good as

GP regression and always significantly improves the estimated predictive distribution.

Second, we investigated the kin-8nh data set. This data set was generated synthetically

from a realistic simulation of the forward dynamics of an 8 link all-revolute robot arm1.

The task is to predict the distance of the end-effector from a target. The inputs are 8

features describing quantities like joint positions, twist angles, etc. In total, there are

2000 training examples. We ran our approach 10 times and each time randomly selected

a subset of 200 as support set. Standard GP regression achieved an MSE of 0.52 ± 0.03

and an NLPD of −0.23± 0.023 on the whole data set; the most likely heteroscedastic GP

regression an MSE of 0.49 ± 0.03 and a NLPD of −0.26 ± 0.024. Both differences are

significant (t-test, p = 0.05).

Third, we considered the Spatial Interpolation Comparison (SIC) 2004 competition. The

target variable is ambient radioactivity measured in Germany. More precisely, the data

are gamma dose rates reported by means of the national automatic monitoring network2.

There are two scenarios: the “normal” and the “anomaly”, which contains an anomaly in

radiation at a specific location. We have focused on the “anomaly” scenario. As Le et

al. [2005] point out, there is no reason to believe that radioactivity would exhibit highly

non-uniform behavior. GP regression, however, is unable to cope with local noise due to

the “step-like” anomaly. In contrast, heteroscedastic GP regression should adapt locally to

the noise. To investigate this, we performed 10 random estimates using 400 of the 808 given

examples as support set. The initial parameters were selected on the “normal” data set.

On the complete data set, the standard GP achieved an MSE of 24.72±8.51 and an NLPD

of 6.84± 3.63, both averaged over the 10 runs. Our heteroscedastic approach achieved an

Table 6.2: Mean test set MSE and NLPD over 10 runs of sparse approximation. A ’•’ denotes a
significant improvement (t-test, p = 0.05) over the corresponding value. Values are rounded to the
second digit.

Data Set MSE NLPD
GP Het GP GP Het GP

GB 0.73 ± 0.18 0.73± 0.17 2.02 ± 0.12 1.92 ± 0.16 •
YW 0.88 ± 0.05 0.84 ± 0.05 • 1.88 ± 0.14 1.46 ± 0.13 •
WI 0.59 ± 0.09 0.56± 0.11 0.90 ± 0.11 0.41 ± 0.18 •
LI 0.08 ± 0.04 0.08± 0.03 −1.03± 0.33 −1.35 ± 0.32 •

1See http://www.cs.toronto.edu/\∼delve
2See http://www.ai-geostats.org/events/sic2004
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Figure 6.5: Results on data from the Spatial Interpolation Comparison (SIC) 2004. Mean esti-
mates (left) and variance estimates (right) for most likely heteroscedastic GP regression. Note the
peak in variance at the location of the outbreak.

MSE of 58.27 ± 29.17 and an NLPD of 4.21 ± 0.25. Thus, the most likely heteroscedastic

GP models the predictive distribution significantly better (t-test, p = 0.05), but achieve

a significantly worse MSE measure (t-test, p = 0.05). This is because the outbreak was

identified as noise as shown in Fig. 6.5, which depicts a typical radioactivity prediction

using our method. Actually, the estimated variance was only high at the location of the

outbreak. This contrasts with standard GPs, which cannot adapt to the local noise.

To summarize, the results of all three experiments affirmatively answer (Q4), the SIC

experiment also (Q3). Furthermore, they confirmed the drop in runnning time from O(n3)

for standard GPs to O(m2n) for the projective process approximation.

6.4 Related Work

The non-linear regression problem has been extensively studied in research areas such as

machine learning, statistics, or engineering. While many existing approaches to the prob-

lem assume constant noise throughout the domain, there is also a growing body of work

addressing heteroscedasticity, i.e., varying levels of noise. Schoelkopf et al. [2000] present

an SVM based algorithm that takes a known variance function into account. Nott [1996]

propose a Bayesian model based on penalized splines and give an MCMC algorithm for

inferring the posterior. Chan et al. [2006] derive a similar model for the Gaussian case,

which adapts the noise variances and also requires MCMC for inference. Edakunni et

al. [2007] presents a mixture of local linear regression models that can be learned using

variational Bayesian EM. Opsomer et al. [1997] present an iterative procedure for dealing

with heteroscedasticity in the context of kriging. They assume a linear model for the mean

that is fitted using generalized least squares. Snelson et al. [2003] propose a non-linear

transformation of the output space to model output-dependent noise variances. Yuan and
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Wahba [2004] also jointly estimate the mean and noise variances but do not deal with the

problem of selecting the kernel function. Le et al. [2005] also estimate the variance non-

parametrically along with the mean of the distribution. In contrast to other approaches,

they propose a maximum-a-posteriori estimation of the natural parameters in the expo-

nential family. This yields, for the case of given kernel parameters, a convex optimization

problem that can be solved efficiently. Recently, Snelson and Ghahramani [2006b] pro-

posed to utilize the dependency of the predictive uncertainty on the density of input data

points.

6.5 Conclusion

This chapter has shown that effective Gaussian process regression with input-dependent

noise can be fully implemented using standard GP techniques and without having to resort

to MCMC approximations.

In experimental tests, most likely heteroscedastic GP regression, the resulting approach,

produces estimates that are significantly better than for standard GPs and competitive

with other heteroscedastic regression approaches.
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Chapter 7

Learning Observation Models for

Range Sensors

We apply the heteroscedastic Gaussian process model, which was introduced

in the previous chapter, to the problem of mobile robot localization using 2D

range sensors. This approach allows to learn in the space of continuous range

functions directly rather than being restricted to discrete sets of independent

beam measurements. As one distinct practical benefit, this offers a natural and

sound way of dealing with highly peaked observation models in Monte Carlo-

based estimation approaches.

Acquiring, interpreting, and manipulating information from sensors is one of the fundamen-

tal tasks within mobile robotics. For instance, based on models for the robot’s kinematics

and perception, a robot might be asked to perform tasks such as building a map of the

environment, determining its precise location within a map, or navigating to a particular

place. In designing robots to operate in the real world, one cannot avoid dealing with the

issue of uncertainty. Uncertainty arises from sensor limitations, noise, uncertain actions,

and the fact that most complex environments can only be represented and perceived in a

limited way. As also discussed in Chapter 3, state-of-the-art approaches build on proba-

bilistic foundations and model the robot’s perception as a probability density p(z|x), where

z is an observation and x denotes the state of the robot, e.g., its position relative to the

environment.

Among the most widely used types of sensors are range sensors such as laser range finders

and sonar sensors. The popularity of range sensors in research and industry is due to
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Figure 7.1: The predictive distribution of range measurements for an uncertain robot pose within
an office environment (heading angle varies by ±5◦). Scales are given in meters. The straight, red
lines depict one possible range scan in this setting.

the fact that spatial information about the environment can be acquired directly and that

state-of-the-art sensor hardware is accurate and reliable. Range sensors measure distances

ri to nearby objects along certain directions αi (possibly multi-dimensional bearing angles)

relative to the sensor. Hence, for a vector r = (r1, . . . , rm) of distance measurements with

corresponding bearing angles A = (α1, . . . ,αm) and for a given sensor pose x, the sensor

model is given by p(r|A,x). Such a model is used, for example, to update a map of the

environment according to an newly acquired range scan z = 〈(ri,αi)〉mi=1 or to evaluate

the likelihood of a range measurement for localization purposes.

In this chapter, we propose a novel, generative model for p(r|A,x), termed Gaussian beam

processes (GBP), which takes a nonparametric Bayesian regression view on the measure-

ment modeling task. We treat the measurements z = 〈(ri,αi)〉mi=1 as sets of samples from

a stochastic process p(r|α) and assume the process to be a Gaussian process [Williams

and Rasmussen, 1995], i.e., any finite collection of random variables rj is assumed to have

a joint Gaussian distribution. Learning in this framework means recording or simulating

a training set of range scans and adjusting a predefined covariance function accordingly.

This can be done online, while the robot is operating, or offline. We put special empha-

sis on the application of GBPs to mobile robot localization, but nevertheless present the

model in a general form that should also be useful in many other applications for range

sensor.

A major benefit of our model in localization tasks is that it naturally allows to estimate the

distribution p(r|A,Ux) of range measurements for a whole region Ux of the pose space. As

we will show, this property can be used to deal with highly peaked observation likelihood
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Figure 7.2: The posterior distribution of robot poses is typically approximated by discretizing
the pose space using a regular grid (left) or by sampling it (right).

functions—which are a well-known practical problem in mobile robot localization and

which typically occur when using precise sensors such as laser range finders.

As an example, consider Fig. 7.1. It shows the predictive distribution of range measure-

ments for a mobile robot with an uncertain heading angle, i.e., its location is fixed, the

orientation angle, however, is known only up to ±5◦. It can be clearly seen from the vi-

sualized standard deviations of the range predictions that the model accurately identifies

the distances that can be predicted with high confidence despite the angular uncertainty

in the sensor pose. The ability to learn and represent such distributions is of particular

value in applications in which the posterior is approximated using a discrete set of pose

hypotheses. In histogram filtering, for example, the pose space is partitioned into a finite

set of grid cells (see the left diagram in Fig. 7.2). With the GBP model, we can estimate

the observation likelihood p(z|Ux) for a whole grid cell Ux (centered at x) directly rather

than having to numerically approximate 1
|Ux|

∫

Ux

p(z|x) dx using point estimates of the

likelihood function. This ability is also useful for particle filtering in which the posterior

is represented by a finite set of weighted samples (see the right diagram in Fig. 7.2). It is

a well-known fact that highly peaked likelihood functions have to be regularized in prac-

tical applications, because the number of particles is limited and, thus, the probability of

sampling close enough to the high-likelihood peaks can be extremely low.

Furthermore, the Gaussian process treatment offers the following distinct benefits:� The model is fully predictive as it is able to predict ranges at arbitrary bearing

angles, i.e., also for angles in between two beams of an actual scan and for beams

that have been classified as erroneous. For all predictions, the model also yields the

predictive uncertainties.� Neither the number of range measurements per scan nor their bearing angles have

to be fixed beforehand.� By representing correlations between adjacent beams using parameterized covari-
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ance functions, only few recorded or simulated range scans are required to learn an

accurate model.� Gaussian processes are mathematically well-established. There exists a large pool of

methods for learning, likelihood evaluation, and prediction.

The chapter is organized as follows. In Sec. 7.1, we discuss the problem of highly peaked

observation models and possible remedies. Section 7.2 presents our Gaussian beam process

(GBP) model. In Sec. 7.3, we describe its application to Monte Carlo localization and

present the results of extensive evaluations on real world and synthetic data.

7.1 Regularizing Observation Likelihoods

It was already noted in [Gordon et al., 1993]—one of the earliest references to the particle

filtering principle—that low observation noise variances can lead to serious practical prob-

lems. Range sensors, for instance, have extremely small noise rates and provide a large

amount of beam measurements per scan z. Thus, already small deviations of a sampled

sensor pose x[i] from the true pose x can lead to a significant drop of the observation

likelihood, p(z|x[i])≪ p(z|x). In such cases, either� the state space has to be sampled very densely to ensure that hypotheses are created

close enough to the true state or� the observation likelihoods have to be regularized appropriately.

The first solution often is intractable for computational reasons or because appropriately

focusing proposal distributions are not available (see Chapter 3). For deriving the second

solution, consider the right diagram in Fig. 7.2. We would like to compute the weight w[i]

of each state sample x[i] based on a local neighborhood Ux[i] rather than on its center point

only:

w[i] ∝ p(z | Ux[i]) =

∫

U
x
[i]

p(x̃) p(z | x̃) dx̃ . (7.1)

Here, p(x̃) characterizes how the neighboring states of x[i] should influence the regularized

likelihood estimate. It can be set, e.g., to a uniform distribution over a circular region Ux[i]

or to a Gaussian centered at x[i]. This way, we can account explicitly for the sampling

density of the filter in the regularization step by adapting the extent of the local neigh-

borhoods accordingly. We have conducted simulation studies (see Sec. 7.3.1) to confirm

that this regularization procedure significantly reduces the KL-divergence of the posterior

distribution from the ground truth. In effect, this reduces the risk of “missing” the peaks

of the true posterior and, thus, increases the robustness of the approximation.
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The hard task indeed is to represent and estimate the typically complex distribution of

observations p(z|Ux) and to perform density estimation for it. In our range sensing ap-

plication, for instance, Eq. (7.1) contains an integral over high-dimensional range scans z,

which causes the individual components zi to become statistically dependent. To capture

this dependency, we model the joint distribution of range measurements

p(z | Ux) = p(r1, . . . , rm | A,Ux) ∼ N (µ,Σ) (7.2)

by an m-dimensional Gaussian with µ ∈ Rm and Σ ∈ Rm×m. Note that this is a general-

ization of existing beam-based models that assume independent, normally distributed ri,

which corresponds to setting Σ = diag(σ2
n) with a constant, real-valued measurement noise

parameter σ2
n. By also taking the covariances off the diagonal into account and by esti-

mating these parameters depending on the locations x, we achieve a less biased likelihood

model that also takes the dependencies between beams into account.

We seek to estimate the parameters µ and Σ from a set of L given range scans {z̃1, . . . , z̃L},
e.g., simulated at poses {x̃1, . . . , x̃L} sampled from Ux. This can either be done directly

using

µ =
1

L

L∑

i=1

z̃i (7.3)

Σ =
1

L

L∑

i=1

(z̃i − µ) (z̃i − µ)⊤ (7.4)

or by regarding the z̃i as samples from a continuous range function α 7→ r that maps

the orientations of the individual beams to the corresponding range measurements. In the

experimental evaluation, we will refer to this approach as Estimated Covariance (EC). If

we place a Gaussian process prior on this function and apply the heteroscedastic extension

introduced in the previous chapter, we are able to estimate µ and Σ reasonably accurate

from a number L of scans that is only about 5% of the one required for direct estimation

according to Eq. (7.3) and (7.4). This approach, which we term Gaussian beam processes

(GBP) is introduced in the following section.

7.2 Gaussian Beam Processes

We pose the task of estimating p(r|A) as a regression problem and model the function

that maps beam orientations α to range measurements r as a stochastic process. In

other words, we regard the individual measurements ri as a collection of random variables

indexed by the respective beam orientations αi. By placing a Gaussian process prior over
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Figure 7.3: The effect of modeling non-constant noise on a data set of range measurements sim-
ulated for the case of an uncertain sensor orientation (±5◦). Standard Gaussian process regression
(left) assumes constant noise for all bearing angles. Modeling heteroscedasticity (our model, on
the right) yields lower predictive uncertainties at places with low expected noise levels such as the
wall in front. The straight, red lines depict one possible range scan in this setting.

this function, we get an easy-to-implement yet powerful model for likelihood estimation for

range measurements as well as for prediction. In the following, we will derive the general

model for d-dimensional angular indices αi (e.g., d = 1 for planar sensing devices, d = 2

for 3D sensors). Also note that we leave out dependencies on the sensor pose x in this

section to simplify notation.

Given a training set D of range and bearing samples, we want to learn a model for the

non-linear and noisy functional dependency ri = f(αi) + ǫi with independent, normally

distributed error terms ǫi. For this task, we apply the heteroscedastic Gaussian process

model introduced in the previous chapter. Thus, we model all range samples ri as jointly

Gaussian distributed p(r1, . . . , rn|α1, . . . ,αn) ∼ N (µ,K) with a mean µ and covariance

matrix K.

The mean µ is typically assumed 0 and K is defined by kij := k(αi,αj)+σ
2
nδij , depending

on a covariance function k and the global noise variance parameter σn. The covariance

function represents the prior knowledge about the underlying function f and does not

depend on the target values r of D. In this work, we make use of the often-used squared

exponential and the Matérn form (see Sec. 2.2). Both covariance functions are called

stationary, since they only depend on the distance ∆ij between input locations αi and

αj . The parameters of the covariance functions are called hyperparameters of the process.

They are typically denoted as Θ = (σf , ℓ, σn) (e.g., for the squared exponential).

As discussed in the previous chapter, standard Gaussian processes assume a constant noise

term, i.e., identically distributed error terms ǫi over the domain. For modeling range sensor
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measurements, however, we have two sources of variance in beam lengths, i.e.,� measurement noise, which is relatively small for state-of-the-art sensors such as laser

range finders and� inter-beam correlations due to an uncertain sensor pose (see Fig. 7.1). This situation

arises, for instance, if one applies the likelihood regularization scheme introduced in

the previous section.

Especially in the latter case, the variance of range values in each beam direction is, along

with its mean value, an important feature of the sought-after distribution of range measure-

ments. In order to account for it, we apply the heteroscedastic GP regression framework

introduced in the previous chapter rather than standard GPs. Figure 7.3 illustrates the

effect of this treatment on the predictive distribution for range values. The left diagram

depicts the standard procedure that assumes a constant noise term for all bearings α. Our

heteroscedastic treatment, depicted in the right diagram, achieves a significantly better fit

to the data set while still not over-fitting to the individual samples.

As in Chapter 6, we follow the approach of Goldberg et al. [1998] and condition a standard

Gaussian processes Gr for the range function on latent noise variables sampled from a

separate noise process Gn. Let v ∈ R
n be such noise variances at the n given data points

and v∗ ∈ R
m those for the m locations to be predicted, then the predictive distribution

for a new range value r∗ at angular index A∗ changes to

µ∗ = Kx∗x∗
(Kxx + R)−1 r , (7.5)

Σ∗ = Kx∗x∗
+ R∗ −Kx∗x (Kxx + R)−1 K⊤

x∗x
, (7.6)

where R = diag(v) and R∗ = diag(v∗). Now, as the noise variances v and v∗ cannot be

known a-priori, they have to be integrated over,

p(r∗|A∗,D) =

∫

p(r∗|A∗,v,v∗,D)
︸ ︷︷ ︸

pr

· p(v,v∗|A∗,D)
︸ ︷︷ ︸

pv

dvdv∗ . (7.7)

Given the variances v and v∗, the prediction pr in Eq. (7.7) is a Gaussian with mean and

variance as discussed above. The problematic term is indeed pv as it makes the integral

difficult to handle analytically. As discussed in detail in the previous chapter, we therefore

consider the approximation

p(r∗|A∗,D) ≈ p(r∗|A∗, ṽ, ṽ∗,D) , (7.8)

with (ṽ, ṽ∗) = arg max(ṽ,ṽ∗) p(ṽ, ṽ∗|A∗,D) and use the following EM-like procedure for
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learning the noise levels (ṽ, ṽ∗): (1) fix the noise levels and learn Gr using a standard

maximum likelihood estimator; (2) fix Gn, estimate the empirical noise levels of Gr on the

training data and estimate Gn using them as target data. Initially, the noise levels are set

to the empirical noise levels of a constant-noise Gaussian process induced on the training

data.

As covariance functions, we use the Matérn type as stated in Eq. (2.4) for the range

process and the squared exponential one [Eq. (2.3)] for the noise process. This matches

the intuition that the noise process should exhibit more smoothness than the range process.

As preliminary experiments revealed, however, this is not a critical choice. With properly

learned hyperparameters, the squared exponential function for both processes yields a

nearly as high performance in our application.

Evaluating the Joint Data Likelihood of Observations

Having learned a model for the distribution over range functions α 7→ r as discussed

above, we now want to estimate the likelihoood of observing a new scan z = 〈(αi, ri)〉mi=1

indexed by the beam orientations αi. In other terms, we seek to estimate p(z|D,Θ)

given the training data D and the learned covariance parameters Θ. We solve this by

considering the predictive distribution for range measurements r∗ at the very same beam

orientations α1, . . . ,αm, which is an m-dimensional Gaussian distribution as defined by

Eq. (7.5) and Eq. (7.6). As this predictive distribution is a multivariate Gaussian, we can

directly calculate the observation likelihood for the data vector z by evaluating the density

function

p(z | µ∗,Σ∗) =
[

(2π)
m
2 |Σ∗|

1
2

]−1
· exp

(

−1

2
(z− µ∗)

⊤Σ∗
−1(z− µ∗)

)

,

or, in a more convenient form

log p(z|µ∗,Σ∗) = −1

2
(z− µ∗)

⊤Σ∗
−1(z− µ∗)−

1

2
log |Σ∗| −

m

2
log(2π) . (7.9)

7.2.1 Regression over Periodic Spaces

In our application, we have to account for the fact that the input vectors αi are angular

quantities rather than unconstrained real valued vectors. This means that an angular

distance metric has to be incorporated into the covariance function to avoid discontinuities
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at ±π. For the one-dimensional case (for planar sensing devices), we use

dangle(α, β) :=







|α− β| if |α− β| ≤ π
2π − |α− β| otherwise.

Indeed, we also have to adapt the covariance functions themselves to the periodic structure

of the input space. For example, a periodic variant of the squared exponential covariance

function on the unit circle is

k(αi, αj) = σ2
f

∞∑

p=−∞

exp

(

−|(αi + 2πp)− αj |2
2ℓ2

)

, (7.10)

which takes infinitively many influences of a data point on itself into account. The squared

exponential covariance function, however, has a strong locality for relevant values of σ2
f

and ℓ. All summands with |αi−αj| >= 2π in Eq. (7.10) cannot even be represented using

double precision, because their value is too close to zero. We can therefore safely ignore

the periodicity in practice and only use the standard covariance function with the modified

distance metric defined above.

7.2.2 Efficient Inference by Exploiting Locality

The covariance functions employed in this work are stationary, i.e., they assign small

covariance values to those pairs of input points which lie far apart. With the given machine

precision, this implies that the resulting covariance matrices are effectively band limited

and only have non-zero entries close to the diagonal. This property can be exploited to

speed up the computations by using optimized algorithms for sparse matrix operations.

In this work, we used the UMFPACK package [Davis, 2004], an optimized solver for

sparse linear systems, which resulted in significantly reduced computation times as shown

in Fig. 7.4. The run-times are given in seconds for a full iteration of simulating the scan,

building the heteroscedastic model, and evaluating the observation likelihood for a given

scan with 31 beams. The gain in speed depicted in this figure is due to the sparsity induced

by the limitations of machine precision only, that is, exactly the same results are obtained.

In addition to this, the covariances could be truncated actively to much tighter bounds

before a notable loss of precision occurs. See also Chapter 11 for a more detailed discussion

of sparse approximations of Gaussian processes.

7.2.3 GBPs for Monte Carlo Localization

In the beginning of the chapter, we argued that likelihood functions for highly accurate

sensors should be regularized when used in sampling based estimation schemes. Then, we
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Figure 7.4: Exploiting the sparsity of the covariance matrix reduces the iteration times drastically,
especially for larger problem sizes.

proposed Gaussian beam processes as a means of learning and representing the complex

distributions over range functions that arise in this way. In this section, we will now join

both pieces and describe how they fit into the Monte Carlo localization (MCL) framework.

The task of mobile robot localization is to sequentially estimate the pose x of a moving

robot in its environment. The key idea of Monte Carlo localization (MCL) [Thrun et al.,

2000], which belongs to the class of particle filtering algorithms, is to maintain a sampled

approximation of the probability density p(x) of the robot’s own location. This belief

distribution is updated sequentially according to

p(xt|z1:t,u0:t−1) = η · p(zt|xt) ·
∫

p(xt|ut−1,xt−1) · p(xt−1|z1:t−1,u0:t−2) dxt−1 .

Here, η is a normalization constant containing the prior observation likelihood p(zt), which

is equal for the whole sample set and can thus be neglected. The term p(xt|ut−1,xt−1)

describes the probability that the robot is at position xt given it executed the action ut−1

at position xt−1. Furthermore, p(zt|xt) denotes the probability of making observation zt

given the robot’s current location is xt. Concretely, the update of the belief is realized by

the following two alternating steps:

1. In the prediction step, we propagate each sample to a new location according to

the robot’s dynamics model p(xt|ut−1,xt−1) given the action ut−1 executed since the

previous update.

2. In the correction step, the new observation zt is integrated into the sample set.

This is done by adjusting the weight of each sample according to the likelihood

p(zt|xt) of sensing zt given the robot pose xt.

The measurement model p(z|x) plays a crucial role in the correction step of the particle
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filter. Typically, very peaked models require a large number of particles and induce a high

risk of filter divergence. Even when the particles populate the state space densely, the

likelihoods of an observation might differ by several orders of magnitude. As the particles

are drawn proportionally to the importance weights, which themselves are calculated as

the likelihood of zt given the pose xt of the corresponding particle, a minor difference in

xt can already result in a large difference in likelihoods. This, in turn, would result in the

depletion of such a particle in the re-sampling step. As a consequence, the “peakedness”

of a measurement model should depend on the number of particles available and the size

of the space to be covered. To the best of our knowledge, all observation models used

in practice have parameters for controlling their smoothness. No information is lost in

this regularization step, as long as the “peakedness” of the model is not reduced below

sensible levels. In the following, we describe how GBPs can be applied to MCL and how

the smoothness of the model can be defined in terms of an easy to interpret parameter.

As mentioned in Sec. 7.2, we propose to estimate p(z|x) by building a GBP model for

the robot pose x online and evaluating the data likelihood of z according to Sec. 7.2. For

building the GBP model, we construct a training set D of simulated range measurements

relative to x̃ ∼ N (x,σx) using an occupancy grid map of the environment. The random

perturbations added to x account for the desired smoothness of the model as motivated

above. Indeed, the pose variance parameter σx introduced here more naturally quantifies

the level of regularization of GBPs compared to other models, as it is directly specified in

the space of robot locations. Note that no sensory information is discarded at this point.

For sufficiently high sampling densities, one could set σx = 0 to get the fully peaked model.

The MCL measurement update step for the whole filter using GBPs can be summarized

as follows:

Algorithmus 1 GBP-based Measurement Update for MCL

for all particles x[i] do
Generate D using ray casting in the given map at robot locations sampled from
N (x[i],σx).
Build local GBPs using D and the global covariance C.
Estimate all log p(z|x[i]) using the GBP models and weight the particles accordingly.

end for

7.3 Experimental Results

The intention of the experimental evaluation is to determine how well the proposed GBP

model performs compared to state-of-the-art probabilistic measurement models for laser

range finders. We implemented our approach in C/C++ and tested it in simulation as well
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Figure 7.5: Evaluating the proposed regularization procedure in simulation. Left: A Gaussian
prior is combined with a Gaussian likelihood function using Bayes’ rule. Right: If the posterior
is approximated using a coarse histogram, the regularized approximation lies closer to the true
posterior in terms of KL-divergence than the one based on point estimates of the likelihood function
in the middle of the histogram bins.

as with an ActivMedia Pioneer PII DX8+ robot equipped with a laser range finder in a

typical office environment. As the primary sensor is a planar sensing device, we only have to

deal with one-dimensional bearing angles. To ensure a fair comparison, we independently

optimized the parameters of all models using different data in all experiments.

We will proceed as follows. First, we present the results of a simulation study confirming

that regularizing the likelihood function reduces the KL-divergence of posterior estimates

from the true posterior. Then, we present tracking and localization results with the real

robot and, finally, we present results on simulated data to demonstrate the main benefits

of our approach.

7.3.1 Simulation Study on Regularization

In Sec. 7.1, we argued that the robustness of approximative Bayes filter implementations,

such as the histogram filter or the particle filter, can be increased by regularizing the

observation likelihoods according to the discretization of the state space. In order to

quantify this effect, we performed a simulation study with the histogram filter and two

different likelihood functions. The central question here is the following. If the state space

is discretized using regularly spaced bins x[i] (see the left diagram in Fig. 7.2) and the

Bayesian update rule

p(x[i] | z) ∝ p(z | x[i]) p(x[i])

is applied to compute the posterior likelihood of bin x[i] after having observed z, does reg-

ularization of p(z | x[i]) decrease the approximation error w.r.t. the true posterior p(x|z)?

The non-regularized likelihood function is the point estimate of p(z | x) at the center of
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Figure 7.6: Results of the simulation study for Gaussian likelihoods (left) and the Sine function
(right). We give the mean KL-divergence (KL-D) with two-standard-deviations errorbars of the
true posteriors from the histogram-approximated ones for varying parameters of the likelihood
functions (horizontal axis). In both cases and for all parameter settings, regularization yields a
significantly lower KL-D (two sample t-test, α = 5%)

the histogram bin, while the regularized version uses a Monte Carlo estimate of Eq. (7.1)

over the whole bin x[i]. Figure 7.5 depicts one of the simulated situations with a Gaus-

sian prior and a Gaussian likelihood function. The true posterior is approximated using a

fine-grained grid and the approximation quality was assessed on [−4, 4] by calculating the

KL-divergence

DKL =
∑

j

ptrue(x
[j] | z) · log

(

ptrue(x
[j] | z)

papprox(x[j] | z)

)

on this grid. The two likelihood functions considered were a Gaussian with a standard

deviation σ ranging from 1 to 0 and the Sine function 1+sin(ω · (x−xo)) with a frequency

parameter ω ranging from 0 to 20. Figure 7.6 presents the results in both scenarios.

For each parameter setting, the offset of the likelihood peak was sampled 100 times from

[−3, 3]. The error bars give the two standard deviations intervals. For all parameter

settings, the regularized likelihood function achieves a significantly lower KL-divergence

(two sample t-test, α = 5%). Note that the large errorbars in the results are due to a

high variability of the approximation error depending on where the likelihood peak was

sampled within [−3, 3].

This experiment provides positive evidence for the claim that our regularization procedure

is able to reduce the KL-divergence of the approximated posterior distribution from the

true one. As the following experiment show, this leads to measurable improvements in

particle filtering-based applications of the likelihood model.
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Figure 7.7: Left: Map used for the tracking and global localization experiments. Right: Compar-
ison of the regularized, Gaussian-process–based sensor model (GBP) to the homoscedastic version
(STD-GP) and to state-of-the-art sensor models. We give the amount of successful global localiza-
tions depending on the number of particles used.

7.3.2 Tracking and Localizing a Real Robot

To evaluate our approach in practically relevant scenarios we performed extensive experi-

ments with a real robot and compared our GBP sensor model to often-used alternatives.

Concretely, we compared the performance of:

IB [Independent Beams] The standard beam-based sensor model that assumes indepen-

dent beams with an additive white noise component [Fox et al., 1999].

LF [Likelihood Fields] Also called the end-point sensor model [Thrun, 2001], which cal-

culates the likelihood of a range measurement as a function of the distance of the

respective beam’s end point to the closest obstacle in the environment.

GBP [Gaussian Beam Processes] Our GBP model presented in Sec. 7.2.

STD-GP [Standard Gaussian Processes] The homoscedastic version of the GBP model,

which assumes a constant noise variance for the whole domain.

As described in the previous sections, we build the GBP model online for each pose hy-

pothesis x by simulating a training set D of range measurements relative to neighboring

poses x̃ ∼ N (x,σx) using an occupancy grid map of the environment. The random pertur-

bations added to x account for the desired smoothness of the model as motivated above.

The pose variance parameter σx introduced here quantifies the level of regularization more

naturally compared to other models, as it is directly specified in the space of robot loca-

tions. Note that no sensory information is discarded by this operation. For sufficiently

high sampling densities, one could set σx = 0 to get the fully peaked model. We then

estimate p(z|x) by evaluating the data likelihood of z as described in Sec. 7.2.
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Figure 7.8: Pose tracking results with a real robot using a 180◦ field of view. The diagrams
depict the average localization error for this experiment with 31 (left) and 61 (right) laser beams
and give the tracking displacement error (y-axis) in meters for an increasing number of iterations.
The errors are averaged over 25 runs on the same trajectory. Due to a lack of proper regularization,
the risk of filter divergence increases with a growing number of beams for the IB and LF models.

We implemented Alg. 1 (see Sec. 7.2.3) in C/C++ and evaluated it using real data acquired

with a Pioneer PII DX8+ robot equipped with a laser range scanner in a typical office

environment (see the left picture in Fig. 7.7). The experiments described here are designed

to investigate how well our GBP approach performs in comparison to the widely used

independent-beams model (IB) and the likelihood-fields model (LF), and to quantify its

benefits compared to the standard GP (STD-GP), which does not model input-dependent

noise. While our approach is computationally more demanding than the alternative ones,

it still runs close to real-time for mobile robot tracking. A full iteration including scan

simulation and model building takes approximately 0.011 seconds on a standard desktop

PC running Linux.

In the first set of experiments, we assess the position tracking performance of the MCL

filter using the different measurement models. The robot started in the corridor of an office

environment (see the left picture in Fig. 7.7) and traversed a path through all adjacent

rooms. The explored environment has a long corridor and 8 rooms containing chairs, tables

and other pieces of furniture. In total, the map is 20 meters long and 14 meters wide. The

two diagrams in Fig. 7.8 depict the average localization errors for this experiment with

31 and 61 laser beams respectively. As can be seen, the GBP model and the likelihood-

fields model (LF) show similar, good localization performance and both outperform the

independent-beams model (IB). When using more beams for the same task, the difference

to IB gets even more pronounced. Due to a lack of proper regularization, the risk of filter

divergence increases with a growing number of utilized beams. In another experiment with

181 beams, the GBP model and LF showed a similar behavior as before. IB, however,

diverged even earlier than with 61 beams.
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Figure 7.9: Left: Number of successful localizations after 8 integrations of measurements for
the three regularization-based likelihood models for different numbers of particles. Right: The
Gaussian-process–based model (GBP) requires significantly less training data (note the logarithmic
scale) than the EC approach, which directly estimates the covariance matrix from data.

In a second set of experiments we investigated the robustness of the GBP approach during

global localization. Here, the task is to find a moving robot’s pose within the same office

environment as for the tracking experiment using a sequence of wheel encoder and laser

measurements. The results are given in the right diagram in Fig. 7.7, which shows the

number of successful localizations after 8 integrations of measurements of a moving robot

for the three measurement models and for different numbers of particles used. In the

experiment, we assumed that the localization was achieved when more than 95% percent

of the particles differed on average 30 cm at most from the true location of the robot. As

can be seen from the diagram, the GBP model performs better than the IB model and

both outperform the standard GP and the LF model in this task.

To analyze the effect of the Gaussian process prior placed on the distribution of range

functions, we also compared the GBP model against

EC [Estimated Covariance], our regularization scheme as presented in Sec. 7.1, in which

the beams per scan are modeled jointly as a Gaussian and the full covariance matrix

is estimated from data directly and

EV [Estimated Variance], the EC model with cross-correlation components ignored. That

is, only the diagonal entries of the covariance matrix are learned.

The left diagram in Fig. 7.9 gives the result of this comparison on the global localization

data set. It can be seen that the EC model outperforms both the GBP model as well as

EV. In principle, EC takes the same regularization approach as GBP and EV—it estimates

a joint Gaussian for the whole range scan based on scans simulated in a local neighborhood

of the pose hypotheses. In contrast to GBP, however, it estimates the parameters of this

high-dimensional Gaussian from data directly. This causes EC to require approximately 20
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Figure 7.10: Left: Observation log likelihood estimated by the GBP model for a single simulated
scan on a discretized pose space in a typical office room. It shows a convex shape and the true
robot pose (cross) is in the area of maximal values. Right: In the “nicely structured” office room
environment, all methods show similar performance and outperform the uniform (baseline) model,
which assigns the same likelihood value to all grid cells. Lower KL-D values are better.

times more training points than GBP. The right diagram in Fig. 7.9 gives the number of

simulations per beam required for the two approaches in logarithmic scale. This number

was determined by iteratively increasing the number of simulations until the parameters

of the estimated Gaussians had reached a steady state. Concretely, to learn models for

31-dimensional scans, GBP requires 4 data points per beam compared to 75 ones in the

case of EC. For 181 dimensions, GBP requires 30 simulations per beam vs. 750 for EC.

7.3.3 Results on Simulated Data in a Static Setting

In the previous section, we have evaluated the measurement models in the standard way for

mobile robot applications, i.e., we have evaluated their performances in real-world tracking

and localization tasks. Although this is closest to the actual application of the models (and

should therefore round off any other evaluation strategy), it has also one major drawback:

several external factors influence the evaluation, such as the choice of filtering algorithm,

the sampling and resampling strategies, and the order in which places are visited along

a trajectory. To investigate the strengths and weaknesses of the measurement models

independently from specific tracking algorithms, we ran a different set of experiments in a

static setting. Here, we use the Kullback-Leibler divergence (KL-D) on a discretized pose

space to measure how well the different models are able to reconstruct a pose distribution

given just the corresponding laser measurements. More precisely, for each measurement

model, we

• discretize the space of robot poses using a three dimensional grid (2D location and

heading) and let each grid cell represent one pose hypothesis x[i],
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Figure 7.11: In a highly cluttered environment, the IB model performs better than uniform
(baseline) but less well than the LF model. Our GBP model significantly outperforms the other
methods in this environment.

• select a cell index t to contain the true robot pose x: x ∈ x[t],

• randomly draw m test poses within this cell t and simulate corresponding range mea-

surement vectors zm using a given occupancy grid map.

• Now, we evaluate the observation likelihoods p(zm|x[i]) for each grid cell and each test

observation and sum up the individual observation likelihoods per cell.

• Finally, we normalize the whole likelihood grid and compute the KL-D DKL =
∑

i p(zm|x[i]) · log
(

p(zm|x[i])
δi=t

)

to a binary ground truth grid, where all likelihood mass

is concentrated at the cell t, i.e., the true robot pose.

To be able to compute the KL-D measure also when empty cells exist in the grids, we

employ the standard trick of adding an extremely small value (10−6) to each cell. The

specific choice of this value did not have a notable influence on the measure. The left

diagram in Fig. 7.10 depicts such a likelihood grid for the GBP model as well as the true

robot location in an office environment. It can be seen that the observation likelihood is

nicely peaked around the true robot pose and that the GBP model yields a smooth likeli-

hood function. The KL-D results for this room are given in the right diagram of the same

figure. The diagram shows that all three models achieve comparable good performance

in the task of recovering the pose distribution in this situation. Additionally, we plot the

KL-D for the uniform model taken as a baseline. This model assigns the same, constant

likelihood value to all cells.

In contrast to these results for a “nicely structured” office room, the situation is distinctly

different in highly cluttered environments such as a laboratory room with many chairs and

tables. Here, as documented by the results given in the left diagram in Fig. 7.11, the GBP

model clearly outperforms the other two models. The KL-D to the ground truth is always
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significantly lower and it decreases with a growing number of laser beams used. The IB

model even shows an increasing KL-D with increasing numbers of laser beams due to its

lack of proper regularization. In both experiments, we used a relatively coarse grid with

grid cell areas of approximately 0.037m2.

To summarize, the experiments on real and on simulated data demonstrate that the pro-

posed regularization approach significantly improves the performance of Bayes filters for

pose recovery tasks from range measurements. The Gaussian beam process (GBP) model

achieves a nearly as high modeling accuracy as regularized models that are estimated

directly from data while it requires approximately 20 times less data points to be learned.

7.4 Related Work

Existing range sensor models for can be classified into feature-based, beam-based, and

correlation-based models. Feature-based approaches typically extract a set of features

from the range scan z and match them to features contained in an environmental model in

order to obtain p(z|x). Whereas such approaches have been proven to be robust in various

applications, they assume that the features are known beforehand and that they can be

extracted reliably, which might be hard in unstructured or cluttered environments. Alter-

native approaches directly operate on the dense measurements and therefore are applicable

even in situations in which the relevant features are unknown. As Thrun et al. [2005] point

out, extracting robust features is hard especially in unstructured and cluttered environ-

ments and can result in a loss of information. Like most state-of-the-art approaches, we

therefore operate on the dense measurements directly.

Beam-based models consider each value ri of the measurement vector z as a separate range

measurement and represent its one-dimensional distribution by a parametric function de-

pending on the expected range measurement in the respective beam direction (see Fox et

al. [1999] for example). Such models are closely linked to the geometry and the physics

involved in the measurement process. They are often called ray-cast models, because they

rely on ray casting operations within an environmental model, e.g., an occupancy grid map,

to calculate the expected beam lengths. As a major drawback, the traditional approach

assumes independent beams, which leads to highly peaked likelihood functions when one

increases the number of beams per measurement (e.g., to increase the spatial resolution).

In practice, this problem is dealt with by sub-sampling of measurements, by introducing

minimal likelihoods for beams, by inflating the measurement uncertainty [Petrovskaya et

al., 2006], or by other means of regularization of the resulting likelihoods (see, e.g., [Aru-

lampalam et al., 2002]). Other work along these lines include the regularized particle

filter [Musso et al., 2001] and the Parzen particle filter [Lehn-Schiøler et al., 2004]. Early
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references to the general idea include [Liu and West, 2001], in which the authors propose

to exchange the delta-Dirac kernels of a particle filters for Gaussian kernels in order to

estimate fixed system parameters and dynamic state variables jointly.

Correlation-based methods typically build local maps from consecutive scans and correlate

them with a global map [Schiele and Crowley, 1994, Konolige and Chou, 1999]. An intuitive

and effective approach also associated with this class of models is the so-called likelihood-

fields model or end point model [Thrun, 2001]. Here, the likelihood of a single range

measurement is a function of the distance of the beam’s respective end point to the closest

obstacle in the environment. As in the ray cast model, each beam is treated independently.

This model lacks a physical explanation, as it can basically “see through walls”, but it is

more efficient than ray cast models and works well in practice.

Work that specifically dealt with peaked measurement models include Pfaff et al. [2006],

who adapt the smoothness of the likelihood model depending on the region covered by the

individual particles, Fox [2001], and Kwok et al. [2003], who adapt the number of particles

depending on the progress of the localization process and computational power. These ap-

proaches have been developed independently from specific measurement models and should

be applicable directly to GBPs as well. Finally, GBPs are related to Gutierrez-Osuna et

al.’s [1998] neural networks approach to modeling the measurement of an ultrasonic range

sensor, which in contrast to GBPs assumes scans of fixed size.

7.5 Conclusion

In this chapter, we introduced Gaussian beam processes as a novel probabilistic measure-

ment model for range sensors. The key idea of our approach is to view the measurement

modeling task as a Bayesian regression problem and to solve it using Gaussian processes.

A major benefit of our model in localization tasks is that it allows to reason in the space

of range functions directly rather than being restricted to discrete sets of independent

beam measurements. This offers a sound way of dealing with highly peaked observation

likelihood functions in Monte Carlo-based estimation approaches.

As our experiments with real and simulated data demonstrate, Gaussian beam processes

provide superior robustness compared to state-of-the-art sensor models for range sensors.



Chapter 8

Monocular Range Sensing

We present a novel approach to estimating depth from single monocular camera

images by learning the relationship between range measurements and visual

features. Applied to test images, our model not only yields the most likely range

value corresponding to a certain visual input but also the predictive uncertainty.

This information, in turn, can be utilized to build a consistent occupancy grid

map of the environment.

Cameras have become popular sensors in the robotics community. Compared to proximity

sensors such as laser range finders, they have the advantage of being cheap, lightweight, and

energy efficient. The drawback of cameras, however, is the fact that only a projection of

the scene is recorded and, thus, it is not possible to sense depth information directly. From

a geometric point of view, one needs at least two images taken from different locations to

recover the depth information analytically. An alternative approach that requires just one

monocular camera and that we follow here, is to learn from previous experience how visual

appearance is related to depth. Such an ability is also highly developed in humans, who

are also able to utilize monocular cues for depth perception [Swaminathan and Grossberg,

2002].

As a motivating example, consider Fig. 8.1, which shows the (warped) image of an office

environment. Overlayed in white, we visualize the most likely area of free space that is

predicted by our approach. We explicitly do not try to estimate a depth map for the

whole image, as for example Saxena et al. [2007]. Rather, we aim at learning the func-

tion that, given an image, maps measurement directions to their corresponding distances

to the closest obstacles. Such a function can be utilized to solve various tasks of mo-
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Figure 8.1: Our approach estimates proximity information from a single image after having
learned how visual appearance is related to depth.

bile robots including local obstacle avoidance, localization, mapping, exploration, or place

classification.

In this chapter, we formulate the range estimation task as a supervised regression prob-

lem, in which the training set is build by acquiring images of the environment as well as

proximity data provided by a laser range finder. We discuss how to extract appropriate

visual features from the images using algorithms for edge detection and dimensionality re-

duction. We apply Gaussian processes as the learning framework in our proposed system

since this technique is able to model non-linear functions, offers a direct way of estimating

uncertainties for its predictions, and it has proven successful in previous work involving

range functions (see the previous chapter, for instances).

The chapter is organized as follows. First, we discuss appropriate visual features and how

they can be extracted from images in Sec. 8.1. We then formalize the problem of predict-

ing range from these features and introduce the proposed learning framework in Sec. 8.2.

In Sec. 8.3, we present the experimental evaluation of our algorithm as well as an applica-

tion to the mapping problem.

8.1 Omnidirectional Vision and Feature Extraction

Our goal is to learn the relationship between visual input and the extent of free space

around the robot. Figure 8.2 depicts the configuration of our robot used for data acquisi-

tion. An omnidirectional camera system (catadioptric with a parabolic mirror) is mounted

on top of a SICK laser range finder. This setup allows the robot to perceive the whole
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Figure 8.2: Our experimental setup. The training set was recorded using a mobile robot equipped
with an omnidirectional camera (monocular camera with a parabolic mirror) as well as a laser range
finder.

Figure 8.3: Two typical omnidirectional images recorded at the University of Freiburg (left) and
at the German Research Center for Artificial Intelligence (DFKI) in Saarbrücken (right).

surrounding area at every time step as the two example images in Fig. 8.3 illustrate. The

images in this figure show typical situations from the two benchmark data sets used in this

chapter. They have been recorded at the University of Freiburg (left image) and at the

German Research Center for Artificial Intelligence (DFKI) in Saarbrücken (right image).

The part of an omnidirectional image which is most strongly correlated with the distance

to the nearest obstacle in a certain direction α is the strip of pixels oriented in the same

direction covering the area from the center of the image to its margins. With the type

of camera used in our experiments, such strips have a dimensionality of 420 (140 pixels,

each having a hue, saturation, and a value component). In order to make these strips

easier accessible to filter operators, we warp the omnidirectional images (see Fig. 8.3)

into panoramic views (e.g., see Fig. 8.1) so that angles in the polar representation now
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Figure 8.4: Left: The amount of variance explained by the first principle components (eigenvec-
tors) of the pixel columns in the two data sets. Right: The 420 components of the first eigenvector
of the Freiburg data set.

correspond to column indices in the panoramic one. This transformation allows us to

replace complicated image operations in the polar domain by easier and more robust ones

in a Cartesian coordinate system. In the following, we describe several ways of extracting

useful low-dimensional feature vectors v from the 420-dimensional image columns, which

can be used to index the training and test sets for learning and evaluation, respectively.

8.1.1 Unsupervised Dimensionality Reduction

As a classic way of reducing the complexity of a data set, one can apply the principle

component analysis (PCA) to the raw 420-dimensional pixel vectors that are contained in

the columns of the panoramic images. The PCA is implemented using eigenvalue decom-

position of the covariance matrix of the training vectors. It yields a linear transformation

which brings the input vectors into a new basis so that their dimensions are now ordered by

the amount of data set variance they carry. In this way, one can truncate the vectors to a

few components without losing a large amount of information. The left diagram in Fig. 8.4

shows the remaining fraction of variance after truncating the transformed data vectors af-

ter a certain number of components. The right diagram in the same figure shows the 420

components of the first eigenvector for the Freiburg data set grouped by hue, saturation,

and value.

For the experiments reported on in Sec. 8.3, we trained the PCA on 600 input images

and retained the first six principle components. Our experiments revealed that the value

channel of the visual input is more important than hue and saturation for our task. The

GP model learned with these 6D features is termed PCA-GP in the experimental section.
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8.1.2 Edge-based Features

The PCA is an unsupervised method that does not take into account prior information that

might be available about the task to be solved—like the fact that distances to the closest

obstacles are to be predicted in our case. Driven by the observation that, especially in

indoor environments, there is a strong correlation between the extent of free space and the

presence of horizontal edge features in the panoramic image, we also assessed the potential

of edge-type features in our approach.

Laws’ convolution masks [Davies, 1997] provide an easy way of constructing local feature

extractors for discretized signals. The idea is to define three basic convolution masks� L3 = (1, 2, 1)T (Weighted Sum: Averaging),� E3 = (−1, 0, 1)T (First difference: Edges), and� S3 = (−1, 2,−1)T (Second difference: Spots),

each having a different effect on (1D) patterns, and to construct more complex filters by

a combination of the basic masks. In our application domain, we obtained good results

with the (2D) directed edge filter E5L
⊤
5 , which is the outer product of E5 and L5. Here,

E5 is a convolution of E3 with L3 and L5 denotes L3 convolved with itself. After filter-

ing with this mask, we apply an optimized threshold to yield a binary response. This

feature type is denoted as Laws5 in the experimental section. As another well-known

feature type, we applied the E3L
⊤
3 filter, i.e. the Sobel operator, in conjunction with

Canny’s algorithm [Canny, 1986]. This filter yields binary responses at the image loca-

tions with maximal gray-value gradients in gradient direction. We denote this feature

type as Laws3+Canny in Section 8.3. For both edge detectors, Laws5 and Laws3+Canny,

we search along each image column for the first detected edge. This pixel index then

constitutes the feature value.

To increase the robustness of the edge detectors described above, we applied lightmap

damping as an optional preprocessing step to the raw images. This means that, in a

first step, a copy of the image is converted to gray scale and strongly smoothed with a

Gaussian filter, such that every pixel represents the brightness of its local environment.

This is referred to as the lightmap. The brightness of the original image is then scaled

with respect to the lightmap, such that the value component of the color is increased in

dark areas and decreased in bright areas. In the experimental section, this operation is

marked by adding +LMD to the feature descriptions. The right image in Fig. 8.5 shows

Laws5+LMD edge features extracted from an image of the Freiburg data set.

All parameters involved in the edge detection procedures described above were optimized
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Figure 8.5: Left: Example Laws5+LMD feature extracted from one of the Freiburg images.
Right: Histogram for Laws5+LMD edge features. Each cell in the histogram is indexed by the
pixel location of the edge feature (x-axis) and the length of the corresponding laser beam (y-axis).
The optimized (parametric) mapping function that is used as a benchmark in our experiments is
overlaid in green.

to yield features that lie as close as possible to the laser end points projected onto the

omnidirectional image using the acquired training set. For our regression model, we can

now construct 4D feature vectors v consisting of the Canny-based feature, the Laws5 -

based feature, and both features with additional preprocessing using lightmap-damping.

Since every one of these individual features captures slightly different aspects of the visual

input, the combination of all, in what we call the Feature-GP, can be expected to yield

more accurate predictions than any single one.

As a benchmark for predicting range information from edge features, we also evaluated

the individual features directly. For doing so, we fitted a parametric function to training

samples of feature-range pairs. This mapping function computes for each pixel location of

an edge feature the length of the corresponding laser beam. The right diagram in Fig. 8.5

shows the feature histogram for the Laws5+LMD features from one of our test runs that was

used for the optimization. The color of a cell (cx, cy) in this diagram encodes the relative

amount of feature detections that were extracted at the pixel location cx (measured from

the center of the omnidirectional image) and that have a corresponding laser beam with a

length of cy in the training set. The optimized projection function is overlayed in green.

8.2 Learning Depth from Images

Given a training set of images and corresponding range scans acquired in a setting, we can

treat the problem of predicting range in new situations as a supervised learning problem.

The omnidirectional images can be mapped directly to the laser scans since both measure-

ments can be represented in a common, polar coordinate system. Note that our approach

is not restricted to omnidirectional cameras in principle. However, the correspondence be-
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tween range measurements and omnidirectional images is a more direct one and the field

of view is considerably larger compared to standard perspective optics.

In the spirit of the Gaussian beam processes (GBP) model introduced in Chapter 7, we

propose to put a GP prior on the range function, but in contrast, here we use the visual

features v described in the previous section as indices for the range values rather than the

bearing angles α. Concretely, we extract for every viewing direction α a vector of visual

features v from an image c and phrase the problem as learning the range function f(v) = y

that maps the visual input v to distances y. We learn this function in a supervised manner

using a training set D = {vi, yi}ni=1 of observed features vi and corresponding laser range

measurements yi. If we place a GP prior on the non-linear function f , i.e., we assume that

all range samples y indexed by their corresponding feature vectors v are jointly Gaussian

distributed, we obtain

f(v∗) ∼ N (µ∗, σ
2
∗) (8.1)

for the noise-free range with

µ∗ = k⊤
v∗v

(Kvv + σnI)
−1y (8.2)

σ2
∗ = k(v∗,v∗)− k⊤

v∗v
(Kvv + σnI)

−1kv∗v (8.3)

as defined in Chapter 2 [for the noisy case y∗ = f(v∗) + ǫ]. Here, we have Kvv ∈ Rn×n

with [Kvv]ij = k(vi,vj), kv∗v ∈ Rn with [kv∗v]i = k(v∗,vi), y = (y1, . . . , yn)⊤, and I the

identity matrix. σn denotes the global noise parameter. As covariance function, we apply

the squared exponential form

k(vp,vq) = σ2
f · exp

(

− 1

2ℓ2
|vp − vq|

)

. (8.4)

A particularly useful property of Gaussian processes for our application is the availability

of the predictive uncertainty at every query point. This means that visual features v∗

which lie close to points v of the training set result in more confident predictions than

features which fall into a less densely sampled region of feature space.

So far, our model assumes independent range variables yi and it thus ignores dependencies

that arise, for instance, because “neighboring” range variables and visual features are

likely to correspond to the same object in the environment. Angular dependencies can

be included, for example, (a) by explicitly considering the angle α as an additional index

dimension in v or (b) by applying Gaussian beam processes (GBPs) as an independent

post-processing step to the predicted range scan. While the first variant would require a
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Figure 8.6: Graphical model for predicting ranges r from a camera image c. The gray bars group
sets of variables that are fully connected and that are jointly distributed according to a GP model.

large amount of additional training data—since it effectively couples the visual appearance

and the angle of observation, the second alternative is relatively easy to realize and to

implement. Figure 8.2 gives a graphical representation of the second approach. The gray

bars group sets of variables that are fully connected and jointly distributed according to a

GP model. We denote with GPy the Gaussian process that maps visual features to ranges

and with GPr the heteroscedastic GP that is applied as a post-processing step to single,

predicted range scans. For GPr, the task is to learn the mapping α 7→ r using a training

set of predicted range values r. Since we do not want to constrain the model to learning

from the mean predictions µ∗(xi) only, we need a way of incorporating the predictive

uncertainties σ2
∗(vi) for the feature-based range predictions y∗. This can be achieved by

modifying the matrix R [see Eq. (6.1) and Eq. (6.2)], which contains the local noise rates

at the individual index locations, to

R̃ = diag(r̃) , r̃i = ri · σ2
∗(vi) . (8.5)

Here, each noise rate ri that is associated to a training point is adapted according to the

confidence σ2
∗(vi), with which GPy has estimated the corresponding range value. Note

that this “trick” of gating out training points by artificially increasing their associated

variance was also applied in Chapter 5 for deriving a GP mixture model. A more detailed

discussion of the approach can be found there and in [Tresp, 2000].

To summarize, in the full model that also deals with angular dependencies in a range scan,

which is denoted by the postfix +GBP in the experimental evaluation, prediction of a full

range scan given one omnidirectional image is performed as follows.

1. Warp the omnidirectional image into a panoramic view.
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2. Extract for every pixel column i a vector of visual features vi.

3. Use GPy (termed Feature-GP) to make independent range predictions about yi.

4. Learn a heteroscedastic GBP GPr for the set of predicted ranges {yi}ni=1 indexed by

their bearing angles αi and make the final range predictions ri for the same bearing

angles.

As the following experimental evaluation revealed, this additional GBP treatment (post-

processing with GPr) further increases the accuracy of range predictions. The gain, how-

ever, is rather small compared to what the GP treatment GPy adds to the accuracy achiev-

able with the baseline feature mappings. This might be due to the fact that the extracted

features—and the constellation of several feature types even more so—carry information

of neighboring pixel strips, such that angular dependencies are incorporated at this early

stage already.

8.3 Experimental Results

The experiments presented in this section are designed to evaluate how well the proposed

system is able to estimate range from single monocular camera images. We document a

series of different experiments: First, we evaluate the accuracy of the estimated range scans

using (a) the individual edge features directly, (b) the PCA-GP, and (c) the Feature-GP,

which constitutes our regression model with the four edge-based vision features as input

dimensions. Then, we illustrate how these estimates can be used to build grid maps of the

environment. We also evaluated whether applying the GBP model, which was introduced

in Chapter 7, as a post-processing step to the predicted range scans can further increase

the prediction accuracy. The GBP model places a Gaussian process prior on the range

function (rather than on the function that maps features to distances) and, thus, also

models angular dependencies. We denote these models by Feature-GP+GBP and PCA-

GP+GBP.

The two data sets used for the experiments have been recorded using a mobile robot

equipped with a laser scanner, an omnidirectional camera, and odometry sensors at the

AIS lab at the University of Freiburg [Fig. 8.3 (left)] and at the German Research Center for

Artificial Intelligence (DFKI) in Saarbrücken [Fig. 8.3 (right)]. The two environments have

quite different characteristics—especially in the visual aspects. While the environment in

Saarbrücken mainly consists of solid, regular structures and a homogeneously colored floor,

the lab in Freiburg exhibits many glass panes, an irregular, wooden floor, and challenging

lighting conditions.
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8.3.1 Accuracy of Range Predictions

We evaluated eight different system configurations, each on both test data sets. Table 8.1

summarizes the average RMSE (root mean squared error) obtained for the individual sce-

narios. The error is measured as the deviation of the range predictions using the visual

input from the corresponding laser ranges recorded by the sensor. The first four configu-

rations, referred to as C1 to C4, apply the optimized mapping functions for the different

edge features (see Fig. 8.5). Depending on the data, the features provide estimates with

an RMSE of between 1.7 m and 3 m. We then evaluated the configurations C5 and C6

which use the four edge-based features as inputs to a Gaussian process model as described

in Sec. 8.2 to learn the mapping from the feature vectors to the distances. The learning

algorithm was able to perform range estimation with an RMSE of around 1 m. Note that

we measure the prediction error relative to the recorded laser beams rather than to the

true geometry of the environment. Thus, we report a conservative error estimate that also

includes mismatches due to reflected laser beams contained in the test set. To give a visual

impression of the prediction accuracy of the Feature-GP, we give a typical laser scan and

the mean predictions in the right diagram in Fig. 8.7.

As configuration C7, we evaluated the PCA-GP approach that does not require engineered

features, but rather works on the low-dimensional representation of the raw visual input

computed using the PCA. The resulting six-dimensional feature vector is used as input to

the Gaussian process model. With an RMSE of 1.2 m to 1.4 m, the PCA-GP outperforms

all four engineered features, but is not as accurate as the Feature-GP. For configurations C6

and C8, we predicted the ranges per scan using the two different methods and additionally

applied the GBP model (see Chapter 7) to incorporate angular dependencies between the

predicted beams. This post-processing step yields slight improvements compared to the

Table 8.1: Average errors obtained with the different methods. The root mean squared errors
(RMSE) are calculated relative to the mean predictions for the complete test sets.

RMSE on test set
Configuration Saarbrücken Freiburg

C1: Laws5 1.70m 2.87m
C2: Laws5+LMD 2.01m 2.08m
C3: Laws3+Canny 1.74m 2.87m
C4: Laws3+Canny+LMD 2.06m 2.59m

C5: Feature-GP 1.04m 1.04m
C6: Feature-GP+GBP 1.03m 0.94m
C7: PCA-GP 1.24m 1.40m
C8: PCA-GP+GBP 1.22m 1.41m
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Figure 8.7: Left: Estimated ranges projected back onto the camera image using the feature
detectors directly (small dots) and using the Feature-GP model (red points). Right: Prediction
results and the true laser scan at one of the test locations visualized from a birds-eye view.

original variants C5 and C7.

The left image in Fig. 8.7 depicts the predictions based on the individual vision features

and the Feature-GP. It can be clearly seen from the image, that the different edge-based

features model different parts of the range scan well. The Feature-GP fuses these unreliable

estimates to achieve high accuracy on the whole scan. The result of the Feature-GP+GBP

variant for the same situation is given in Fig. 8.1. The right diagram in Fig. 8.7 visualizes

a typical prediction result and the corresponding laser scan—which can be regarded here

as the ground truth—from a birds-eye view. The evolution of the RMSE for the different

methods over time is given in Fig. 8.8. As can be seen from the diagrams, the prediction

using the Feature-GP model outperforms the other techniques and achieves a near-constant

error rate.

In summary, our GP-based technique outperforms the individual, engineered features for

range prediction. The smoothed approach (C6) yields the best predictions with a RMSE

of around 1 m. Even if requiring no background information one can obtain good results

by a combination of PCA for dimensionality reduction and GP learning with an error that

is only slightly larger (C8 versus C6).

8.3.2 Application to Mapping

Our approach can be applied to a variety of robotics tasks such as obstacle avoidance,

localization, or mapping. To illustrate this, we show how to learn a grid map of the en-

vironment from the predictive range distributions. Compared to occupancy grid mapping

where one estimates for each cell the probability of being occupied or free, we use the
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Figure 8.8: The evolution of the root mean squared error (RSME) for the individual images of
the Saarbrücken (left) and Freiburg (right) data sets.

so-called reflection probability maps. A cell of such a map models the probability that a

laser beam passing this cell is reflected or not. Reflection probability maps, which are

learned using the so-called counting model, have the advantage of requiring no hand-tuned

sensor model such as occupancy grid maps (see [Burgard et al., 2007] for further details).

The reflection probability mi of a cell i is given by

mi =
αi

αi + βi
, (8.6)

where αi is the number of times an observation hits the cell, i.e., ends in it, and βi is the

number of misses, i.e., the number of times a beam has intercepted a cell without ending

in it. Since our GP approach does not estimate a single laser end point, but rather a full

(normal) distribution p(z) of possible end points, we have to integrate over this distribution

(see Fig. 8.9). More precisely, for each grid cell ci, we update the cell’s reflectance values

according to the predictive distribution p(z) according to the following formulas:

αi ← αi +

∫

z∈ci

p(z) dz (8.7)

βj ← βi +

∫

z>ci

p(z) dz . (8.8)

Note that for perfectly accurate predictions, the extended update rule is equivalent to the

standard formula stated above.
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Figure 8.9: The counting model for reflectance grid maps in conjunction with sensor models that
yield Gaussian predictive distributions over ranges.

We applied this extended reflection probability mapper to the trajectories and range pre-

dictions that resulted from the experiments reported above. Figure 8.10 presents the laser-

based maps using a standard mapper (left column) and the extended mapper using the

predicted ranges (right column) for both environments (Freiburg on top and Saarbrücken

below). In both cases, it is possible to build an accurate map, which is comparable to

maps obtained with infrared proximity sensors [Ha and Kim, 2004] or sonars [Thrun et

al., 1998].

8.4 Related Work

The problem of recovering geometric properties of a scene from visual measurements is

one of the fundamental problems in computer vision and is also frequently addressed in

the robotics literature. Stereo camera systems are widely used to estimate the missing

depth information that single cameras cannot provide directly. Stereo systems either re-

quire a careful calibration to analytically calculate depth using geometric constraints or,

as flow[Sinz et al., 2004] demonstrated, can be used in combination with non-linear, su-

pervised learning approaches to recover depth information. Often, sets of features such as

SIFT [Lowe, 2004] are extracted from two images and matched against each other. Then,

the feature pairs are used to constrain the poses of the two camera locations and/or the

point in the scene that corresponds to the image feature. In this spirit, the motion of

the camera has been considered by Davision et al. [2007] and Strasdat et al. [2007]. Sim

and Little [2006] present a stereo-vision based approach to the SLAM problem, which also

includes the recovery of depth information. Their approach contains both the matching of

discrete landmarks as well as dense grid mapping using vision cues.

An active way of sensing depth using a single monocular camera is known as depth from

defocus [Favaro and Soatto, 2005] or depth from blur. Corresponding approaches typically

adjust the focal length of the camera and analyze the resulting local changes in image

sharpness. Torralba and Oliva [2002] present an approach for estimating the mean depth

of full scenes from single images using spectral signatures. While their approach is likely to
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Figure 8.10: Maps of the Freiburg AIS lab (top row) and DFKI Saarbrücken (bottom row) using
real laser data (left) and the predictions of the Feature-GP (right).

improve a large number of recognition algorithms by providing a rough scale estimate, the

spatial resolution of their depth estimates does not appear to be sufficient for the problem

studied in this chapter. Dahlkamp et al. [2006] learn a mapping from visual input to road

traversability in a self-supervised manner.

The problem dealt with in this chapter is closely related to the work of Saxena et al. [2007],

who utilize Markov random fields (MRFs) for reconstructing dense depth maps from single

monocular images. An alternative approach that predicts 2D range scans based on using

reinforcement learning techniques has been presented by Michels et al. [2005]. Compared

to these methods, our Gaussian process formulation provides the predictive uncertainties

for the depth estimates directly, which is not straightforward to achieve in an MRF model.

Hoiem et al. [2007] developed an approach to monocular scene reconstruction based on

local features combined with global reasoning. Whereas Han and Zhu [2003] presented

a Bayesian method for reconstructing the 3D geometry of wire-like objects, Delage et

al. [2005] introduced an MRF model on orthogonal plane segments to recover the 3D

structure of indoor scenes.
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Ewerth et al. [2007] extract depth cues from monocular image sequences in order to facil-

itate image retrieval from video sequences. Their major cue for feature extraction is the

motion parallax. Thus, their approach assumes translational camera motion and a rigid

scene.

In own previous work [Plagemann et al., 2007b] (see also Chapter 7), we applied Gaussian

processes to improve sensor models for laser range finders. Here, the goal is to exchange the

highly accurate and reliable laser measurements by noisy and ambiguous vision features.

As mentioned above, one potential application of the approach described in this chapter

is to learn occupancy grid maps. This type of maps and an algorithm to update such

maps based on ultrasound data has been introduced by Moravec and Elfes [1985]. In

the past, different approaches to learn occupancy grid maps from stereo vision have been

proposed [Thrun et al., 1998, Sabe et al., 2004]. If the positions of the robot are un-

known during the mapping process, the entire task turns into the so-called simultaneous

localization and mapping (SLAM) problem. Vision-based techniques have been proposed

by Elinas et al. [2006] and Davision et al. [2007] to solve this problem. In contrast to the

mapping approach presented in this chapter, these techniques mostly focus on landmark-

based representations.

8.5 Conclusion

We presented a novel approach to predicting range functions from single images recorded

with a monocular camera. Our model is based on a Gaussian process model for regression,

utilizing edge-based features extracted from the image or, alternatively, using the PCA to

find a low-dimensional representation of the visual input in an unsupervised manner. Both

models outperform the optimized individual features.

We furthermore showed in experiments with a real robot that the range predictions are

accurate enough to feed them into an extended mapping algorithm for predictive range

distributions and that the resulting maps are comparable to maps obtained with infrared

or sonar sensors.
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Chapter 9

Terrain Modeling as a Regression

Problem

We formalize terrain modeling as a probabilistic regression problem and derive

a solution based on Gaussian processes. As an integral part of our model, we

utilize nonstationary covariance functions, which adapt the smoothing behavior

locally, balancing smoothing against the preservation of structural features like

edges and corners.

The modeling of terrain surfaces has been studied widely across different research areas

like the geosciences or robotics. Important applications in the latter case include mo-

bile robotics for agriculture, planetary exploration, search and rescue, or surveillance. In

these domains, accurate and dense models of the three-dimensional environment enable the

robot to estimate the cost of traversability of locations, to plan its path to a goal location,

or to localize itself using sensor measurements. Building a digital terrain model involves

transforming a set of sensory inputs, typically a 3D point cloud or raw range sensor read-

ings, to a function mapping 2D location coordinates to elevation values. While geological

applications often operate on a larger spatial scale, in which local terrain features can

be neglected, autonomous robots greatly rely on distinct structural features like edges or

corners to guide navigation, localization, or terrain segmentation. We therefore have two,

at the first glance contradicting requirements for terrain models in robotics: First, raw

sensory data needs to be smoothed in order to remove noise and to be able to perform

elevation predictions at all locations and, second, discontinuities need to be preserved as

they are important features for important tasks. Consider, for example, an autonomous
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Figure 9.1: Left: A hard, synthetic regression problem. The continuous parts should be smoothed
without removing the strong edge feature. Right: Our approach achieves this by adapting local
kernels to the terrain data.

car driving in urban terrain. The street itself should be reconstructed as a smooth surface

to enable the path planning algorithm to find a smooth trajectory while the step to the

sidewalk should be as sharp as possible to robustly identify it as a non-traversable obstacle.

In this chapter, we present a novel terrain modeling approach based on an extended Gaus-

sian process formulation. Our model uses nonstationary covariance functions as proposed

by Paciorek and Schervish [2004] to allow for local adaptation of the regression kernels to

the underlying structure. This adaptation is achieved by iteratively fitting the local ker-

nels to the characteristics of the data using local gradient features and the local marginal

data likelihood (see the right diagram in Fig. 9.1 for an illustration). Indeed, this idea is

akin to adaptive image smoothing studied in computer vision, where the task is to achieve

de-noising of an image without reducing the contrast of edges and corners [Takeda et al.,

2006, Middendorf and Nagel, 2002]. Although these approaches from the computer vision

literature are not specifically designed for dealing with a varying density of data points

or with potential gaps to fill, they nevertheless served as an inspiration for our kernel

adaptation approach.

The chapter is structured as follows. In Sec. 9.1, we formalize the terrain modeling problem

using Gaussian processes and introduce our approach to nonstationary adaptive regression

in Sec. 9.3. Section 9.4 then presents our experimental results on real and simulated terrain

data sets.

9.1 Digital Terrain Modeling

Data for building 3D models of an environment can be acquired from various sources. In

robotics, laser range finders are popular sensors as they provide precise, high-frequency
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measurements at a high spatial resolution. Other sensors include on-board cameras, which

are chosen because of their low weight and costs, or satellite imagery. The latter covers

larger areas and is used for, e.g., guiding unmanned areal vehicles (UAVs) or autonomous

cars. After various preprocessing steps, the raw measurements are typically represented as

3D point clouds or are transformed into a 3D occupancy grid or elevation map [Bares et

al., 1989]. In this work, we introduce a technique for constructing continuous, probabilis-

tic elevation map models from data points, that yield predictive distributions for terrain

elevations at arbitrary input locations.

The terrain modeling problem can be formalized as follows. Given a set D = {(xi, yi)}ni=1 of

n location samples xi ∈ R2 and the corresponding terrain elevations yi ∈ R, the task is to

build a model for p(y∗|x∗,D), i.e., the predictive distribution of elevations y∗ at new input

locations x∗. This modeling task is hard for several reasons. First, sensor measurements are

inherently affected by noise, which an intelligent model should be able to reduce. Second,

the distribution of available data points is typically far from uniform. For example, in

proximity to the sensor location there are usually more samples than in areas farther away.

Third, small gaps in the data should be filled with high confidence while more sparsely

sampled locations should result in higher predictive uncertainties. To illustrate the last

point, consider an autonomous vehicle navigating in off road terrain. Without filling small

gaps, even single missing measurements may lead to the perception of an un-traversable

obstacle and consequently the planned path might differ significantly from the optimal one.

On the other hand, the system should be aware of the increased uncertainty when filling

larger gaps to avoid overconfidence at these locations. As a last non-trivial requirement,

the model should preserve structural elements like edges and corners as they are important

features for various applications including path planning or object recognition.

In the following, we propose a model that accommodates for all of the above-mentioned

requirements using Gaussian process regression. In order to deal with the preservation of

structural features like edges and corners, we employ nonstationary covariance functions as

introduced by Paciorek and Schervish [2004] and present a novel approach to local kernel

adaptation based on gradient features and the local marginal data likelihood.

9.2 Nonstationary Gaussian Process Regression

The standard Gaussian process model for regression as introduced in Sec. 2.2 already

accounts for three of the requirements discussed in the previous section, namely de-noising,

dealing with non-uniform data densities, and providing predictive uncertainties. Proper

adaptation to local structure, however, cannot be achieved by using stationary covariance

functions, such as defined in Eq. (2.3) or in Eq. (2.4). These depend only on the differences
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between input locations and, thus, apply the same smoothness prior at every location of the

input space. In practice, this significantly weakens important features like edges or corners.

The left diagram of Fig. 9.1 depicts a synthetic data set which contains homogenous regions

which should be smoothed, but also a sharp edge that has to be preserved. Our model,

which is detailed in the next section, addresses this problem by adapting a nonstationary

covariance function to the local terrain properties. Our approach is able to solve situations

such as the one depicted in Fig. 9.1, in which a continuous surface is “cut” by a sharp

edge from its center to the boundary. Note that such situations can only sub-optimally

be dealt with by approaches based on segmenting the terrain into continuous sub-models

as they would inevitably introduce unjustified discontinuities at those segment boundaries

passing through the flat parts of the function.

A powerful model for building nonstationary covariance functions from arbitrary stationary

ones has been proposed by Paciorek and Schervish [Paciorek and Schervish, 2004]. For the

Gaussian kernel, their nonstationary covariance function takes the simple form

kNS(xi,xj) = |Σi|
1
4 |Σj|

1
4

∣
∣
∣
∣

Σi + Σj

2

∣
∣
∣
∣

− 1
2

· exp

[

−(xi − xj)
⊤

(
Σi + Σj

2

)−1

(xi − xj)

]

,(9.1)

where each input location xi is assigned an individual Gaussian kernel matrix Σi and the

covariance between two targets yi and yj is calculated by averaging between the two in-

dividual kernels at the input locations xi and xj. In this way, the local characteristics at

both locations influence the modeled covariance of the corresponding target values. In this

model, each kernel matrix Σi is internally represented by its eigenvectors and eigenvalues.

Paciorek and Schervish build a hierarchical model by placing additional Gaussian process

priors on these kernel parameters and solve the integration using Markov Chain Monte

Carlo (MCMC) sampling. While the model presented in [Paciorek and Schervish, 2004]

provides a flexible and general framework, it is, as also noted by the authors, computa-

tionally demanding and clearly not feasible for the real world terrain data sets that we

are aiming for in this work. As a consequence, we propose to model the kernel matrices

in Eq. (10.1) as independent random variables that are initialized with the learned kernel

of the corresponding stationary model and then adapted iteratively to the local structure

of the given terrain data. Concretely, we assign to every input location xi from the training

set D a local kernel matrix Σi, which in turn is represented by one orientation parameter

and two scale parameters for the length of the axes. Given these parameters, the evalu-

ation of Eq. (10.1) is straightforward. In the following section, we will discuss in detail,

how the kernel matrices Σi can be adapted to the local structure of the terrain.
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9.3 Local Kernel Adaptation

The problem of adapting smoothing kernels to local structure has been studied intensively

in the computer vision community. It is therefore not surprising that, although image

processing algorithms are typically restricted to dense and uniformly distributed data,

we can use findings from that field as an inspiration for our terrain adaptation task.

Indeed, Middendorf and Nagel [2002] present a technique for iterative kernel adaptation

in the context of optical flow estimation in image sequences. Their approach builds on

the concept of the so-called gray-value structure tensor (GST), which captures the local

structure of an image or image sequence by building the locally weighted outer product

of gray-value gradients in the neighborhood of the given image location. Analogously, we

define the elevation structure tensor (EST) for a given location xi as

EST(xi) := ∇f(∇f)⊤(xi) , (9.2)

where f(x) denotes the terrain elevation at a location x and · stands for the operator

that builds a locally weighted average of its argument according to the kernel Σi. For

two-dimensional x = (x1, x2)
⊤, Eq. (9.2) calculates the locally weighted average of the

outer product of ∇f(x) = ( ∂f
∂x1

, ∂f
∂x2

)⊤. This local elevation derivative can be estimated

directly from the raw elevation samples in the neighborhood of the given input location

xi. We cope with the noise stemming from the raw data by averaging over the terrain

gradients in the local neighborhood.

Equation (9.2) yields a tensor, representable as a 2×2 real-valued matrix, which describes

how the terrain elevation changes in the local neighborhood of location xi. To get an

intuition, what EST(xi) encodes and how this can guide the adaptation of the local kernel

Σi, consider the following situations. Let λ1 and λ2 denote the eigenvalues of EST(xi)

and β be the orientation angle of the first eigenvector. If xi is located in a flat part of the

terrain, the elevation gradients ∇f are small in the neighborhood of xi. This results in two

equally small eigenvalues of EST(xi). In contrast, if xi was located in an ascending part

of the terrain, the first eigenvalue of EST(xi) would be clearly greater than the second one

and the orientation β would point towards the strongest ascent.

Intuitively and as discussed in more detail by Middendorf and Nagel [2002], the kernel Σi

describing the extent of the local environment of xi should be set to the inverse of EST(xi).

In this way, flat areas are populated by large, isotropic kernels, while sharp edges have

long, thin kernels oriented according to the edge orientation. Corner structures, having

strong elevation gradients in all dimensions, result in relatively small local kernels. To

prevent unrealistically large kernels, Middendorf and Nagel describe how this inversion
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can be bounded to yield kernels, whose standard deviations lie between given values σmin

and σmax. Based on their findings, we give three concrete local adaptation rules that

have been compared in our experimental evaluation. To simplify notation, we introduce

λk = λk/(λ1 + λ2), k = 1, 2, and the re-parameterization

Σi = R−⊤

(

α1 0

0 α2

)

R−1 , (9.3)

where α1 and α2 scale in orthogonal directions and R is a rotation matrix specified by the

orientation angle θ.

1. Direct Inverse Adaptation: Σi = EST(xi)
−1

2. Bounded Linear Adaptation:

αk = λk σ
2
min + (1− λk) σ

2
max , k = 1, 2

3. Bounded Inverse Adaptation:

αk =
σ2

maxσ
2
min

λk σ2
max + (1− λk) σ

2
min

, k = 1, 2

The two bounded adaptation procedures prevent unrealistically small and large kernels.

The Bounded Inverse strongly favors the larger eigenvalue dimension and produces more

pronounced kernels (larger difference between semi-axes) while Bounded Linear tends to

produce more balanced and larger kernels. This is why Bounded Linear performs better

in the presence of sparse data as it is less vulnerable to overfitting. For the experiments

reported on below, the bounds σmin and σmax were optimized empirically on independent

test data.

So far, we have described how to perform one local adaptation step for an arbitrary kernel

Σi. As the complete learning and adaptation procedure, which is summarized in Alg. 2,

we propose to assign to each input location xi of the training set D a kernel matrix Σi,

which is initialized with a global parameter vector Θ, that in turn has been learned using

standard GP learning with the corresponding stationary covariance function. The local

kernels are then iteratively adapted to the elevation structure of the given terrain data set

until their parameters have converged. To quickly adapt the kernels at locations where the

regression error is high (relative to the given training data set), we propose to make the

adaptation speed for each Σi dependent on the local data fit df(xi), which is the normalized

observation likelihood of the corresponding yi from the training set relative to the current
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predictive distribution, and the kernel complexity approximated as ci = 1/|Σi|. Both

quantities are used to form a learning rate parameter calculated by means of a modified

sigmoid function, ηi = sigmoid(−df(xi) · ci; δ), where the additional parameters δ are

determined empirically. Intuitively, we get a high adaptation speed when the data fit

relative to the kernel size is small. Algorithm 2 summarizes the adaptation procedure.

9.4 Experimental Results

The goals of the experimental evaluation presented in this section are (a) to show that our

terrain modeling approach is indeed applicable to real data sets, (b) that our model is able

to remove noise while at the same time preserving important structural features, and (c)

that our model yields more accurate and robust elevation predictions at sparsely sampled

input locations than an alternative approach to this problem.

As an evaluation metric, we use the mean squared error MSE(X ) = 1
m

∑m
i=1 (yi − y∗i )2 of

predictions y∗i relative to ground truth elevations yi on a set of input locations X = {xi}mi=1.

9.4.1 Evaluation on Artificial Terrain Data

The first set of experiments was designed to quantify the benefits of local kernel adaptation

and to compare the different adaptation rules. As a test scenario, we took the artificial

terrain data set depicted in Fig. 9.2 consisting of 441 data points containing uniform

regions as well as sharp edges and corners, which are hard to adapt to locally. Note that

the edge between the lowest and the second lowest plateau has a curvature and that three

different height levels can be found in the local neighborhood of the corner in the middle

of the diagram. We set σmin = 0.001 and σmax = 5.0 for the bounded adaptation rules.

To generate training data sets for the different experiments reported on here, we added

white noise of a varying standard deviation σ to the true terrain elevations and randomly

removed a portion of the samples to be able to assess the model’s predictive abilities.

Algorithmus 2 Local Kernel Adaptation

Learn global parameters Θ for the stationary squared exponential covariance function.
Initialize all local kernels Σi with Θ.
while not converged do

for all Σi do
Estimate the local learning rate ηi

Estimate EST(xi) according to Σi

Σ∗
i ← ADAPT(EST(xi))

Σi ← ηiΣ
∗
i + (1− ηi)Σi

end for
end while
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(a) Terrain (b) Convergence

Figure 9.2: (a): An artificial terrain data set used in the experimental evaluation, that exhibits
several local features that are hard to adapt to. Test data sets are generated by adding white
noise and randomly removing a portion of the data points. (b): The mean squared error (MSE)
of predicted elevations converges with an increasing number of adaptation steps. Iteration 0 gives
the MSE for the learned standard GP. Values are averaged over ten independent runs.

Figure 9.3 visualizes a complete adaptation process for the case of a data set generated

using a noise rate of σ = 0.3. On average, a single iteration per run took 44 seconds on

this data set using a PC with a 2.8 GHz CPU and 2 GB of RAM. Figures 9.3(c)-9.3(f)

show the results of standard GP regression which places the same kernels at all input

locations. While this leads to good smoothing performance in homogeneous regions, the

discontinuities within the map are also smoothed as can be seen from the absolute errors in

the third column. Consequently, those locations get assigned a high learning rate—plotted

in the right column—used for local kernel adaption.

The first adaptation step leads to the results depicted in Figures 9.3(g)-9.3(j). It is clearly

visible, that the steps and corners are now better represented by the regression model.

This has been achieved by adapting the kernels to the local structure, see the first column

of this row. Note, how the kernel sizes and orientations reflect the corresponding terrain

properties. Kernels are oriented along discontinuities and are small in areas of strongly

varying elevation. In contrast, they have been kept relatively large in homogeneous regions.

After three iterations, the regression model has adapted to the discontinuities accurately

while still de-noising the homogeneous regions [Fig. 9.3(k)-9.3(n)]. Note, that after this

iteration, the local learning rates have all settled at low values.

Figure 9.2 gives the convergence behavior of our approach using the Bounded Linear adap-

tation rule in terms of the mean squared prediction error for different amounts of points

removed from the noisy data set. After around 6 iterations, the errors have settled close

to their final value.
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(a) Test data set (Noise: σ = 0.3) (b) Local errors

(c) Local kernels (iter.
0)

(d) Regression without kernel
adaptation

(e) Local errors (f) Learning rate

(g) Local kernels (iter.
1)

(h) Regression after first iteration (i) Local errors (j) Learning rate

(k) Local kernels (iter.
3)

(l) Regression after third itera-
tion

(m) Local errors (n) Learning rate

Figure 9.3: The local kernel adaptation process on an artificial terrain data set: the original data
set, depicted in Figure 9.2, exhibits several local features that are hard to adapt to. The test data
set (a) was generated by adding white noise, resulting in the errors shown in (b). The second row of
diagrams gives information about the initialization state of our adaptation process, i.e., the results
of standard GP learning and regression. The following two rows depict the results of our approach
after the first and after the third adaptation iteration, respectively. In the first column of this
figure, we visualize the kernel dimensions and orientations after the corresponding iteration. The
second column depicts the predicted means of the regression. The third column gives the absolute
errors to the known ground truth elevations and the right-most column gives the resulting learning
rates ηi for the next adaptation step resulting from the estimated data likelihoods.
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(a) All data points given. (b) 15% of the data points re-
moved.

(c) 30% of the data points re-
moved.

Figure 9.4: Prediction accuracy for the scenario depicted in Figure 9.3 with (a) all data points
available, (b) 15% of the data points randomly removed and (c) 30% randomly removed. Each
figure plots the mean squared error of elevation predictions for a varying level of added white noise.
The values are averaged over 10 independent runs per configuration. (In the case of (c), the error
of Direct Inverse was always greater than 4.0).

In a different set of experiments, we investigated the prediction performance of our ap-

proach for all three adaptation rules presented in Sec. 9.3. For this experiment, we added

white noise of a varying noise level to the artificial terrain given in Fig. 9.2. The diagrams

in Fig. 9.4 give the results for different amounts of points removed from the noisy data

set. When no points are removed from the test set, the Bounded Inverse adaptation rule

performs best for small noise values. For large noise values, Bounded Linear and Direct

Inverse achieve better results. In the case of 15% and 30% data points removed, Di-

rect Inverse and Bounded Inverse are not competitive. In contrast, Bounded Linear still

achieves very good results for all noise levels. This is due to the fact that Bounded Linear

adaptation is least “aggressive” when fitting to the data points and it is thus able to span

larger gaps.

Thus, Bounded Linear produces reliable predictions for all tested noise rates and data

densities. This finding was supported by experiments on other real data sets not presented

here.

9.4.2 Evaluation on Real Terrain Data

In order to demonstrate the usefulness of our approach on real data sets, we acquired

a set of 3D scans of a scene using a mobile robot equipped with a laser range finder,

see Figure 9.5(a). We compared our prediction results to an approach from the robotics

literature [Früh et al., 2005], which has been applied successfully to the problem of 3D

mapping urban areas. We employed the Bounded Linear adaptation procedure for our

learning algorithm where we set σmin = 0.25 and σmax = 4.0. Figure 9.5 gives the results

of this experiment. An obstacle, in this case a person, is placed in front of the robot and
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(a) The first test sce-
nario

(b) Observations (points) and predicted means
(lines)

(c) Predictive un-
certainties (white:
zero)

Figure 9.5: (a): A real-world scenario, where a person blocks the robot’s view on an inhomoge-
neous and sloped terrain. (b): The raw data points as well as the predicted means of our adapted
nonstationary regression model. (c): Our model also yields the predictive uncertainties for the
predicted elevations (bright: certain, dark: uncertain).

thus occludes the sloped terrain behind.

We evaluated our approach for the situation depicted in the figure as well as for three

similar ones and compared its prediction accuracy to the approach of Früh et al. [2005], who

perform horizontal linear interpolation orthogonally to the robot’s view. These scenarios

used are actually rather easy ones for [Früh et al., 2005], as the large gaps can all be

filled orthogonally to the robot’s view, which is not the case in general. To estimate the

kernels at unseen locations, we built a weighted average over the local neighborhood with

an isotropic two-dimensional Gaussian with a standard deviation of 3 which we had found

to produce the best results. Table 9.1 gives the results. In all four cases, our approach

achieved higher prediction accuracies, reducing the errors by 30% to 70%. Figure 9.5(b)

depicts the predictions of our approach in one of the situations. In contrast to Früh et al.,

our model is able to also give the predictive uncertainties. These variances are largest in

the center of the occluded area as can be seen in Figure 9.5(c).

In a second real-world experiment illustrated in Fig. 9.7, we investigated the ability of our

Table 9.1: Prediction performance in terms of MSE relative to a second, not occluded scan.

Scenario Linear Interp. [Früh et al., 2005] Adapted GP Improvement

1 (Fig. 9.5) 0.116 0.060 48.3%
2 0.058 0.040 31.0%
3 0.074 0.023 69.9%
4 0.079 0.038 51.9%
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(a) The second test scenario (b) Observed elevations

Figure 9.6: A real-world scenario where a person blocks the robot’s view on a stone block, i.e., a
sharp linear discontinuity (a). Figure (b) visualizes the kernels that have adapted to the observed
block edges illustrated in (c). Figure (d) illustrates the predicted terrain elevations and two contour
lines for two different predictive uncertainty thresholds.

terrain model approach to preserve and predict sharp discontinuities in real terrain data.

We positioned the robot in front of a rectangular stone block such that the straight edges

of the block run diagonally to the robot’s line of view. A person stood in between the

robot and the block, thereby occluding parts of the block and of the area in front of it.

This scenario is depicted in Fig. 9.6(a). The task is to recover the linear structure of the

discontinuity and fill the occluded area consistent with the surrounding terrain elevation

levels. The adaptation procedure converged already after two iterations. The learned

kernel structure, illustrated in Fig. 9.7(a), enables the model to represent the stone blocks

correctly as can be seen from the predicted elevations visualized in Fig. 9.7(b). This figure

also illustrates the uncertainties in these predictions, corresponding to the variances of the

predictive distributions, by means of two contour lines. This indicates that a mobile robot

would be relatively certain about the block structure within in the gap region although

not having observed it directly. On the other hand, it would also be aware that it cannot

rely upon the model predictions in the occluded areas beyond the blocks: There are no

observations within a reasonable distance and, thus, the predictive variances are large.

To show that our approach is applicable to large, real-world problems, we have tested it

on a large dataset recorded at the University of Freiburg campus The raw terrain data

was preprocessed, scan-corrected, and then represented in a multi-level surface map with

a cell size of 10 cm × 10 cm. The scanned area spans approximately 299 by 147 meters.

For simplicity, we only considered the lowest data points per location, i.e. we removed
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(a) Adapted kernels at observed (red) and oc-
cluded locations (green)

(b) Predicted elevations

Figure 9.7: A real-world scenario where a person blocks the robot’s view on a stone block, i.e., a
sharp linear discontinuity (a). Figure (b) visualizes the kernels that have adapted to the observed
block edges illustrated in (c). Figure (d) illustrates the predicted terrain elevations and two contour
lines for two different predictive uncertainty thresholds.

overhanging structures like tree tops or ceilings. The resulting test set consists of 531 920

data points. To speed up computations, we split this map into 542 overlapping sub-maps.

This is possible without loss of accuracy as we can assume compact support for the local

kernels involved in our calculations (as the kernel sizes in our model are bounded). We

randomly removed 20% of the data points per sub-map. A full run over the complete

data set took about 50 hours. Note that the computational complexity can be reduced

substantially by exploiting the sparsity of our model (due to the bounded kernels) and

by introducing additional sparsity using approximative methods. This will be addressed

in the following chapters. Table 9.2 gives the results of this experiment for the different

adaptation rules. Bounded Linear and Bounded Inverse outperform the Standard GP

model where kernels are not adapted, while Direct Inverse is not competitive. Together

with the results of the other experiments, this leads to the conclusion that Bounded Linear

is an adequate choice for synthetic and real-world scenarios.

Table 9.2: Prediction performance on a large campus environment.

Adaptation procedure MSE

Standard GP 0.071

Direct Inverse 0.103
Bounded Linear 0.062
Bounded Inverse 0.059
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9.5 Related Work

A broad overview of methods used for modeling terrain data is given by Hugentobler [2004].

Elevation maps have been used as an efficient data structure for representing dense terrain

data [Bares et al., 1989, Pfaff and Burgard, 2005] and have been extended later to multi-

level probabilistic surface maps [Triebel et al., 2006]. Früh et al. [2005] present an approach

to filling local gaps in 3D models based on local linear interpolation. As their approach has

yielded promising results in city mapping applications, we compare its modeling accuracy

to our approach in Sec. 9.4.

Classical approaches for dealing with nonstationarity include input-space warping [Samp-

son and Guttorp, 1992, Schmidt and O’Hagan, 2003] and hierarchical modeling using local

kernels [Paciorek and Schervish, 2004]. The latter approach provides the general framework

for this work. Discontinuities in wind fields have been dealt with by Cornford et al. [1999].

They place auxiliary GPs along the edge on both sides of the discontinuity. These are then

used to learn GPs representing the process on either side of the discontinuity. In contrast

to our work, they assume a parameterized segmentation of the input space, which appears

to be disadvantageous in situations such as depicted in Fig. 9.1 and on real-world terrain

data sets. The problem of adapting to local structure has also been studied in the com-

puter vision community. Takeda et al. [2006] perform nonparametric kernel regression on

images. They adapt kernels according to observed image intensities. Their adaptation rule

is thus based on a nonlinear combination of both spatial and intensity distance of all data

points in the local neighborhood. Based on singular value decompositions of intensity gra-

dient matrices, they determine kernel modifications. Middendorf and Nagel [2002] propose

an alternative kernel adaptation algorithm. They use estimates of gray value structure

tensors to adapt smoothing kernels to gray value images.

9.6 Conclusion

In this chapter, we proposed an adaptive terrain modeling approach that balances smooth-

ing against the preservation of structural features. Our method uses Gaussian processes

with nonstationary covariance functions to locally adapt to the structure of the terrain

data. In experiments on synthetic and real data, we demonstrated that our adaptation

procedure produces reliable predictions in the presence of noise and is able to fill gaps of

different sizes. Compared to a state-of-the-art approach from the robotics literature, we

achieve a prediction error reduced by approximately 30% to 70%.



Chapter 10

Terrain Modeling for Legged Robot

Locomotion

We make our adaptive terrain model applicable to large data sets and discuss

foothold selection and path planning for legged robots. The system was im-

plemented and tested with a quadruped robot equipped with a light-weight laser

scanner on the tasks of autonomously sensing a rough terrain surface, planning

a path, and executing it online.

Legged robots have a number of advantages over traditional wheeled systems, such as

their ability to move in rough and unstructured terrain or to step over obstacles. Without

accurate knowledge of the terrain, however, these advantages cannot be realized as motion

planning requires means of estimating the stability of configurations and the traversability

of locations. Acquiring and representing models of rough terrain is a challenging task. First

of all, terrains are defined over a continuous space such that the space of all models has in

principle infinitely many dimensions. Discretizing this continuous space either results in

models of enormous size or in a loss of information that in turn may lead to the selection of

statically unstable and kinematically infeasible configurations of the robot. Furthermore,

we must rely on the robot’s noisy sensors to gather information about the world, which

requires statistical inference in the continuous and high-dimensional space of the model.

Finally and most importantly, we wish to be able to deal with a varying data density, to

balance the reduction of noise against the preservation of discontinuities, and to be able

to make sensible predictions about unseen parts of the terrain.
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Figure 10.1: Our quadruped robot is equipped with a laser sensor in order to observe its local
surrounding. By bending its leg joints, it is able to acquire dense 3D scans of the environment.

In this chapter, we extend the probabilistic, nonstationary terrain modeling approach

introduced in Chapter 9 towards efficient learning and inference using a decomposition

of the model into smaller, overlapping sub-models. As a result, our model is substantially

more efficient and accurate than those based on standard Gaussian processes and also

outperforms grid-based approaches to elevation mapping in several aspects. As a second

contribution of this chapter, we apply the terrain model to the task of terrain mapping with

a quadruped robot, specifically the Boston Dynamics LittleDog (see Fig. 10.1). The robot

faces the tasks of actively sensing the rough terrain, building a model, planning a path, and

executing it autonomously. It is geometrically impossible for the robot to directly sense

every point in the terrain from a single pose since the sensor has a limited field of view

and the terrain self-occludes in multiple locations. The ability to predict terrain elevations

at unseen locations, however, is highly beneficial for planning. Although it is difficult to

express a priori how the local structure can predict the unobserved terrain heights, we

demonstrate how this relationship can be learned from experience. Finally, we also show

how our locally adaptive GP model allows us to select safe foothold locations and to plan

a path to a goal location. The terrain model we present was implemented and tested with

a real robot. Figure 10.2 shows screen-shots of our controller application in some example

situations, i.e. during scan acquisition, terrain adaptation, and path planning.

We proceed as follows. First, we restate terrain modeling as a nonparametric regression

problem and discuss its extension to large datasets. Then, we show how to generate and

execute locomotion plans for a quadruped robot in Sec. 10.2 and present our empirical

evaluation on a real quadruped robot equipped with a laser range finder in Sec. 10.3 and

compare our model to popular grid-based alternatives.
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Figure 10.2: Online visualization using the controller application of our implemented system in
three different scenarios. Left: The robot bends its legs to acquire a 3D scan. Middle: It learns
a probabilistic terrain regression model. Right: It plans a path to a goal location. The terrain
elevations are color coded, ranging from green/blue (lowest) to pink/red (highest).

10.1 Large Nonstationary Models

Traversable surfaces can be characterized by a function f : R2 → R, f(x) = y, where x

indexes a location in the 2D plane and y denotes the corresponding terrain elevation in the

direction opposing the gravity vector. Elevation grids are a popular way of representing

such functions and learning them from a set of elevation samples D = {xi, yi}ni=1. In the

grid formulation, the space of locations x is discretized, such that each grid cell is assigned

a constant elevation value [Pfaff and Burgard, 2005] or a parametric function p(y) is fitted

to the distribution of its elevation values [Triebel et al., 2006]. As described in the previous

chapter, we take a different approach by placing a Gaussian process prior on the elevation

function f and by applying a nonstationary covariance function that is adapted to the

data locally. Recalling Eq. (10.1) from the previous chapter, it takes the form

kNS(xi,xj) = |Σi|
1
4 |Σj|

1
4

∣
∣
∣
∣
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−(xi − xj)
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(
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)−1

(xi − xj)

]

.(10.1)

As in the previous chapter, we adapt the local kernels Σi using terrain gradient information.

For an input location xi, we estimate the gradient

∇f(xi) =

(
∂f

∂([xi]1)
,

∂f

∂([xi]2)

)⊤

from elevation observations in the local neighborhood. We then calculate the trace of the

elevation structure tensor (EST)

T (xi) = trace
(

∇f(∇f)⊤(xi)
)

(10.2)
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Figure 10.3: Left: The parametric function ℓ(xi) maps terrain slope to length-scales. Right table:
Placing a hyper GP (HGP) over the latent length-scales reduces the mean squared error (MSE) of
predictions w.r.t. to weighted averaging (WA) for different levels of missing data.

to yield a single scalar representation of the terrain’s slope. Here, · denotes the locally

weighted averaging operator. Differing from the approach presented in the previous chap-

ter, we consider isotropic local kernels only, i.e. Σi = ℓ(xi)
2 · I, which have the local

length-scale ℓ(xi) ∈ R as free parameter. As a second difference, we do not iteratively

adapt to the local structure, but rather learn a mapping function for this task offline that

yields for a given T (xi) the best local length-scale ℓ(xi). Our mapping function takes the

form

ℓ(xi) =

{

a · T (xi)
−1 if a · T (xi)

−1 < ℓmax

ℓmax else
(10.3)

in order to yield short length-scales in high variance terrain and long length-scales in

flat parts. ℓ(xi) is bounded by ℓmax to prevent length-scales from going to infinity in

large, flat regions. The scale parameter a is learned in parallel to the search for the GP’s

hyperparameters. To give an intuition, we visualize ℓ(xi) in Fig. 10.3 (left) for different

parameter settings.

To be able to make elevation predictions at arbitrary locations, we need to evaluate the

covariance function at arbitrary locations and, thus, need to have local kernels Σ available

at any point in the input space—not just at the locations xi of the training set. We

are only able to calculate gradients and kernels directly where we have sufficient elevation

observations in the local neighborhood. Whereas in the previous chapter, we used weighted

averaging to calculate kernels in regions with few or no observations, instead, we propose

to put another GP prior on the local kernel’s parameters. We call this a hyper GP, since

its predictions are used as hyperparameters for the GP that models the elevations.

The hyper GP represents the function x 7→ ℓ(x) for the length-scales of the main GP.

As the length-scales have to be positive, we transform its training data into logarithmic
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space. The hyper GP itself uses an isotropic length-scale lh, which can be treated as an

additional hyperparameter of the model. At inference time, we calculate the most likely

length-scale given by the mean prediction of the hyper GP and use the resulting kernels

for elevation predictions of the elevation GP. The improvement in elevation prediction on

the benchmark dataset of Sec. 9.4 (see Fig. 9.2) using the hyper GP (HGP) with respect

to the weighted averaging (WA) approach taken in the previous chapter is shown in the

table in Fig. 10.3. We give the results for three different fractions of points removed from

the training set.

Model Tiling

The cubic time complexity of standard GPs makes a direct application to large data sets

impossible. In terrain modeling tasks, the training data grows as new parts of the terrain

are explored. With only a few laser scans, the training points are in tens of thousands and

regular GPs would spent days on fitting the regression function.

We propose to use an ensemble of overlapping GPs, where every sub-model is assigned to a

specific region in the input space. For most of the covariance functions relevant in practice,

the covariance between two points decreases drastically with their distance. The length-

scale parameter of the covariance function is simply a factor scaling this decay, which

does not influence the asymptotic behavior. Consequently, the decrease in covariance is

asymptotically the same for our nonstationary covariance function, where length-scales

vary smoothly and are ultimately bounded by a maximum value. If a point lies sufficiently

far from a region in input space, it has virtually no influence on the regression result within

this region. Thus, we propose to split the input space into rectangular segments and to

assign an individual GP model to each of the segments. This sub-model is then provided

with observations from within its segment only. This idea is similar to the approximation

that considers the full dependencies between observations if they belong to the same seg-

ment, but applies approximations for longer distances [Snelson and Ghahramani, 2007]. To

avoid problems at segment boundaries, we arrange the segments in an overlapping fashion

and only use the center parts of the segments for the final prediction. In this way, we

overcome the problem that predictions close to segment borders have unreasonably high

variance [Snelson and Ghahramani, 2007].

Concretely, for a prediction at input location x, we first determine the GP segment which

we consider most likely to have the best approximation for x, i.e. the segment which

has the center with the shortest Euclidian distance to x. Given this hard assignment to

segments, the resulting function is no longer continuous on the whole domain in general.

We have, however, not observed notable problems in practice, since already small overlaps
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Figure 10.4: Parts of a plan generated by our algorithm including the underlying cost function,
which depends on the terrain gradient and the uncertainty about elevation predictions estimated
by the Gaussian process model. The red line (filled boxes) depicts the trajectory of the center of
body, the other lines (stars and empty boxes) visualize feet motions. The cost function is color
coded ranging from black (little costs) to yellow/light-gray (high costs). Axis dimensions are given
in meters.

between segments result in similar regression results at the boundary. In order to evaluate

the gain in runtime performance, let us assume that

a) every segment contains at most a fraction c of all training data n, and

b) segments overlap by a fraction v of their inputs.

Every segment then uniquely covers cn−cnv = cn(1−v) of the training data, which makes it

necessary to use n
cn(1−v) = [c(1−v)]−1 segments to cover the whole input space. The original

GP training time of O(n3) can then be expressed as O((c(1−v))−1 ·(cn)3) = O(c2(1−v)·n3).

If we keep v constant, and scale c anti-proportionally to n—which corresponds to keeping

the segment size constant—the training time becomes linear in n.

In the experiments documented in Sec. 10.3, we specifically evaluated the benefits of our

model tiling strategy as well as the advantages that the locally adapted GP has w.r.t.

the standard GP model and grid-based approaches. Before doing so, we describe how to

generate useful trajectories for a quadruped robot using the predictive elevation model

introduced in this section.

10.2 Plan Generation

We can use the learned terrain models to plan a path for the robot that is collision-free and

statically stable. Our overall planning approach is an adaptation of the conventional prob-

abilistic roadmap algorithm [Kavraki et al., 1996]. Our simplified model of the quadruped

robot is a body with four two-link legs and point-shaped feet. The planning algorithm is
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a search for motions between static stances, always moving just a single leg at a time and

maintaining static stability over uneven terrain. We first randomly sample a set of poten-

tial footholds across the terrain, which are used to generate a graph of potential stances,

that is, statically stable and kinematically feasible positions of the robot. Graph search is

then used to find a sequence of stances from the start to the goal; the sequence of stances

can then be converted to series of planned joint angles.

10.2.1 Sampling Footholds

Let us assume that the planning problem is to find a motion plan that is essentially a

futtock (midline) motion across the uneven terrain from the start position to the goal. This

assumption will allow us to simplify the sampling to examining potential footholds around

the straight line to the goal, selecting footholds φ = (x, y, z) according to some regular

discretization around the line of intended motion, e.g., see the right diagram of Fig. 10.2

for the simplest case of equidistantly sampled footholds around a straight line. We do

this without loss of generality; we can easily support more complex scenarios by choosing

different sampling strategies. The sampling problem is outside the scope of this chapter

but has been discussed, for example, in [Hsu et al., 2005].

Each sampled foothold is evaluated with respect to a cost function and rejected completely

if the expected cost is above some threshold. The cost function used in this work consists of

the terrain gradient (i.e., slope) and the uncertainty in the terrain model (i.e., the Gaussian

process predictive uncertainty) at the sampled foothold φ.

10.2.2 Stance Graphs

Given a set of potential footholds, we next generate feasible stances of the robot. A stance

is an assignment of each foot i to a foothold, φi, such that it is kinematically feasible for

the robot to place its feet at each of the four footholds and remain statically stable. Note

that determining whether a stance is feasible or not is not directly computable from a set of

foot positions because the feet do not provide a unique description of the robot’s pose. The

robot has 18 degrees of freedom: 6 DOF for the center of the body (x, y, z, roll, pitch, yaw)

and three joints (hipα, hipβ , knee) in each leg. Under the assumption that the positions

of the feet are fixed, the feet constitute 12 constraints, leaving 6 unconstrained degrees of

freedom, corresponding to the position of the center of body. A stance si is therefore an

assignment of feet to footholds φ1..4 and a selection of a center of body position ξ.

Given an assignment of the center of the body position for a set of foot positions, the

known kinematics can be used to recover the joint angles of the legs and determine if the

pose is consistent with the dimensions of the leg links and the limits on the joint angles.
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Figure 10.5: An example stance graph generated from the set of foothold locations. Each stance
node (yellow) is connected to four foothold nodes (blue). Each two connected stance nodes have
three stance legs in common.

Given knowledge of the joint angles and that the stance is kinematically feasible, the center

of mass can then be determined; if the projection of the center of mass onto the ground

plane lies outside the support polygon (the convex hull of the four feet on the ground

plane), then the stance is not statically stable and the robot will fall.

In assigning the position of the center of body for a given set of foot positions, we would

ideally choose a center of body that provides static stability. Unfortunately, no closed

form solution exists for finding a feasible and stable center of body, and the problem is

in general non-convex. We therefore use a heuristic search strategy around the centroid

of the support polygon. If none of the sampled centers of body provide a kinematically

feasible and stable solution to the robot position given the foot positions, then the foot

positions are rejected as an infeasible stance.

The feasible stances constitute nodes in a stance graph, to which we then add edges between

pairs of stances si and sj when a feasible motion exists to transform the robot from the

start stance si (foot positions and center of body) to the end stance sj. This problem

is also underdetermined, in that an arbitrarily complex motion may be required to move

from one stance to another. We therefore simplify this problem by considering only a fixed

set of motion patterns consisting of (I.) a stance phase, during which the dog shifts its

center of body to remain stable while stepping, and (II.) a foot swing phase during which

a foot is moved from one foothold to another. In Fig. 10.5, we give an example stance

graph built from 16 potential footholds. Figure 10.4 shows a longer example graph in less

detail with the cost function underlayed.
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Algorithmus 3 The Planning Process.
Require: Terrain model, start stance s0 and goal ~xg.

Sample footholds φ using the terrain model
Initialize Q← s0
while Q is not empty do
s← pop Q
for all φ do
s′ ← s
Update of position of foot to move, φ(ψ(s′))← φ in s′

Update foot to move, ψ(s′)← ψ(s′) + 1 mod 4
Search for new center of body position ξ(s′)
if ||ξ(s′)− ~xg|| < ǫ then

return Parents [s′].
end if
if ξ(s′) exists then

Set parent, π[s′] = s
Push Q← s′

end if
end for

end while
return nil

Once the stance graph has been built, we use Dijkstra’s algorithm [Dijkstra, 1959] to find

the shortest feasible sequence of stances from the start stance to a goal stance that gives

a center of body position with some ǫ of the desired goal position, in practice, combining

the search process with the stance graph generation. Additionally, we add a gait-order

constraint, so that the plan must consist of a well-formed gait in which foot i is followed

by foot i+1 mod 4. By augmenting each stance variable with an additional foot-ordering

variable ψ, this gait-ordering constraint dramatically improves the planning speed. Finally,

we also use a hash table to prune the search, such that if two different routes are found

to the same stance node s, then the search along the longer path is terminated. The full

planning algorithm is given in Alg. 3. The hash table is omitted for space reasons.

10.3 Experimental Results

The goal of the experimental evaluation is to demonstrate the usefulness of the predictive

terrain model introduced in Sec. 10.1 for path planning in real environments and to show

that our adapted Gaussian process model is more accurate than conceptually simpler

approaches such as standard GPs or elevation grid maps. We additionally analyzed the

benefits of our tiling approach introduced in Sec. 10.1 with respect to runtime and accuracy

performance.
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Figure 10.6: A rocky, real terrain of dimensions 0.6m × 0.6m with a maximum elevation of
approximately 7cm (color-coded as yellow) above ground level. We give the true elevation values
(left) and the set of laser end points (right) recorded by the robot standing on the bottom right
corner w.r.t. the diagram and performing a tilt motion.

10.3.1 Adapting to Local Terrain Structure

In a set of simulated experiments, we first compared the performance of standard GP

regression using the squared exponential (SE) covariance function against our nonsta-

tionary covariance function with local length-scale adaption. Our evaluation terrain was

an excerpt from a ground truth model of the rocky terrain depicted in the left diagram

of Fig. 10.6. Using this model, we simulated 2 500 laser observations from a single view-

point. We uniformly selected 4 350 points from the true terrain for evaluation. We then

conducted Monte-Carlo search in the parameter space of the covariance functions and on

the parameters of the adaption procedure. In a preliminary run over 34 000 configurations,

we determined general ranges for the parameters and in a secondary search, we evaluated

10 000 configurations in the predetermined ranges. In Fig. 10.7, we give a scatter plot of

the best results plotting the achieved mean squared prediction errors (MSE) against the

negative log predictive likelihood (NLPD) per parameter sample. It can be seen that the

nonstationary covariance function is able to achieve both better MSE w.r.t. the ground

truth and also a better NLPD—which also takes the predicted variances into account.

Figure 10.8 shows a cut through the achieved regression surfaces of the stationary (left

panel) and nonstationary (right panel) models. It can clearly be seen that the stationary

GP model (left diagram) needs to select an extremely small length-scale parameter in order

to represent the sharp edges. It is thus not able to smooth flatter and more sparsely sampled

regions. In contrast, the nonstationary covariance function (right diagram) decreases the

length-scale only at the sharp “cliffs” and where no gradients are observed. It is thus able

to account for the highly varying parts at the first ascent and for the higher uncertainties

in the occluded parts, while still smoothing in the flat regions.
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Figure 10.8: Regression models learned using the standard GP model (left) and our locally
adaptive approach (right). Here, we visualize a slice plane of the terrain surface (y is fixed, x varies
on the horizontal axis in meters, terrain elevation on the vertical axis). We also give the adapted
length-scales below the curves using a second vertical axis).

10.3.2 Splitting the Terrain into Overlapping Sub-Models

We evaluated the benefits of segmenting the input space in overlapping tiles. To do so,

we applied different tile sizes to the terrain model analyzed in the previous experiment.

We measured the prediction accuracy in the innermost 0.0025 m2 of a tile while linearly

increasing the tile area, and thereby also the amount of training data of the associated

GP. The upper left diagram of Fig. 10.9 shows that with an increasing tile size, both

MSE and NLPD quickly decrease and almost converge as the area reaches 0.003 m2. The

runtime, however, continues to grow cubically with the segment size beyond this point. The

remaining three diagrams in Fig. 10.9 give a visual impression of the effects that different

tile sizes have on the regression function in its center. Increasing the tile size from 0.03 m2

(lower left) to 0.056 m2 (lower right) does not lead to a notable improvement.
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Figure 10.9: Mean squared error (MSE), negative log predictive likelihood (NLPD) of the inner
0.0025m2 of the segment and training time (relative plot, scale omitted), for different segment
areas (left). Values are linearly scaled to fit in plot. Plots of prediction for segment sizes 0.0025m2,
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The runtime requirements on a standard PC for learning from approximately 100 000 points

using our C++ implemenation are in the order of 1.5 sec. with overlapping stationary GPs

and 3 sec. with overlapping nonstationary GPs.

10.3.3 Mapping Accuracy on Real Terrain

We evaluated our terrain model with a real quadruped robot in a situation similar to

the one depicted in Fig. 10.1. The robot used was a quadruped LittleDog developed by

Boston Dynamics. We have equipped the dog with a Hokuyo URG laser scanner. A high-

resolution motion capture system, the Vicon MX, yields estimates of the robot pose using

measurements from reflective markers attached to the robot’s body. The laser sensor is

mounted on top of the robot in a 25◦ angle facing towards the ground, such that (a) terrain

elevation measurements can be acquired while executing plans and (b) 3D range scans can

be recorded by executing a tilt motion using the front and rear legs. The evaluation in

this section concentrates on the question of how accurately the elevation structure of the

terrain board (approximately 0.6 m× 0.6 m) can be recovered from such a single 3D scan.
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Figure 10.10: Mapping results using the elevation grid model (left), its bilinear completion (cen-
ter), and the mean predictions of our adapted GP model (right).

Calibration

Note that our system is not performing simultaneous localization and mapping (SLAM)

and, thus, we assume accurate knowledge of the pose of the laser. The specifics of the Vicon

motion capture system used to track the robot’s position required us to automatically

infer the time offsets between the laser data and pose measurements, and to calculate the

6 DOF transformation between a known position of the dog and the actual laser sensor

position at the same time. In order to compute both these calibration quantities, we

recorded a 3D range scan of three orthogonal boards placed in front of the robot (side

lengths approximately 1 m) and optimized for the 7 parameters of the transformation in a

sampling-based fashion similar to simulated annealing. Here, random parameter samples

are evaluated using a predefined objective function. Additionally, a temperature variable

defines how close the newly sampled values shall be from the current optimum. As the

objective function, we chose the sum of squared distances of laser end points to the board

surfaces. By decreasing the temperature level gradually over time, accurate calibration

parameters are typically obtained within 300 − 800 iterations.

Mapping Rough Terrain

We evaluated our adapted GP approach using scans of a rocky terrain surface acquired by

the quadruped robot against a known ground-truth model of the terrain acquired using a

high-accuracy metrology system. The left diagram in Fig. 10.6 depicts the true elevation

structure of this terrain (see the caption for details). The right diagram shows the raw

set of laser endpoints that were acquired by the robot when it executed a tilt motion. It

can be clearly seen from the uneven distribution of points that parts of the terrain are not

sampled densely due to occlusions and a larger distance to the sensor location (which was
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towards the bottom right w.r.t. the diagram). An elevation grid map can be built from

this training set of surface points by discretizing the x-y space and by fitting 1D Gaussians

to the elevation samples falling into the respective grid cells. The result of this operation

is depicted in the left diagram in Fig. 10.10.

A standard way of filling gaps in grid maps without altering the known cells is called

bilinear interpolation, that is, the extension of linear interpolation to bivariate functions.

The result of such an operation applied to an incomplete elevation grid map is depicted in

the middle diagram in Fig. 10.10 and the results obtained with our adapted GP approach

are depicted in the rightmost diagram. Here, we plot the mean predictions for terrain

elevations. The right diagram in Fig. 10.8 shows a vertical cut through this surface.

This visualization shows that our our model yields tight uncertainty bounds around the

observed points and that its predictions are consistent with the true elevation structure at

un-observed locations.

We compared the prediction errors of our adapted GP model to the baseline models El-

evation Grid and Interpolated Elevation Grid. In Fig. 10.11, we give the squared error

of elevation predictions averaged over 10 000 samples drawn randomly from the terrain.

The error-bars give the standard deviations of the individual sample sets. To assess the

influence of grid resolution for the two grid-based models, we tested six different num-

bers of cells per grid dimension (x-axis). Since the standard elevation grid does not make

predictions in occluded or less densely sampled areas, its performance was evaluated on

its occupied cells only—which makes the comparison a rather conservative one. It can

be seen from the diagram that our adapted GP model is as good as the elevation grid at

optimal resolution, even though its performance measure additionally includes predictions

of un-observed elevations.

10.3.4 Path Planning using Real Terrain Data

In order to evaluate the practical usefulness of our approach, we tested our terrain models

in combination with the trajectory planner described in Sec. 10.2. The experimental setup

was to sample 1 000 random starting locations in front of the rought part of the terrain

and to pick corresponding goal locations behind it. For each of these location pairs and

each of the three alternative terrain models, the planner generated a set of footholds and

searched for the best path towards the goal location. We then evaluated (a) the maximal

path length that could be constructed given the kinematic constraints of the robot, and

(b) the errors of the elevation predictions at the selected foothold locations. An example

plan and the corresponding cost function that was computed from the underlying terrain

model are depicted in Fig. 10.4
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of grid cells used. The elevation grid (without interpolation) was evaluated on occupied cells only.

Figure 10.12 summarizes our results. It can be seen from the left diagram that it was

always possible to plan the maximal path of 2 m using the interpolated grid and the

adapted GP model. Using the standard grid, however, the plans never exceeded a length

of 1.6 m, which is not surprising given the large number of unknown cells which prohibit

foot placements. As can be seen from the the mean squared error values in the right

diagram, the adapted GP model predicts the true terrain elevations better at the chosen

foothold locations than the interpolated grid model, which means that there is a lower risk

of failure when executing these plans.

10.4 Related Work

Terrain modeling and map building are central tasks within robotics. We follow the ap-

proach presented in the previous chapter and model the terrain using a GP with a nonsta-

tionary covariance function originally proposed by Paciorek and Schervish [2004]. If not

specifically addressed, the nonparametric nature of this approach causes computational

problems for large terrains, due to an unfavorable N3 scaling for training, where N is the

number of observations. To overcome this problem, we propose to use an ensemble of GPs,

where every GP is assigned to a specific region, an idea akin to GP mixture models such

as [Williams, 2006]. Rasmussen and Ghahramani [2002] extend the ideas of Tresp [2000]

and present an “infinite mixture of experts model” where the individual experts are differ-

ent Gaussian process models. Cornford et al. [1999] model straight discontinuities in wind

fields by placing auxiliary GPs along the edge on both sides of the discontinuity. These
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Figure 10.12: Evaluation of 1 000 plans generated using the different terrain models. The left
bar plot shows the maximal length of generated plans and the right plot gives the mean squared
errors (scaled by 10−3) of elevation predictions at the planned footholds.

are then used to learn GPs representing the process on either side of the discontinuity. A

broad overview of methods used for modeling terrain data was given by Hugentobler [2004].

Elevation maps in particular have been used as an efficient data structure for representing

dense terrain data [Bares et al., 1989, Pfaff and Burgard, 2005] and were later extended

to multi-level probabilistic surface maps [Triebel et al., 2006]. Früh and Zakhor [2002]

present an approach to filling local gaps in 3D models based on local linear interpolation.

Compared to these approaches, Gaussian process (GP) models [Rasmussen and Williams,

2006b] have the advantage of not assuming a fixed discretization of the space and of addi-

tionally providing predictive uncertainties.

10.5 Conclusion

In this chapter, we considered the terrain mapping problem for a legged robot equipped

with a laser range finder. We demonstrated the use of a nonparametric Bayesian regression

approach, Gaussian processes, for reliably modeling rough terrain. Our extended model

balances smoothing against the preservation of structural features and is capable of accu-

rately predicting elevations in the presence of noise even at unobserved locations. These

features allow us to plan foot trajectories of a quadruped robot to reach a goal location.

We showed in experiments with data acquired using a real robot that this nonparametric

terrain modeling approach was able to infer the terrain more reliably, leading to better

planning than grid-based terrain models.



Chapter 11

Locally Adaptive Gaussian Process

Regression

We derive a nonstationary Gaussian process model from first principles using

point estimates of local smoothness. Our approach allows to employ efficient

gradient-based optimization techniques for learning the parameters of a latent

smoothness process and of the observed process jointly.

Many regression problems that arise in practice, including terrain modeling as discussed in

the previous two chapters, exhibit a nonstationary structure, that is, the function under-

lying the data changes its smoothness characteristics with the index location. Modeling

this input-dependent smoothness has the potential of better explaining the observed data

and also of better generalizing to unseen locations. In the past, several approaches for

specifying nonstationary GP models haven been proposed in the literature [Sampson and

Guttorp, 1992, Schmidt and O’Hagan, 2003]. A particularly promising approach, which

was also adopted in Chapters 9 and 10, was presented by Paciorek and Schervish [2004],

who proposed to explicitly model the input-depending smoothness using additional, latent

GPs. This approach

(a) provides the user with a continuous latent space of local kernels,

(b) allows the user to analyze the estimated length-scale function yielding insights into

the problem domain, and

(c) it fully stays in the GP framework so that methods for speeding up GP inference

and fitting can be adapted.
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Paciorek and Schervish provide a flexible and general framework based on approximation

by MCMC integration, which unfortunately, as also noted by the authors, is computa-

tionally demanding for large data sets and which is thus not feasible in the real world

situations that are typically encountered in robotics and engineering tasks. In this chap-

ter, we present a different approximation that does not integrate over all latent variables

but uses the predicted mean values only. We call these “point estimates of local smooth-

ness”. Specifically, we parameterize the nonstationary covariances using a second GP with

m latent length-scales. Assuming m ≪ n, where n is the number of training points, this

results in a nonstationary GP regression method with only little overhead compared to

standard GPs. More importantly, using point estimates naturally leads to gradient-based

techniques for efficiently learning the parameters of both processes jointly.

As a second contribution of this chapter, we address runtime efficiency for large datasets

using an approach inspired by the mixtures of local experts (MoE) approach [Tresp, 2000,

Rasmussen and Ghahramani, 2002]. We decompose the full nonstationary GP model into

multiple local ones, each responsible only for a subset of the data. A gating function is used

to assign responsibilities to certain GPs, defining a mapping from input space to model

associations. In contrast to other approaches that model nonstationarity using mixtures of

stationary experts [Tresp, 2000], we do not require the expert-boundaries to coincide with

the locations of changing smoothness by considering mixtures of nonstationary experts

that share their latent length-scales in the overlapping regions.

We present experiments carried out on synthetic and real-world data sets from challenging

application domains such as robotics and embedded systems showing the relevance and

feasibility of our approach. More specifically, our nonstationary GP approach significantly

outperforms standard GPs in terms of prediction accuracy, while also being significantly

faster than the MCMC-based approach by Paciorek and Schervish [2004]. In additional

experiments we evaluate the benefits of sparsification (or explicitly: “model tiling”) that

were outlined above and compare our approach to locally weighted projection regression

(LWPR), a state-of-the-art approach to non-linear regression developed by Vijayakumar

et al. [2005a].

We regard these empirical results as a contribution on its own as they tighten the link

between advanced regression techniques based on GPs and application domains such as

robotics and embedded systems. To the best of our knowledge, it is the first time that

nonstationary GPs have been learned in a principled way in these challenging domains.

The chapter is organized as follows. We introduce our approach to nonstationary GP

regression using point estimates of local smoothness in Sec. 11.1 and show how to learn the

hyperparameters using gradient-based methods. In Sec. 11.2, we then discuss the mixture
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of nonstationary experts approach. Before discussing related work, we demonstrate the

feasibility and relevance of our approach in an extensive set of experiments in Sec. 11.3.

11.1 Modeling Variable Smoothness

Recalling Sec. 2.2 and the previous two chapters, we aim at learning a model for p(y∗|x,D)

given a set of observed training data D = {(xi, yi)}ni=1. We place a Gaussian process prior

on the dependency of y on x yielding the predictive distribution y∗ ∼ N (µ∗, σ
2
∗) with

parameters

µ∗ = kT
x∗,x(Kxx + σ2

nI)
−1y (11.1)

σ2
∗ = k(x∗,x∗)− kT

x∗,x(Kxx + σ2
nI)

−1kx∗,x + σ2
n (11.2)

and we assume the nonstationary covariance function

k(xi,xj) =σ2
f |Σi|

1
4 |Σj|

1
4

∣
∣
∣
∣

Σi + Σj

2

∣
∣
∣
∣

− 1
2

· exp

[

−dT
ij

(
Σi + Σj

2

)−1

dij

]

(11.3)

of Paciorek and Schervish [2004] for defining the covariance structure of the process—i.e.,

the quantities k(·, ·), k, and K in Eq. (11.1) and (11.2). See also the summary of notation

in Sec. 1.4.

The intuition behind the nonstationary covariance function (11.3) is that each input lo-

cation xi is assigned a local Gaussian kernel matrix Σi and the covariance between two

targets yi and yj is calculated by averaging between the two local kernels at the input

locations xi and xj. In this way, the local characteristics at both locations influence the

modeled covariance of the corresponding target values. For the sake of simplicity, we con-

sider the isotropic case only in this chapter. The general case can be treated in the same

way.

In the isotropic case, in which the eigenvectors of the local kernels are aligned to the

coordinate axes and their eigenvalues are equal, the matrices Σi simplify to ℓ2i · In with

a real-valued length-scale parameter ℓi. In the one-dimensional case, Eq. (11.3) then

simplifies to

k(xi, xj) = σ2
f · (ℓ2i )

1
4 · (ℓ2j)

1
4 ·
(

1

2
ℓ2i +

1

2
ℓ2j

)− 1
2

· exp

[

−(xi − xj)
2

1
2ℓ

2
i + 1

2ℓ
2
j

]

. (11.4)

We do not specify a functional form for the length-scale ℓ(x) at location x but place

a GP prior over them. More precisely, an independent GP is used to model the log-
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Figure 11.1: Placing a GP prior over the latent length-scales for nonstationary GP regression.
An observed Gaussian process GPy is sketched on the left and the latent GPℓ governing the local
length-scales is shown on the right. In the situation sketched here, the function is smoother for
smaller index values x and less smooth for larger ones.

arithms log(ℓ(x)) of the length-scales to avoid negative values. This process, denoted

as GPℓ, is governed by a different covariance function specified by the hyperparameters

θℓ = 〈σf , σℓ, σn〉. Additionally, we have to maintain the set of m support values ℓ as part

of the model as depicted in Fig. 11.1. Summarizing the parameters introduced so far, we

have θ = 〈θy,θℓ, ℓ〉 = 〈σf , σn, σf , σℓ, σn, ℓ〉.

For making predictions we have to integrate over the latent length-scales to get the pre-

dictive distribution

p(y∗|x∗,D,θ) =

∫ ∫

p(y∗|x∗,D, exp(ℓ∗), exp(ℓ),θy) · p(ℓ∗, ℓ|x∗,D, ℓ,X ,θℓ) dℓ dℓ∗ (11.5)

of a regressand y∗ at location x∗ given a dataset D and hyperparameters θ. Note that

GPℓ is defined over the log length-scales to ensure that they are non-negative. Because the

marginalization in Eq. (11.5) is intractable analytically, Paciorek and Schervish [2004]

apply MCMC to approximate it. We propose instead, to consider p(y∗|x∗,D,θ) ≈
p(y∗|x∗,D, exp(ℓ̂∗), exp(ℓ̂),θy) where (ℓ̂∗, ℓ̂) are the most-likely values of the length-scale

process at x∗ and at the index locations of D, that is, the mean predictions of GPℓ .

Since the length-scales are independent latent variables in the combined regression model,

making predictions amounts to making two standard GP predictions using Eq. (11.1)

and (11.2), one using GPℓ to get (ℓ̂∗, ℓ̂) and one using GPy with (ℓ̂∗, ℓ̂) treated as fixed

parameters. Experimental evaluation showed that our approximation leads to the same

model accuracay on benchmark data sets as the MCMC-based one. As a notable differ-

ence, however, our approximation yields a closed-form solution for prediction and density

estimation as well as for their derivatives.

11.1.1 Learning the Hyperparameters

So far, we have described our model assuming that we have the joint hyperparameters θ

of the overall process. In practice, we are unlikely to have these parameters a priori and

instead we wish to estimate them from observed data.

Assume a given set of n observations y at locations {xi}ni=1, represented by a (row-wise
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stacked) matrix X, [X]ij = [xi]j. We seek to find the hyperparameters that maximize

the likelihood of observing y at X, i.e., we seek to maximize p(y|X,θ) =
∫
p(y|X, ℓ,θy) ·

p(ℓ|X, ℓ,X,θℓ) dℓ . As for making predictions, such a marginalization is intractable and

we instead maximize

L(θ, ℓ) = log p(y | X, exp(ℓ̂),θy)
︸ ︷︷ ︸

GPy

+ log p(ℓ̂|X, ℓ,X,θℓ)
︸ ︷︷ ︸

GPℓ

+ const.
︸ ︷︷ ︸

θ prior

, (11.6)

where ℓ̂ are the mean predictions of GP ℓ. The optimum of this objective function w.r.t. to

the hyperparameters θ and ℓ can be found using gradient-based optimization. In our ex-

periments, we optimized σf , σn, and σℓ of the latent length-scale process in an outer cross-

validation loop on an independent test set and assumed ∂L(θ)/∂• = 0, • ∈ {σf , σn, σℓ},
within the (inner) gradient-based optimization runs. The locations X of the latent kernel

width variables were sampled uniformly on the bounding rectangle given by X.

In the following, we will detail the objective function and its gradient with respect to the

hyperparameter.

11.1.2 The Objective Function

We maximize the marginal likelihood Eq. (11.6) of the data with respect to the joint

hyperparameters as well as the support values ℓ of the length-scale process. The first term

in this equation is the standard objective function for Gaussian processes

log p(y|X, exp(ℓ̂),θy) = −1

2
yT (Kx,x + σ2

nI)
−1y − 1

2
log |Kx,x + σ2

nI| −
n

2
log(2π) ,

where |M| denotes the determinant of a matrix M and Kx,x stands for the noise-free

nonstationary covariance matrix for the training locations X detailed below. Our point

estimate approach considers the most likely latent length-scales ℓ̂, i.e., the mean predictions

of GPℓ at locations X. Thus, the second term of Eq. (11.6) has the form

log p(ℓ̂|X, ℓ,X,θℓ) = −1

2
log |Kx,x + σ2

nI| −
n

2
log(2π) .

Putting both together, we get the objective function

L(θ, ℓ) = c1 + c2 ·
[
yTA−1y + log |A|+ log |B|

]
, (11.7)

where c1 and c2 are real-valued constants, and A := Kx,x + σ2
nI and B := Kx,x + σ2

nI

are covariance matrices. The noise-free part of the nonstationary covariance matrix Kx,x

is calculated according to Eq. (11.3). As mentioned above, we consider the isotropic case
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only for the sake of simplicity. We express Eq. (11.4) for the case of multivariate inputs

xi using the compact matrix-vector notation suggested in [Brooks, 2005]. Recalling that

ℓ̂ represents the local length-scale means at the training locations X, we get

Kx,x = σ2
f ·Pr

1
4 ◦Pc

1
4 ◦ (1/2)−

1
2 Ps

− 1
2 ◦E (11.8)

with

Pr = p · 1T
n , Pc = 1T

n · pT , p = ℓ̂
T
ℓ̂ ,

Ps = Pr + Pc , E = exp[−s(X)÷Ps] , ℓ̂ = exp
[

KT
x,x

[
Kx,x + σ2

nI
]−1

ℓ
]

.

Note that p ∈ Rn and, thus, Pr and Pc are matrices built using the outer vector product.

Here, s(X) calculates the n × n matrix of squared distances between the input vectors x

contained in X. The symbols ◦ and ÷ denote element-wise multiplication and division

respectively and matrix exponentiation Mα is also defined element-wise for α 6= −1. In

the same notation, the covariance function for the latent length-scale process GP ℓ becomes

(in the stationary squared exponential form)

Kx,x = σf
2 · exp

[

−1

2
s(σℓ

−2X)

]

and, analogously, for making predictions within GPℓ

Kx,x = σf
2 · exp

[

−1

2
s(σℓ

−2X, σℓ
−2X)

]

.

11.1.3 The Gradient

Using standard results from matrix calculus, the partial derivative of the objec-

tive Eq. (11.7) w.r.t. an element • of θ turns out to be

∂L(θ, ℓ)

∂• = −yTA−1∂A

∂• A−1y + tr(A−1∂A

∂• ) + tr(B−1∂B

∂• ) , (11.9)

where tr(M) is the trace of a matrix M. For the two hyperparameters of GPy we get the

straight-forward results

∂A
∂σn

= 2σnI , ∂B
∂σn

= 0 , ∂A
∂σf

= 2σfKx,x , ∂B
∂σf

= 0 .
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The case • = ℓ yields (∂B/∂ℓ) = 0 and (∂A)/(∂ℓ) = (∂Kx,x)/(∂ℓ) =

σ2
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1
2 ·
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.

The remaining simplifications can be achieved by substitution with the definitions given

after Eq. (11.8) and by applying general rules for differentiation such as the chain rule

∂f(g(X))

∂x
=
∂(f(U) : )

∂U
· ∂g(x)

∂x

∣
∣
∣
∣
U=g(X)

where X : denotes the vectorization of a matrix by stacking its columns, e.g., as applied

to a term containing element-wise division

∂(A÷B)

∂x
= A ◦ ∂ inv(U) :

∂U :
· ∂B :

∂x

∣
∣
∣
∣
U=B

for a matrix A that does not depend on x. Substituting the resulting partial derivatives

in Eq. (11.9) yields the gradient ∂L(θ)/∂θ, which can be used in gradient-based opti-

mization techniques, such as Møller’s [1993] scaled conjugate gradients (SCG), to jointly

optimize the hyperparameters of GPy and GPℓ.

11.2 Learning Large Datasets

A significant practical limitation of the standard Gaussian process model is its O(n3)

runtime complexity, where n is the number of training points. This is due to the inversion

of the covariance matrix during learning and prediction (in the latter case only if predictive

variances are required). Since the covariance functions typically employed in practice (e.g.,

from the Matérn class) and also their nonstationary extensions such as Eq. (11.3) model

local influences, the local experts approach is a sensible choice that scales linearly in n

under some mild model assumptions.

11.2.1 Model Tiling

We propose to approximate the nonstationary model outlined above using a mixture of

nonstationary GP “experts”. Our local models are distributed uniformly over the space

allowing for fast indexing. Their individual responses mix within overlapping regions with

neighboring models according to an analytic gating function. More concretely, we consider
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M Gaussian processes GP [j], j = 1 . . .M, and set

p(y∗ | x∗,D) =

M∑

j=1

g[j](x∗) p
[j](y∗ | x∗,D), g[j] =

w[j]

∑M
j=1w

[j](x∗)
, (11.10)

where p[j](y∗ | x∗,D) is the posterior of a target y∗ at location x∗ according to the j’th

expert model GP [j]. For brevity, we omit the hyperparameters θ here. Making the locality

of the expert models explicit, we define support regions S[j] plus surrounding border regions

B[j] respectively and set w[j] for the individual experts to

w[j](x∗) =







1 , for x∗ ∈ S[j]

ω(d; l[j]) , for x∗ ∈ B[j], d = minp∈S[j](‖x∗ − p‖)
0 , for x∗ 6∈ S[j] ∪B[j] . (11.11)

Here, we model the “blurring” ω(d; l) of the border region B[j] inspired by the truncated

covariance of Storkey [1999] on [0,∞) as

ω(d; l) =

{
[(2π − d/l)(1 + 1/2 cos(d/l)) + 3/2 sin(d/l)]/(3π) , for d < 2πl,

0 , otherwise .

This function approximates n(d) ∝ N (d; 0, σ) scaled to n(0) = 1 with σ ≈ 5/3 l. We

maximize the extent of expert j on S[j] ∪ B[j] by setting the width parameter l to

maxx∈B[j] minp∈S[j](‖x − p‖)/2π. Note, that this is straightforward to calculate, e.g., for

rectangular or circular regions S[j] and B[j]. Also note, that w[j](x) is continuous, differen-

tiable, and non-zero only on a bounded region. Our experience with this formulation and

with alternatives for defining the locality of models within the tiling setup of Eq. (11.10)

confirms the statement of Cleveland and Loader [1996] about local regression: If the gating

function for local models is (a) continuous, (b) non-zero only on a bounded region, and (c)

ensures enough overlap between the mixed models, the actual choice of gating function is

not too critical.

11.2.2 Learning Nonstationary Tiled Models

We now apply model tiling as described above and the MAP approximation for nonsta-

tionary GPs as described in the previous section to achieve a tractable approximation

of Eq. (11.5) even for large datasets. Specifically, we consider tiled approximations for

both, GPy and GP ℓ. Given a dataset D = {(xi, yi)}ni=1, one could in principle compute

the gradient of Eq. (11.6) w.r.t. the hyperparameters θ = 〈θy,θℓ, ℓ〉 of the covariance
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functions including the latent length-scales ℓ:

∂L(θ, ℓ)

∂• =

n∑

i=1

∂

∂• log

M∑

i=1

g[j](xi) p(yi | X, exp(ℓ̂),θy) +

n∑

i=1

∂

∂• log
M∑

i=1

g[j](xi) p(ℓ̂ | X, ℓ,X,θℓ)

Applying the chain rule to the logarithms of the two sums would provide us with the

desired partial derivatives. This, however, is quite complicated and tedious. Therefore,

we instead maximize the (simpler to differentiate) lower bound of the objective function

by recalling Jensen’s inequality [Jebara and Pentland, 2000], i.e., f(E(x)) ≥ E(f(x)) for

concave f , which allows us to move the sums out of the logarithms,

∂L̃(θ, ℓ)

∂• =

n∑

i=1

M∑

i=1

g[j](xi)
∂

∂• log p(yi | X, exp(ℓ̂),θy) + · · · . (11.12)

Experiments have shown that optimization based on scaled conjugate gradients (SCG)

using this lower bound works well in practice. Starting from Eq. (11.12), one can now

calculate the gradients using standard linear algebra and the definitions in Sec. 11.1.3.

Note that this involves differentiation of the nonstationary covariance function [Eq. (11.3)],

which is more efficient to implement if done in matrix notation directly (e.g., avoiding the

explicit summation over data points in Eq. (11.12)).

11.2.3 Discussion

Approximation: In the extreme case of B[j] = ∅ and S[i] ∩ S[j] = ∅,∀i, j, the gating

function becomes binary and the space is assigned to the experts in a Voronoi-diagram-

like manner. In the other extreme, if S[i] = S[j],∀i, j, there is an infinite overlap between

all models and Eq. (11.10) simplifies to p(y | x) =
∑M

i=1 1/M p[i](y | x) and all expert

models become equal, p[i] ∝ p[j],∀i, j. In this case, since every expert model GP [i]
y is a full

nonstationary GP, the tiled approximation Eq. (11.10) is a perfect one. The suitability

of Eq. (11.10) as an approximation of a single, large nonstationary model in the case of

small, local, overlapping models GP [i]
y becomes apparent when one considers the equivalent

kernel [Sollich and Williams, 2004] for Gaussian processes. Under this view, the GP mean

and variance predictions, Eq. (11.1) and (11.2), are expressed as dot products µ(x∗) =

h(x∗)
T y of the vector of target values y and weight vectors h(x∗). Here, the weight

function h(x∗), aka the equivalent kernel (EK), depends both on the query location x∗ and

on the covariance function k. Due to the inversion of the covariance matrix in Eq. (11.1),

the EK is not straightforward to calculate even for the simple case of the stationary squared
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exponential kse. Sollich and Williams [2004] derive an approximation for this case, which

shows that the EK is strongly localized and, thus, disregarding target values y that lie far

away from the query point x∗ introduces a minimal error for h(x∗)
Ty. This observation is

indeed the basis for other of Gaussian process approximations, such as [Shen et al., 2005].

Numerical experiments revealed that the nonstationary knse as defined in Eq. (11.3) is

stronger or equally localized than the stationary squared exponential components it is

composed of. Thus, we can safely apply the tiled approximation outlined above to both

the latent length-scale process GP ℓ as well as to the nonstationary GPy discussed in the

previous section. For ease of implementation, we use the same tiling and indexing for both

processes—but this is not necessary in general.

Time Complexity: To guarantee linear complexity in the unit lengths of covered input

space, we apply an additional binning operation using a fine-grained grid as a pre-processing

step. As argued in [Shen et al., 2005], the weighted influence of data points (in the weight-

space view on Gaussian process regression, see above) is approximately equal on local

regions that are small compared to the local bandwidth of the covariance function. Thus,

we can safely pool observations that fall into a grid cell to one pseudo-observation, which is

assigned an increased “weight” in the model by dividing the corresponding diagonal entry

of the identity matrix I of (Kx,x + σnI)
−1 by the number of pooled observations (thereby

reducing the “noise” of the pseudo-observation). The binning operation ensures that the

number of training points per local model is bounded by a constant b, yielding linear

complexity O(n) for adding points to the preprocessing grid and O(M · b3) for learning

all local models (not involving the complexity of learning the hyperparameters). Similar

to Krause et al. [2008], one could derive explicit bounds of the GP approximation error

introduced by this binning operation. In the context of a sensor-placement task, they show

that the error of choosing the next optimal input location in terms of maximal information

gain is bounded if one constraints the search to a grid approximation of the continuous

input space.

11.3 Experimental Results

The goal of our experimental evaluation was to investigate to which extent the point esti-

mate approach to nonstationary GP regression is able to handle input-dependent smooth-

ness and to quantify the gains relative to the stationary model. Specifically, we designed

several experiments to investigate whether the approach can solve standard regression

problems discussed in the literature. We also applied it to two hard and relevant re-

gression problems from embedded systems and robotics. On the two standard test sets,

we demonstrate that the prediction accuracy of our approach is comparable to the one
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achieved by the MCMC-based method by Paciorek and Schervish [2004], which, compared

to our algorithm, is substantially more demanding regarding the computational resources.

We will first evaluate the dense nonstationary GP model in the next sections and then

discuss our results for the tiled approximation in Sec. 11.3.4.

We have implemented and evaluated our approach in Matlab. Using the compact matrix

notation for all derivations, the core algorithm is implemented in less than 150 lines of code

and, more importantly, advanced optimization strategies like sparse matrix approximations

or parallelization can be realized with virtually no additional implementation efforts. As

optimization procedure, we applied Møller’s scaled conjugate gradient (SCG) [Møller, 1993]

approach. In all our experiments, the SCG converged after at most 20 iterations. To

evaluate the performance of our nonstationary regression technique quantitatively, we ran

30 to 50 independent test runs for each of the following test cases. Each run consisted of

(a) randomly selecting or generating training data, (b) fitting the nonstationary model,

and (c) evaluating the predictive distribution of the learned model at independent test

locations. The latter was done either using the known ground truth function values or by

assessing the likelihood of independent observations in the cases in which the ground truth

was not known (e.g., for the RFID and terrain mapping experiments).

In all test scenarios, we evaluate the accuracy of the mean predictions and also the fit of

the whole predictive distribution using the standardized mean squared error (sMSE) and

the negative log predictive density (NLPD):

sMSE =
1

n

n∑

i=1

(yi − µ∗i )2
V(y)

, NLPD =
1

n

n∑

i=1

− log p(yi|xi) .

Here, {(xi, yi)}ni=1 denotes the test data set, p(·|xi) stands for the predictive distribution

at location xi, and µ∗i := E[p(·|xi)] denotes the predicted mean. Statistical significance

was assessed using two-sample t-tests with 95% confidence intervals.

All experiments were conducted using Matlab on a Linux desktop PC with a single 2

GHz CPU. The typical runtime for fitting the full nonstationary model to 100 training

points was in the order of 50 seconds. The runtime requirements of the MCMC-based

approach [Paciorek and Schervish, 2004] which does not employ any gradient information

were reported to be in the order of hours for a C-implementation on standard hardware in

the year 2004. In the following, we term our nonstationary approach as LA-GP (Locally

Adaptive GP), the standard model employing the isotropic, squared exponential covari-

ance function as STD-GP and Paciorek and Schervish’s MCMC-based approach as NS-GP

(Nonstationary GP).
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Figure 11.2: Two standard nonstationary test cases SMOOTH-1D (top left) and JUMP-1D (top
right) that were used for evaluation purposes in lower two plots give the inverse latent length-scales
as optimized by our approach. Higher values in these plots indicate a larger local frequency.

11.3.1 Simulation Results in 1D and 2D

First, we verified that our approach accurately solves standard regression problems de-

scribed in the literature. To this aim, we considered the two simulated functions shown

in Fig. 11.2. Both functions were also used for evaluation purposes by Dimatteo et al. [2001]

and in [Paciorek and Schervish, 2004]. In the remainder, these test scenarios will be re-

ferred to as SMOOTH-1D and JUMP-1D. Whereas SMOOTH-1D is a smoothly vary-

ing function with a substantial “bump” close to 0, JUMP-1D has a sharp jump at 0.4.

For SMOOTH-1D, we sampled 101 training points and 400 test points from the interval

(−2, 2). In the case of JUMP-1D, we sampled 111 training points and 111 for testing from

(0, 1). Table 11.1 gives the results for these experiments (averaged over 50 independent

runs). Additionally, this table contains results for a two-dimensional simulated function

NONSTAT-2D, which is described further below in this sub-section.

Table 11.1: Quantitative evaluation of the proposed nonstationary approach (LA-GP) and the
standard Gaussian process (STD-GP) as well as the MCMC-based approach of Paciorek and
Shervish (NS-GP). We compare the prediction accuracies using the negative log predictive den-
sity (NLPD) and the standardized mean squared errors (sMSE), see text. Results marked by •
differ significantly (α = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP NS-GP

SMOOTH-1D -1.100 -1.026 (•) 0.0156 0.021 (•) 0.015

JUMP-1D -0.375 -0.440 (•) 0.0268 0.123 (•) 0.026

NONSTAT-2D -3.405 -3.315 (•) 0.0429 0.0572 (•) -
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Figure 11.3: Typical regression results in the SMOOTH-1D test scenario for the STD-GP model
(left) and LA-GP (middle). The right diagram gives the statistics for changes of the objective
function per SCG optimization cycle (in log data liklihood).
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Figure 11.4: Absolute distances of the test points from the predicted means in one run of the
JUMP-1D scenario using the STD-GP model (left) and LA-GP (right). The model confidence
bounds (2 standard deviations of the predictive distribution) are given by dashed lines.

The results can be summarized as follows: With respect to the sMSE, the accuracy of our

approach is comparable to the MCMC-based method of Paciorek and Schervish. Note that

values given here were taken from their publication [Paciorek and Schervish, 2004]. Both

approaches significantly (α=0.05) outperform standard GPs. Our approach also provides a

significantly better performance compared to standard GPs with respect to the NLPD. For

a visual comparison of the regression results, consider the diagrams on the left in Fig. 11.3.

Whereas the standard GP (left plot) – having a constant length-scale for the whole domain

– cannot adapt to all local properties well, our LA-GP accurately fits the bump and also

the smoother parts (center plot). It should be noted that LA-GP tends to assign higher

frequencies to the border regions of the training set, since there is less constraining data

there compared to the center regions (see also the lower left plot in Fig. 11.2).

The right diagram in Fig. 11.3 provides statistics about the individual gains during the

SCG cycles for 50 independent test runs. As can be seen from this plot, after about 20

cycles the objective function, which corresponds to the negative log data likelihood, does

not change notably any more. Figure 11.4 compares the confidence bounds of the different

regression models to the actual prediction errors made. It can be seen that the LA-GP

model has more accurate bounds. It should be noted that the predictive variance of the

STD-GP model depends only on the local data density and not on the target values and,

thus, it is close to constant in the non-border regions.



172 Chapter 11. Locally Adaptive Gaussian Process Regression

0 0.05 0.1 0.15 0.2

Observations to ground truth

STD−GP

STD−GP (confident)

LA−GP

LA−GP (conf.)

Average absolute errors (SMOOTH−1D)

0 0.1 0.2 0.3 0.4 0.5

Observations to ground truth

STD−GP

STD−GP (confident)

LA−GP

LA−GP (confident)

Average absolute errors (JUMP−1D)

0 0.005 0.01 0.015 0.02

Observations to ground truth

STD−GP

STD−GP (confident)

LA−GP

LA−GP (confident)

Average absolute errors (NONSTAT−2D)

Figure 11.5: Absolute average errors of the mean predictions in the SMOOTH-1D test scenario
(left), JUMP-1D (middle), and NONSTAT-2D (right). We give the absolute distances of the
simulated observations to the true function values, the overall average errors for the different
models, and the average errors of the 50% most confidently predicted means, respectively.

We give the absolute average errors of the mean predictions in the different test cases

in Fig. 11.5. To highlight the more accurate confidence bounds of the LA-GP model, we

also give the statistics for the 50% most confident predictions.

In addition to the two one-dimensional standard test cases, we evaluated the performance

of our approach on a bivariate function (NONSTAT-2D). In particular, we simulated

observations y(x1, x2) ∼ f(x1, x2) + N (0, 0.025) using the noise-free bivariate function

f(x1, x2) = 1/10 · (sin(x1 b(x1, x2) + sin(x2 b(x1, x2)) and the underlying bandwidth func-

tion b(x1, x2) = π (2x1 + 0.5x2 + 1). This function and typical observations are depicted

in the left diagram in Fig. 11.6. During training, we sampled 11 · 11 = 121 points from

a uniform distribution over [−0.5, 1] × [−0.5, 1] and corresponding simulated observations

(the latter were drawn independently for each run). For testing, we uniformly sampled

31 ·31 = 961 points from [−0.5, 1]× [−0.5, 1] including their true function values. A typical

example of the resulting optimized length-scales are visualized in the upper right contour

plot in Fig. 11.6. It can be seen that larger length-scales (which correspond to stronger

smoothing) are assigned to the flat part of the surface around (−0.5, 0)T and smaller ones

towards (1, 1)T .

The quantitative results in terms of NLPD and sMSE for 30 independent test runs are

given in Tab. 11.1. The absolute errors of the mean predictions are given in the right

chart in Fig. 11.5. The two lower plots in Fig. 11.6 give a visual impression about the

accuracy of the two regression models. We show the local NLPD loss at equidistantly

sampled test locations overlayed by contour plots of the predictive uncertainties. Note

that the LA-GP model assigns higher confidence to the flat part of the function, which –

given the uniform sampling of training points – can be reconstructed more accurately than

the higher-frequency parts.
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Figure 11.6: The true function and noisy observations in the NONSTAT-2D test case (top left).
Note the spatially varying oscillation frequency. The top right plot depicts the contours of the
latent length-scales as estimated by our LA-GP model. In the two lower diagrams, we give the
individual prediction errors (NLPD) of the Standard GP model (bottom left) and LA-GP (bottom
right). The predictive uncertainty of the models is visualized using overlayed contours.

11.3.2 Modeling RFID Signal Strength

We have applied our nonstationary regression approach to the problem of learning the

signal strength distribution of RFID (Radio Frequency Identification) tags. For this ex-

periment, 21 794 (log) signal strength measurements have been recorded in a test setup

at the University of Freiburg using a static antenna and a mobile, externally localized

RFID tag. For efficiency reasons, only the left half-space of the antenna was sampled with

real measurements and then mirrored along the respective axis. We randomly sampled

121 training points for learning the regression models and 500 different ones for evalua-

tion. Note that although larger training sets lead to better models, we learn from this

comparably small number of observations to achieve faster evaluation runs.

Table 11.2 gives the quantitative comparison to the standard GP model (STD-GP). As
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Figure 11.7: Predicted mean log signal strengths of RFID tags using the standard GP (left) and
the locally adapted GP (middle). The sensor location (0,0) is marked by a cross and the predictive
uncertainties of the models are visualized by overlayed contours. The right plot visualizes the
adapted latent length-scales of the LA-GP model. Coordinates are given in meters.

can be seen from the results, the standard model is outperformed by our nonstationary

extension both in terms of sMSE and NLPD. Figure 11.7 shows predicted mean log signal

strengths of the two models as color maps overlayed with contour plots of the corresponding

predictive uncertainties. We also visualize the contours of the latent length-scales modeling

higher frequencies in the proximity of the sensor location and lower ones at approx. (4, 2).

11.3.3 Laser-based Terrain Mapping

We also applied our model to the particularly hard robotics problem of learning probabilis-

tic terrain models from laser range measurements. In a joint project with the Massachusetts

Institute of Technology, we have equipped a quadruped robot with a Hokuyo URG laser

range sensor (see the left picture in Fig. 11.8). The robot was programmed to perform

a ’pushup’ motion sequence in order to acquire a 3D scan of the local environment. For

evaluation, we selected a 20 × 20cm part of a rough terrain (with a maximum height of

around 9 cm) including its front edge (see the right plot in Fig. 11.8). 4 282 laser end

points of the 3D scan fall into this area.

We have trained the standard GP model and our nonstationary variant on 80 randomly

selected training points from a noise-free simulation of the real terrain (TERSIM-2D) and

evaluated the prediction accuracy for 500 test points (30 runs). We repeated the same

procedure on the real data (TERREAL-2D) and evaluated the prediction accuracy for

Table 11.2: Quantitative results for the RFID-2D experiment. Results marked by • differ signifi-
cantly (α = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP

RFID-2D -0.0101 (•) 0.1475 0.3352 (•) 0.4602
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Figure 11.8: Left: A quadruped robot equipped with a laser sensor acquires elevation measure-
ments of a rough terrain surface. Right: Part of the scanned terrain that was used for evaluation.

other, independently selected test points from the real scan. Thus, the latter evaluation

quantifies how well the models are able to predict other samples from the same distribution

while the former gives the prediction errors relative to a known ground truth function.

Table 11.3 gives the quantitative results for these two experiments. The right colormap

in Fig. 11.8 depicts the optimized length-scales of the LA-GP model. It can be seen that

the flat part of the terrain is assigned larger local kernels compared to the rougher parts.

11.3.4 Tiled Nonstationary Models

For evaluating the tiled approximation of the proposed model, the objectives are twofold:

(a) to investigate the gain in speed of the tiling approach and (b) to quantify a possi-

ble loss in prediction accuracy. To this aim, we compare the following regression methods:

STD-GP is the standard GP implementation that was also used in the previous evaluation.

Hyperparameters are learned by maximizing the marginal log data likelihood via conju-

Table 11.3: Quantitative results for the simulated (TERSIM-2D) and the real (TERREAL-2D)
terrain mapping experiment. Results marked by • differ significantly (α = 0.05) from the others in
their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP

TERSIM-2D -4.261 (•) -4.198 0.127 0.126
TERREAL-2D -3.652 -3.626 0.441 (•) 0.475
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Figure 11.9: Left: Terrain model L-Ter. The color encodes the elevation. (Right) Average run
time reductions on L-Ter and Lrf, i.e., the ratio of the run time of our tiled, nonstationary GP
and the run time of a global nonstationary GP. The smaller the value the higher the speed-up. The
black bar shows one standard deviation.

gate gradient. LA-GP in this section denotes our mixture-of-nonstationary-GPs model.

Here, we first use cross-validation to fix the hyperparameters of the length-scale process,

and then adapt the GP to the training data by maximizing the marginal log data likeli-

hood using a scaled conjugate gradient algorithm. To compare run time and predictive

performance with another state-of-the-art non-linear regression method, we also consid-

ered locally weighted projection regression, LWPR [Vijayakumar et al., 2005a] setting the

parameters as suggested in [Klanke and Vijayakumar, 2008].

We compare the methods on the following synthetic and real-world data sets in the context

of mobile robotics:

Sine-Bumps is an enlarged version of the SMOOTH-1D data set used in Sec. 11.3.1. It

is the sum of the sine function y = sin(x) and several “bumps” caused by an additive

exponential term 2 · exp(−30 · (x − c)2). In the interval x = [−10, 10] we uniformly

sampled 5 bump centers c. We take 500 evenly-spaced data points as the training set

and 1000 data points as the test set. Then, we perform 30 independent runs in which

we add Gaussian white-noise with a standard deviation of σ = 0.3 to the y-values of

the training set. We evaluate the regression functions using the “noise-free” test set.

Where cross-validated (CV) learning of fixed parameters was necessary, we produce

a CV-training and CV-test with the same data densities but only a fifth of the size,

using the same function over x = [−2, 2] and placing a bump at c = 0. We add the

same noise σ = 0.3 to the training set and measure performance on the test set.

L-Ter steams from a real-world terrain model shown in Fig. 11.9 (left) that maps x,y

coordinates to elevations. We cut 10 slices at different fixed y coordinates and learn

the mapping from x to z. Every slice has about 180 measurements with heights

between approximately 4cm and 12cm in an x-range of 1m, which we use as test set.

For the training set, we add Gaussian white-noise with standard deviation σ = 0.3cm
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Figure 11.10: Time-performance trade-offs for the different data sets (from left to right: L-Ter,
Lrf, and Sine-Bumps). The upper row shows CPU time (x axis) vs. sMSE (on y axis) whereas
the lower row CPU time (x axis) vs. NLPD (on y axis). In both cases, the ellipses indicate the
average values and the standard deviations in both dimensions.

to the test set. As cross-validation set, we use an arbitrary slice and produce training

and test data in the same fashion.

Lrf consists of three laser range finder (LRF) readings taken in an indoor environment.

The task is to map an angle φ to a range r. The LRF has an opening angle of 180

degrees, in which it measures 60 ranges at evenly spaced angles. We produce 30

training and test sets by randomly selecting half of the data as training and half of

the data as test set. We generate a CV set in the same way.

The results are summarized in Fig. 11.9 (right) and Fig. 11.10. Figure 11.9 (right) clearly

shows that our tiling approach is significantly faster than the corresponding global non-

stationary GP approach. This is also confirmed by the individual time-performance trade-

offs as shown in Fig. 11.10: Tiled nonstationary GPs (LA-GP-FINE respective LA-GP-

COARSE) are significantly faster (t-test, p = 0.05) than global ones (coincides with LA-

GP) and show comparable predictive performance; tiled nonstationary GPs show signifi-

cantly better performance than STD-GP to the expense of a higher run time—as expected.

LWPR and the two LA-GP models are similar in speed, while LA-GP significantly outper-

forms LWPR in every scenario except Lrf. Note that Lrf was the scenario that exhibited

the least nonstationary behavior and, hence, also the standard GP is competitive here.

To investigate the scaling of our approach, we conducted an experiment on Sine-Bumps
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Figure 11.11: Results on large-scale Sine-Bumps. The above plot shows the training data and
the predictive means and variance of the estimated tiled, nonstationary GP model on the central
twentieth of the dataset. The bottom plot shows the corresponding tiled, inverse latent length-scales
as optimized by our approach. We use a different color for every segment. The weights assigned
by the gating function are shown by the dotted line at the bottom. Note that the “outliers” at the
boundaries of each tile are basically ignored.

enlarged by factor 20 (10 000 training examples). We found that both the nonstationary

and stationary segmented model achieve equal MSE and NLPD values, while their training

time scales only linearly. This is especially remarkable for the nonstationary model, in

which the number of hyperparameters also grows by factor 20 to 10 002, but the necessary

SCG iterations remained constant.

11.4 Related Work

In previous work [Lang et al., 2007], we modeled 3D terrain data using nonstationary GPs

by also following the approach of Paciorek and Schervish [2004] (see also the previous two

chapters). There, adaptation to local smoothness, was achieved by “external” tuning of

the covariance function using the elevation structure tensor (EST) to measure the local

smoothness. Another approach to modeling nonstationarity is to use ensembles of GPs,

where every GP is assigned to a specific region, an idea akin to GP mixture models such as

presented by Williams [2006]. Cornford et al. [1999] model straight discontinuities in wind

fields by placing auxiliary GPs along the edge on both sides of the discontinuity. They are

then used to learn GPs representing the process on either side of the discontinuity.

Apart from Paciorek and Schervish’s [2004] approach (see also the references in there)

of directly modeling the covariance function using additional latent GPs, several other

approaches for specifying nonstationary GP models can be found in the literature. For

instance, Sampson and Guttorp [1992] map a nonstationary spatial process (not based on

GPs) into a latent space, in which the problem becomes approximately stationary. Schmidt
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and O’Hagan [2003] followed this idea and used GPs to implement the mapping. Similar in

spirit, Pfingsten et al. [2006] proposed to augment the input space by an additional latent

input to tear apart regions of the input space that are separated by abrupt changes of

the function values. However, all GP approaches proposed so far followed a Markov chain

Monte Carlo approach to inference and learning. Instead, we present a novel maximum-

a-posterior treatment of Paciorek and Schervish’s approach that fully stays in the GP

framework, explicitly models the covariance function, provides continuous estimates of

the local kernels, and that naturally allows for gradient-based joint optimization of its

parameters.

With our model tiling approach introduced in Sec. 11.2.1, we intended to close the gap be-

tween two common approaches to modeling nonstationary GPs: Directly modeling the

covariance function using additional latent GPs and mixtures of local experts [Tresp,

2000, Rasmussen and Ghahramani, 2002, Williams, 2006], in which the global model is

decomposed into multiple smaller ones, each responsible only for a subset of the data.

11.5 Conclusion

We showed that GP regression with nonstationary covariance functions can be realized

efficiently using point estimates of the latent local smoothness. The experimental results

have shown that the resulting locally adaptive GPs perform significantly better than stan-

dard GPs and that they have the potential to solve hard learning problems from robotics

and embedded systems.

Regarding the tiled approximation, the experimental results show that the model produces

prediction results that are more sensible than stationary GPs and comparable with locally

weighted regression. Compared to its global nonstationary counter-part, it has significantly

reduced time requirements while still achieving competitive results.
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Chapter 12

Discussion and Outlook

State-of-the-art robotic systems are required to perform complex functions, which often

cannot be realized without employing advanced tools for learning and probabilistic infer-

ence. We showed in this thesis that the Gaussian process approach to function regression

can be used to solve a variety of relevant robot learning problems. Driven by concrete

real-world problems, we developed several generally-applicable extensions of the Gaussian

process model, which proved helpful also in a number of non-robotics learning tasks. In

the following, we summarize our results in the subareas of robot learning that are covered

by this work. For each area, we discuss what has been achieved and outline directions for

future research.

Sensor Modeling and Perception Interpreting sensor measurements is one of the funda-

mental problems studied in robotics, since knowledge about the world provides the basis

for any decision-making in robotic systems. Although state-of-the art sensors are able to

sense in a wide range of modalities at a high precision, the central question remains how to

model a given sensor for a specific task. Here, the accurate handling of observation noise

and of complex realistic environments is of special importance.

In Chapter 7, we introduced a novel sensor model for laser range finders that is based on

the idea of reasoning in the space of continuous range functions rather than in the discrete

domain of beam measurement vectors. The proposed model provides superior robustness

compared to state-of-the-art sensor models for range sensors for the tasks of mobile robot

localization and tracking. As a second contribution of this chapter, we discussed in depth

the problem of overly peaked likelihood functions in conjunction with approximative es-

timation techniques, such as the particle filter. We derived a practical solution to this

problem and showed its benefits in a simulation study as well as for localization a real

mobile robot. Directions for future work include modeling of nonstationary covariances
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along the lines of Chapter 11 or mixtures (Chapter 5) to increase the accuracy of the model

further without weakening its ability to generalize well already from few observations.

Chapter 8 described a novel approach for learning range functions from monocular vi-

sual input. Our model utilizes edge-based features extracted from the image and applies

the PCA to find a low-dimensional representation of the visual input in an unsupervised

manner. In experiments with a real robot, we achieved an accuracy in range predictions

comparable to that of dedicated range sensors based on infrared or sonar signals. The num-

ber of potential applications of this method is large since, in principle, any robotics-related

task involving range functions (such as place classification, mapping, or active exploration)

could be approached in the described way. Future research should involve evaluating al-

ternative techniques for dimensionality reduction, especially those considering the target

values to be predicted (like supervised PCA [Yu et al., 2006] or LDA [McLachlan et al.,

1992, Fisher, 1936]) or others that are directly integrated into the GP framework.

Additional perception-related topics were addressed in conjunction with other topics. For

instance, radio frequency identification (RFID) sensors were modeled to test our approach

to nonstationary GP regression in Chapter 11. The experimental results suggest that the

nonstationary model is well suited to learn and represent distributions of signal strength

measurements. In future work, such a model could be used to estimate the locations

of RFID tags in an environment or, given their locations, to estimate the location of the

sensor. As another perception-related topic, visual marker patterns were used in Chapter 4

to learn the relationship between a robot’s actions and changes to its body configuration. It

was shown that our Gaussian processes-based approach to body-scheme learning is capable

of estimating the configuration of a manipulator arm with an error that is lower than the

observation noise.

State Estimation and Self-Modeling In Chapter 3, it was shown that the efficiency of

sampling in dynamic Bayesian networks can be improved greatly by employing learned

proposal distributions. It was described how continuous as well as discrete state variables

can be treated in a consistent manner using GPs for regression and classification, respec-

tively. The approach was applied to the problem of online collision detection for mobile

robots. Experiments with a real robot demonstrated that the developed system is able to

track the state of the robot more reliably through collision events than an optimized ver-

sion of a standard particle filter with uninformed proposals. Future work in this area could

consider learning sampling models for arbitrary dynamic Bayesian networks, addressing

feature discovery, multi-class classification, and the question of dependencies between fail-

ures. For a limited set of such discrete failure modes, the combination of the proposed

system with the look-ahead particle filter [de Freitas et al., 2003] may be beneficial.
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A novel approach to body-scheme learning and life-long adaptation for a robotic manip-

ulation system was developed in Chapter 4. The central idea was to continuously learn

a large set of local kinematic models using Gaussian processes and to search for the best

arrangement of these models for representing the full system. In experiments carried out

with a real robot and in simulation, it was demonstrated that the system was able to

deal with missing and noisy observations, operating in full 3D space, and being able to

perform relevant tasks such as prediction, control, and online adaptation after failures.

Challenging topics for further investigation include developing an active exploration strat-

egy, learning from marker-less observations, point-like features, or range observations, and

learning under the presence of never-observed body parts.

State estimation, specifically mobile robot localization, was also a central topic in Chap-

ter 7, in which we developed the novel range sensor model. The main contribution of the

chapter in this regard was a novel view on regularization for particle filtering-based state

estimation. It was discussed that highly-peaked observation likelihood functions should

be integrated over in local environments around the state hypotheses to decrease the vari-

ance of the filter estimates. Applied to mobile robot localization with laser range finders,

this regularization procedure causes the individual laser beams—which are typically as-

sumed to be independent—to be statistically dependent. Experiments showed that this

dependency can efficiently be dealt with using Gaussian process regression over the range

functions, requiring only about 5% of the training data that direct estimation of a joint

Gaussian distribution requires.

Map Building Building a representation of the environment from sensor measurements

is a heavily researched field within robotics. Two particularly hard map learning problems

have been considered in this thesis. In Chapter 5, a novel approach to gas distribution

mapping based on sparse Gaussian process mixture models was developed. The model is

able to account for the typical bimodal nature of gas distributions and it can be learned

efficiently by employing an online sparsification strategy. The method was implemented

and tested using gas sensors mounted on a real robot. As a distinct advantage compared

to state-of-the-art methods in gas distribution modeling, the proposed approach also es-

timates the predictive uncertainties in a consistent manner. In future research, it should

be considered to evaluate nonstationary kernels as a possible alternative to the mixture

model (cmp. Chapter 11). Another topic could involve modeling the diffusion in high

concentration areas by smoothing the gating function over time.

Two models for terrain modeling based on Gaussian process regression were introduced in

Chapters 9 and 10. As the central concept, both approaches employ nonstationary covari-

ance functions adapted to the local terrain structure by using the elevation structure tensor



186 Chapter 12. Discussion and Outlook

(EST). The EST was introduced as a new concept, which is related to tensor representa-

tions established in the computer vision community, that capture the local characteristics

of the terrain. Compared to a state-of-the-art approach from the robotics literature the

new approach achieves a reduction of the prediction error by approximately 30% to 70%.

The second terrain mapping approach (Chapter 10) addressed terrain modeling for legged

robots. The developed and implemented system enables a legged robot equipped with a

laser range finder to autonomously sense the terrain in front of it, and to build a proba-

bilistic elevation model that (a) represents the densely sampled structure accurately and

(b) is able to make sensible predictions about unseen parts. As experiments with a real

robot showed, these features allow a quadruped robot to plan foot trajectories and to reach

a goal location more robustly than when using grid-based terrain models.

In future work, the model could be used to improve decision-theoretic path planning by

offering the ability to accurately simulate potential future observations and to temporarily

include these into the map in order to assess the value of observatory actions. Furthermore,

future work could consider a reinforcement learning variant of foot trajectory planning

along the lines of Neumann et al. [2007] using specific reward functions to learn obstacle

avoidance or stable and energy-efficient movements.

Advanced Methods for Non-Linear Regression Additionally to progress in the above-

mentioned subfields of robot learning, the following extensions of Gaussian process regres-

sion have been developed and evaluated. Chapter 6 has shown that effective Gaussian

process regression with input-dependent noise can be fully implemented using standard

GP techniques without resorting to time-consuming MCMC approximations. In experi-

mental tests, our approach produced estimates that are significantly better than standard

GPs and competitive with other regression approaches that handle input-dependent noise.

Directions for future work include studying online learning, classification, and applications

within other learning tasks such as reinforcement learning. Furthermore, it would be in-

teresting to investigate “almost sure convergence” along the lines of [Bottou and Bengio,

1995] and to understand it from a variational Bayes perspective. In the spirit of Chapter 11

and as outlined in Section 6.2, the possibility of fixing the local noise rates to the mean

predictions of the noise GP should be investigated in order to achieve a tractable model

for joint gradient-based optimization of hyperparameters and latent noise rates.

In Chapter 11, a model for GP regression with nonstationary covariance functions was de-

veloped that can be learned efficiently using point estimates of the latent local smoothness.

The ability to adapt to local smoothness can be regarded as one of the major precondi-

tions for scalability, since especially large data sets cannot be assumed to exhibit the same

characteristics at all locations. Our model has been shown to clearly outperform station-
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ary GP regression in terms of accuracy and MCMC-based nonstationary GPs in terms

of runtime requirements. Following this approach, there are several interesting directions

for future work. First, the idea of jointly optimizing the parameters of the latent and

the observed process should be applied to GP regression with input-dependent noise. In

robotic applications, one is likely to encounter both, input-dependent noise and variable

smoothness. Hence, the joint treatment of both should be addressed. Another direction

is the extension of our approach to the pseudo-input setting introduced by Snelson and

Ghahramani [2006b], so that the locations of the length-scale support values are learned

from data, too. Finally, one should investigate multi-task learning, for example, along the

lines of Yu et al. [2007] to generalize across different types of terrains.

Sparse approximations for Gaussian process models were discussed on several occasions

(see Chapters 5, 6, and 11). These are essential for reducing the high runtime and space

requirements of standard GPs to a tractable level. By making only mild assumptions

about the functions to be learned, the tiled nonstationary GP approximation introduced

in Chapter 11 was shown to scale linearly in the units of input space as well as in the

number of data points. This is a remarkable result, especially since the model accuracy

remains nearly unchanged. Nevertheless, in future work, the computational efficiency of

this model could be increased further using, e.g., a kd-tree to access relevant local models

quickly. Furthermore, the ability of the approach to deal with higher dimensional input

spaces should be evaluated and online applications should be considered to demonstrate

its practical usefulness under such hard constraints.

12.1 Concluding Remarks

To summarize, it has been shown that Gaussian process regression is well-suited for solving

learning problems that arise in robotics research and development. In conjunction with

the introduced extensions for learning input-dependent noise and smoothness, the model

is able to achieve high prediction accuracies on complex, realistic data sets. On the other

hand, it is possible to realize these benefits in a time and space efficient way by employing

sparse approximation techniques.

We believe that Gaussian processes have a high potential also beyond the topics addressed

in this work, especially in conjunction with approaches to dimensionality reduction, feature

discovery, or for non-vectorial data like graphs.
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