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Abstract— Motion blur is a severe problem in images grabbed
by legged robots and, in particular, by small humanoid robots.
Standard feature extraction and tracking approaches typically
fail when applied to sequences of images strongly affected
by motion blur. In this paper, we propose a new feature
detection and tracking scheme that is robust even to non-
uniform motion blur. Furthermore, we developed a framework
for visual odometry based on features extracted out of and
matched in monocular image sequences. To reliably extract and
track the features, we estimate the point spread function (PSF)
of the motion blur individually for image patches obtained
via a clustering technique and only consider highly distinctive
features during matching. We present experiments performed
on standard datasets corrupted with motion blur and on images
taken by a camera mounted on walking small humanoid robots
to show the effectiveness of our approach. The experiments
demonstrate that our technique is able to reliably extract and
match features and that it is furthermore able to generate a
correct visual odometry, even in presence of strong motion blur
effects and without the aid of any inertial measurement sensor.

I. INTRODUCTION

In mobile robotics, odometry plays an essential role.
Odometry information is a precondition in most robot lo-
calization and SLAM approaches. Odometry is simple and
reliable to obtain with wheeled robots, where it is given
by the wheel encoders. However, sometimes odometry is
not available: this is the case for flying robots and also for
humanoid robots, where the complex kinematics combined
with the unpredictable body movements prohibit a reliable
reconstruction of the motion from the servo-motor encoders.
In such cases, odometry has to be estimated in other ways. In
the last few years, several researchers have proposed ”visual
odometry” systems, in which the ego-motion of the robot can
be estimated using on-board perspective cameras [7], [19],
[18], [6]. In almost all visual odometry systems, one can
identify the following steps: (i) point features are detected,
(ii) these features are tracked along the image sequence, (iii)
the odometry is recovered from the apparent motion in the
image plane of the tracked features. Item (i) and item (ii) are
essential keys for a correct ego-motion estimation.
Most of the proposed visual odometry approaches were
developed for wheeled robots, but humanoid robots introduce
novel challenges to visual odometry. When a humanoid robot
is walking, turning, or squatting, its camera moves in a jerky
and sometimes unpredictable way. This causes an undesired
motion blur in the images grabbed by the robot’s camera that
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Fig. 1. Typical image grabbed by a walking humanoid robot. As can be
seen, the image is highly affected by motion blur.

negatively affects the performance of the feature detectors
and especially of the feature tracking classic algorithms. A
typical image affected by motion blur grabbed by a walking
robot is depicted in Fig. 1.

Indeed, the classical feature detectors and descriptors [13],
[1] that proved to work well for wheeled robots, do not
perform reliably in presence of motion blur.
This paper proposes a visual odometry framework based on
monocular images designed to address the specific problem
of motion estimation robust to motion blur. The aim of this
work is to provide the robot with a reliable odometry based
on the images grabbed by a camera mounted on the robot,
suitable to all navigation tasks that need a priori knowledge
of the robot motion (e.g., localization and SLAM). The
presented approach was tested on small humanoid robots,
but it could be applied also to other robots whose quick
movements can affect the quality of vision data by inducing
a motion blur effect. Several authors studied the problem of
estimation, modeling, and elimination of the motion blur in
robot images. Some examples are Flusser et al. [8] and Klein
et al. [11], in which only a centrally symmetric motion blur
is taken into account, and Mei et al. [15], in which a tracking
problem is analyzed in presence of spatially variant motion
blur generated by a planar template.
Our approach is based on a novel invariant feature scheme
robust to motion blur that takes advantage of the previous
works of Lowe [13] and Bay et al. [1]. In our approach,
before detecting interest points, an image preprocessing step
estimates the Point Spread Function (PSF) of the motion
blur in the image. However, we experienced that the motion
blur, affecting the images taken by a humanoid robot while



walking, is not uniform. Thus, we calculate not a unique
PSF in the whole image, but we segment each image on the
basis of the local motion blur. The estimated PSFs are then
used to build an adapted scale-space representation trying
to minimize the undesired effect of the motion blur. The
scale-space extrema are extracted based on the determinant
of the Hessian, and a SIFT descriptor is calculated for each
keypoint. Before matching features between images, features
with less distinctive descriptors are discarded based on their
entropy. In the end, the robot ego-motion is estimated from
the matched features with a method based on the five-point
algorithm (similarly to the visual odometry strategy proposed
by Nister et al. [19]).
We present experiments in which odometry could reliably
be estimated from images grabbed by walking humanoid
robots in the presence of strong motion blur effect. This
is obtained without any global bundle adjustment process
(a process which is too computationally expensive for the
processing units on-board of small humanoids robots) and
without the aid of any inertial measurement sensor.

II. RELATED WORK

Several authors investigated the problem of a reliable
and robust feature detection and tracking on its own. The
best-known and widely used feature detector and descriptor
scheme was introduced by Lowe [13] and is called SIFT
(Scale-invariant feature transform). SIFT features are
invariant to image scale and rotation, and are quite robust
in matching across affine transformations and changing of
viewpoint. As shown in [17], SIFT features outperformed
previous features detectors-descriptor schemes. Ke et al. [10]
proposed a variation of the SIFT features, called PCA-SIFT:
applying PCA in the gradient images, the descriptor is
reduced to a 36-dimensional vector, and matching step is
faster. PCA-SIFT are robust to focus-blur noise, but are less
discriminative compared with SIFT [17]. Mikolajczyk et
al. proposed a novel approach for detecting interest points
invariant to scale and affine transformation [16]. In [17] a
novel descriptor called GLOH (Gradient location-orientation
histogram) is presented, an extension of the SIFT descriptor
designed to increase its robustness and distinctiveness: it
also uses PCA to reduce the dimension of the descriptor.
GLOH obtains little better performance than SIFT, but at
cost of higher computational complexity. Recently, Bay
et al. [1] presented a novel and computationally efficient
scale and invariant feature detector-descriptor called SURF
(Speeded Up Robust Features). Interest points are detected
as the maxima over location and scale of the determinant
of the Hessian. The Hessian is computed over scaled
images using an efficient approximation based on the
integral images technique. Descriptors are obtained using
Haar Wavelet responses: repeatability and distinctiveness
performance are similar than SIFT to previous proposed
schemes, but SURF features can be computed much faster.

Lately, these approaches have being exploited not only for
feature (or object) tracking, but also to estimate the camera

motion just from the images (i.e., visual odometry). Davison
proposed an invariant point-based SLAM approach using a
single perspective camera and EKFs (Extended Kalman Fil-
ter) [7]. This approach is well suited for indoor environments
and without cumulative error as in conventional odometry.
Despite that, Davison visual SLAM tracks a small number
of points and assumes to encounter the same points again
and again in the future. Nister proposed a robust estimation
of the camera motion produced from the point tracks us-
ing a geometric hypothesize-and-test architecture [19]: This
method is very accurate, but requires to track points for many
consecutive frames. Comport et al. described an image-based
approach for tracking the trajectory of a stereo camera based
on a quadrifocal relationship between the image intensities
within adjacent views of the stereo pair [6]. Mouragnon et al.
proposed an accurate and fast incremental motion reconstruc-
tion algorithm that uses a local bundle adjustment method to
improve motion estimation accuracy [18].

III. INVARIANT FEATURES ROBUST TO MOTION BLUR

When an image is captured while the camera is moving
during the exposure time, the one-to-one relationship be-
tween the scene points and the image points is broken and
a certain number of scene points are projected at a single
pixel contributing to the final pixel value. This effect is
called motion blur, and it depends on the relative movement
between the camera and the objects of the observed scene
during the exposure time. When this motion is linear and
with uniform velocity, the blur can be determined by two
parameters: the blur extent d and the direction θ. The
observed image b(x, y) can be expressed as:

b(x, y) = h(x, y) ∗ f(x, y) + n(x, y) (1)

where h(x, y) is the blurring function, called PSF (Point
Spread Function), ∗ is the convolution operator, f(x, y) is
the uncorrupted version of the observed image (i.e., the ideal
image grabbed without relative motions), and n(x, y) is an
additive noise function. In the linear case:

h(x, y) =
{

1
d if

√
x2 + y2 ≤ d

2 ,
x
y = −tan(θ)

0 otherwise
(2)

Several deconvolution techniques have been implemented
to restore an image affected by motion blur effect.
Richardson-Lucy algorithm [14] and Wiener filter [22] are
widely used techniques. Unfortunately the quality of the
restored image strongly depends on the accuracy of the
PSF estimation. Wrong PSF used for the deconvolution
can produce unacceptable resulting image. Moreover, this
method assumes a linear motion blur and the presence of
PSF uniform in the whole image. Even if in simple small
humanoid robots, these assumption can hold to a certain
extent [21], from our experiments, however, we experienced
that the cameras of robots with complex kinematics, like
for instance the humanoid platform of the NimbRo Robocup
Team [2], perform complex movements resulting in different
translation and rotation of the image that can introduce



non-linear and non-uniform motion blur effect. In these
case, conventional deconvolution techniques can easily fail.
Instead of trying to restore the original, unblurred images,
we propose an adapted scale-space representation that tries
to overcome the negative effect of the motion blur in the
invariant features detection and description process. With
respect to the work presented in [21], we improved the
estimation of the PSF by relaxing the constraint of a uniform
PSF over the hole image and which leads to a better estimate
than the simple Wiener filter deconvolution presented in that
work.

The scale-space theory of Lindeberg [12] aims to represent
the input image at different scales and it is at the base of the
scale-invariant feature detectors and descriptors such as SIFT
and SURF. Scale-space representation is obtained convolving
the original images f(x, y) with a set of Gaussian filters
with zero-mean g(x, y, σ) and with increasing standard de-
viations σ (normally referred to as the scale of the smoothed
image):

l(x, y, σ) = g(x, y, σ) ∗ f(x, y) (3)

If one uses the conventional scale-space representation for
images affected by motion blur, it will blur with Gaussian
noise the image b(x, y) that is already blurred with the mo-
tion blur h(x, y). Thus, the resulting filter is not the desired
Gaussian filter, but the composition of a Gaussian filter plus
the motion blur filter (applied to the uncorrupted image by
the motion of the camera). The motion blur filter can be
approximated to be Gaussian, but cannot be approximated
to be with equal marginal standard deviations. Thus, the
resulting filter is no longer circular symmetric. Therefore,
we propose to compute the scale-space representation of an
image corrupted by motion blur by finding an appropriate
non-circular symmetric g′(x, y), determined from the PSF
of the actual motion blur in the image, that convolved with
h(x, y) approximates a Gaussian filter with equal marginal
standard deviations. In other words, we smooth less the image
along the motion blur direction. We obtain from Eq. (1) and
Eq. (3) (omitting for simplicity the additive noise):

l′(x, y, σ) = g′(x, y) ∗ h(x, y) ∗ f(x, y) (4)

where g′(x, y) is a zero-mean Gaussian smoothing filter with
different marginal standard deviations. The proposed strategy
is to find a g′(x, y) filter that minimize the sum of squared
difference between l and l′ over the whole image (here, w
is image width and h is image height in pixels):

w∑
x=1

h∑
y=1

(l − l′)2 (5)

For the distributivity and associativity properties of the
convolution operator one can write:

l − l′ = (g(x, y, σ)− g′(x, y) ∗ h(x, y)) ∗ f(x, y) (6)

So, for an image f(x, y), we have to find a filter g′(x, y)
that minimizes the difference:

g(x, y, σ)− g′(x, y) ∗ h(x, y) (7)

Let us define as σ (i.e. the scale), the marginal standard
deviation of g′(x, y) in the direction perpendicular to the
PSF direction, and σ′ the marginal standard deviation in the
PSF direction. One might think that g′(x, y) could be easily
obtained in the frequency domain by a standard deconvolu-
tion techniques as Wiener filter, but, for the reason explained
above, without an accurate estimation of the real PSF h(x, y),
results are very poor. Thus, we compute the value of σ′ by
minimizing the function (7) in the discrete domain (i.e., using
discrete kernel’s filter): we use the Levenberg-Marquardt
algorithm (LMA) for the solution of least squares problems
in non-linear case. For example, given the PSF h0(x, y) with
extent d and direction θ = 0 and given the scale = σ, we
compute using LMA the σ′ that minimize:

g(x, y, σ)− g′(x, y,Σ) ∗ h0(x, y), Σ =
[
σ′ 0
0 σ

]
(8)

where Σ is the covariance matrix of the adapted Gaussian
filter g′(x, y,Σ). For a general PSF h(x, y) with θ 6= 0, we
rotate the Gaussian kernel obtained for h0(x, y) according
to θ (see Fig. 2).

A. PSF estimation

For PSF estimation, we use an approximated version of
the whitening method [24]. Motion during exposure affects
the image by decreasing its resolution mostly in the motion
direction. We search for the direction in the image with
the lowest resolution: this can be done high-pass filtering
the image in all directions. The direction with the lowest
responses corresponds the blur direction. The high-pass filter
we use is the absolute value of the derivatives in the candi-
date directions: we take the absolute value of the difference
between two adjacent pixels along the direction. For a better
approximation, pixels are interpolated. In order to preserve
the efficiency, we compute responses in 5 pixels, regularly
spaced sample points along 18 directions (every 10 degrees):
responses are accumulated in a 18-bins histogram. The bin
with the lowest value represents the blur direction. In Figure
3 (a), the responses for a 45◦ blurred image. In order to
estimate the blur extent, the PSF correlation properties along
its direction are emphasized.

An auto-correlation operation (ACF) in the image deriva-
tive lines along motion direction is performed:

Rd(j) =
1
M

M∑
i=−M

l(i+ j)d(i), j ∈ [M,−M ]

d(i) = 0 for i /∈ [0,M ]

(9)

where d(i) is the image derivatives line of index i in the
motion direction. For theoretical details, see [24]. The oper-
ation is obtained by rotating the image with an angle of −α,
where α is equals to the blur direction angle. The derivatives
along the x-axis of the resulting image are then calculated.
Again, the auto-correlations responses are accumulated in a
histogram. The global minimum of the histogram correspond
to the blur extent estimation. In Figure 3 (b), the ACF
for an image with motion blur extent of 30 pixels. In our



(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) The Cameraman original image. (b) Original image synthetically
blurred with PSF extent d = 18 and direction θ = 5

6
π. (c) Original

image smoothed with circular symmetric bivariate Gaussian kernel with
σ = scale = 6.4. (d) Motion blurred image (b) smoothed with circular
symmetric bivariate Gaussian kernel with σ = scale = 6.4. (e) Motion
blurred image (b) smoothed with non circular bivariate Gaussian kernel with
marginal standard deviation σ = scale = 6.4 in the direction perpendicular
to the PSF and in this case σ′ = 3.69 (computed with the LMA algorithm)
in the PSF direction. (f) The adapted Gaussian filter used to obtain (e). We
can see that (e) tends to approximate the original smoothed image (c) better
than (d).

implementation, after a histogram-smoothing step, we search
for negative peaks over a certain threshold (e.g., 2-3 pixels):
The presence of noise in the images can induce negative
peaks in the auto-correlation function at very low value of
extent.

B. PSF clustering

The proposed adapted scale-space representation assumes
that the PSF is linear: this is, in general, an approximation
of the real PSF, that also isn’t usually uniform in the whole
image. In order to take into account of the non-uniform
nature of the PSF, we introduce a clustering step that aims
to divide the image in sub-regions characterized by different
PSF.

The segmentation of the image is performed using a mod-
ified version of the K-means clustering algorithm [4]. For-
mally, we divide the image points in K clusters where the 3-
dimensional vector µk = (xµk

, yµk
, αµk

) (here, xµk
, yµk

are

(a) (b)

Fig. 3. (a) The motion-blur direction identification: the global minimum
falls in the blur direction estimation (in degrees). (b) The average ACF used
for estimation of the extent. The global minimum fall in the blur extent
estimation (in pixels).

(a) (b)

Fig. 4. (a) The result of the clustering process for the image (Fig. 1):
Using the K-means algorithm (here with K = 2), each point is assigned
to a cluster that is characterized by an (approximated) uniform PSF in the
region close to the cluster centroid. (b) Based on segmentation performed
in (a), the image is divided in rectangular subregions with assigned uniform
PSFs. Red and blue arrows represent the computed directions of the PSF
in each single subregion: about 0◦ on the left side and around 80◦ on the
right side.

the image coordinates, αµk
is the PSF direction (discretized)

and k = 1, . . . ,K) is a prototype associated with the kth

cluster. One can think of the µk as representing the centroids
of the clusters with uniform PSF with direction αµk

. Given
an image point Xi with coordinates xi, yi and Hi being the
histogram (normalized to unit vector) that holds the absolute
values of the derivatives in each discretized directions for
this point (see section III-A), we define the distance from a
cluster centroid µk as the weighted Euclidean distance:

d(Xi, µk) = Hi(αµk
) ∗
√

(xµk
− xi)2 + (yµk

− yi)2 (10)

where Hi(α) is the response of the absolute derivatives along
the direction α for the sample Xi: This response tends to be a
minimum in the motion blur direction. Here’s the algorithm:

1) For each sample point i, compute the histogram Hi

that holds the absolute values of the derivatives in each
discretized direction, 18 in our case (see section III-A).
Each histogram is normalized to the unit vector.

2) Compute, as accumulation of the histograms of point
1), the global histogram that, for each discretized di-
rection, holds the sum of the responses in that direction
for all the sample points. Extract the K directions with
minimum responses and assign them as initial choices
for the direction αµk

of the the K cluster centroids µk.
For all cluster centroids, assign at xµk

, yµk
the center

of the image.



3) Using the distance (10), assign each sample point to the
closest cluster, i.e., the cluster with the closest centroid.

4) Re-assign each sample point to the mode of its 8-
neighbors sample points, i.e., to the cluster that occurs
most frequently in its 8 neighbors (Fig. 4 (a)).

5) For each cluster with centroid µk, compute as accu-
mulation the histogram Hµk

that holds the sum of the
the responses of the single histograms of the sample
points that fall in the cluster.

6) Re-compute the centroids µk with coordinates xµk
, yµk

equal the mean of the coordinates of the sample points
assigned to the corresponding cluster and with αµk

corresponds to the directions with minimum response
in histograms Hµk

.
7) Repeat from point 3 until convergence.
8) For each cluster, compute the PSF extent as explained

in section III-A
9) Divide the image in rectangular subregions with uni-

form PSFs based on their cluster centroids (Fig. 4 (b)).
We experimentally found out that k = 2 yields good results.

C. Finding distinctive features

After the PSF clustering step, we have a set of rectangular
subregions characterized by a local PSF (Fig. 4 (b)): For
each subregion we can now easily compute the adapted
scale-space representation, as explained at the beginning
of section III, using the local PSF. As in [13], the scale-
space is divided in octaves (i.e., the last smoothed image of
the octave has twice the scale of the first). Each octave is
divided into an integer number s of intervals, with scales
σi = σi−1 ∗ 2

1
s , where σ0 is the initial scale chosen to be

1.6. We choose s = 3, so we compute Eq. (3) at scales
1.6, 2.0159, 2.5398, 3.2, 4.0317. The latest scale is computed
to detect local scale space maxima at the higher scale of the
octave, i.e., 3.2. For each scale, we compute the adapted
scale-space representation. Once an octave is completed, the
image is re-sampled to half its original size: This image
has obviously twice the scale of the original image. A new
octave is then processed on the re sampled (smaller) image,
using the same σi values. In order to detect interest points,
the scaled images L(x, y, σ) are convolved with filters that
response mainly to invariant local features of the image. The
scaled images L are computed according to the local PSF
with the adapted scale-space representation explained before.
As in [1], we use the determinant of the Hessian of the scaled
image for selecting both location and characteristic scale of
the interest points:

det(σ2H(x, y, σ)) = (11)

det

[
σ2Lxx(x, y, σ) σ2Lxy(x, y, σ)
σ2Lxy(x, y, σ) σ2Lyy(x, y, σ)

]
where in Eq. (III-C) Lxx, Lyy, Lxy are the second derivatives
of the scaled images L(x, y, σ). The second derivatives are
multiplied with the square of the scale σ: this is due to the
fact that the amplitude of spatial derivatives decreases with
scale, so normalization is required for true scale invariance
[12]). According to our experience, the determinant of the

Hessian seems to be more stable with motion blurred im-
ages than Difference-of-Gaussian (DoG) used in [13]. Once
computed the determinant of Hessian for each location of
the multi-scaled image, interest point are detected searching
for local maxima over scale and location space in a 3 ×
3 × 3 neighborhood of each point: only local maxima with
determinant of Hessian greater than a threshold are selected
as interest points. Finally, the location and the scale (called
characteristic scale) of the extracted points are interpolated
[5] by fitting a 3D quadratic to the scale-space determinant
of Hessian and taking the maxima of this quadratic. This
step is useful to obtain a more accurate characteristic scale
of the point (negatively affected by the discrete nature of
the scale space) and to reduce the localization errors. In our
experiments, we noticed that the SIFT descriptor are slightly
more stable than other approach. Detection of the interest
points are then performed using the description method
from SIFT [13]: we implement SIFT descriptor, tuning the
parameters of the algorithm to improve reliability.
Motion blur effects tend to suppress the high frequency
components, the resulting image so loses a lot of small
details: It happens that some interest point extracted during
detection step represents in reality very simple and not much
distinctive features, that they can compromise the stability of
the feature matching step producing more outliers. In order
to avoid this issue, we introduce a discarding process based
on the Shannon entropy of the normalized descriptor. If we
take a normalized feature descriptor s(i), we can see it as a
probability mass function, with possible values 1, . . . , n the
indexes of the bins of the descriptor, in the case of SIFT
descriptor n = 128. We can compute the entropy as:

H(s) = −
n∑
x=1

s(i)log(s(i)) (12)

We notice that simple and not much distinctive features
tends to obtain descriptors with low entropy. For each
descriptor, we first compute the entropy, then we compute
the mean µH and the standard deviation σH of all entropy
values. We finally discard all the descriptors with entropy
values less than µH − σH . This step improves noticeably
the stability of the following features matching precess.

IV. VISUAL ODOMETRY

The interest points are matched between pairs of frames
using an efficient Best Bin First (BBF) algorithm [3] that
finds an approximate solution to the nearest neighbor search
problem. The algorithm is similar to the kd-tree search
algorithm, where the tree is explored searching for the node
that is closer to the input descriptor. The BBF algorithm
only search m candidates, and returns the nearest-neighbor
for a subset of queries. Given five corresponding points, it’s
possible to recover the relative positions of the points and
cameras, up to a scale. This is the minimum number of points
needed for estimating the relative camera motion from two
calibrated views and it is called five-point algorithm. The
Five-point algorithm offers many benefits compared with



other relative pose problem solutions, as the well-known
eight-point algorithm. The Five-point algorithm needs fewer
correspondences to find a solution. Moreover, it is essentially
unaffected by the planar degeneracy and it still works for
planar scenes where other methods fail. The estimation
accuracy of the five-point algorithm is also higher than
other solutions to the relative pose problem. In our visual
odometry approach, we use the efficient solution to the five-
point relative pose problem1 proposed by Nister [20]. We
assume that the camera used in the visual odometry is fully
calibrated, i.e., intrinsic matrix K is given. For a static scene
point projected in two views, we can write:

m′TFm = 0 (13)

where F is a fundamental matrix and m and m′ are the image
points expressed in homogeneous coordinates for the first
and second view, respectively. If the camera is calibrated,
the fundamental matrix is reduced to an essential matrix,
denoted by E, and the relationship becomes;

q′TEq = 0 (14)

with q = K−1m and q′ = K−1m′. Using the five-point
algorithm with five correspondences qi, q′i, i = 1, . . . , 5, one
can obtain at most ten possible essential matrices (including
complex ones) as solutions of the problem. For each essential
matrix four combinations of possible relative rotation R and
translation T of the camera can be easily extracted [20]. In
order to determine which combination corresponds to the true
relative movement, the constraint that the scene points should
be in front of the camera for both the two views is imposed.
The image points are triangulated into 3D points [9] using all
the combination of R and T . The final solution is identified
as configuration more compliant with the given constraints.
We use the five-point algorithm in conjunction with MLE-
SAC estimator [23]: MLESAC uses the same sampling
strategy as RANSAC where minimal sets of correspondences
(5 in our case) are used to derive hypothesized solutions. The
remaining correspondences are used to evaluate the quality of
each hypothesis. Unlike RANSAC, that count the number of
inliers, MLESAC evaluates the likelihood of the hypothesis
by representing the error distribution as a mixture model. Our
mono-camera visual odometry scheme operates as follows:

1) Extract the features from the images using the pro-
posed features detection and descriptor scheme.

2) Track interest points over two frames using the BBF
matching strategy.

3) Randomly chose a number of samples each composed
of 5 matches between the first and the second frame.
Using the five-point algorithm generate a number of
hypotheses for the essential matrix.

4) Search for the best hypotheses using MLESAC esti-
mator and store the correspondent inliers. The error
function is the distance between the epipolar line Eq
associated with q and p′,

1We use the five-point algorithm implementation provided with the VW34
library by Oxford’s Active Vision Lab.

5) Extract from the resulting essential matrix E the four
combinations of possible relative rotation R and trans-
lation T . Triangulate all the inlier correspondences for
each combination. Take the configuration with more
3D points in front of both camera views.

6) If this is not the first time inside the loop, select the
features tracked in the present reconstruction, that were
tracked also in the previous one, and compute using tri-
angulation the depth for both reconstruction. Use these
information in conjunction with RANSAC to estimate
the scale factor between the present reconstruction
and the previous. Put the present reconstruction in the
coordinate system of the first reconstruction.

7) Repeat from Point 1.

V. RESULTS

We implemented our detection-descriptor scheme in C++
using the efficient OpenCV image processing library2: the
whole process take on average 1 second for a 640X480 image
on a 2Ghz core 2 PC.
As experimental platforms, we used the custom built Nim-
bRo Robocup Team humanoid robot and the commercial
Kondo KHR-1 HV humanoid robot.

A. Performance evaluation of the proposed features
detection-descriptor scheme

We compared our detection and descriptor scheme to the
SIFT features [13] and to the SURF-128 features [1] (i.e.,
the improved version of the SURF features). Comparisons
are performed using well-known implementation of these
methods3’4 without changing the standard parameters of
the algorithms. The input data are from two sources: (i)
a standard dataset5 with added synthetic motion blur, (ii)
sequences of images grabbed by the CMOS camera of a
walking humanoid robot affected by real motion blur effect.
Testing image pairs are composed by two images of the
same scene taken from different viewpoint. One or both the
images are affected by motion blur. The standard dataset
we used is provided with homographies (plane projective
transformations) between images: the map between the two
images is known, the exact correspondence of every point in
one frame to the corresponding points in the other frame is
known. We can determine in this case ground truth matches
and also the accuracy (i.e., the localization error of the
matches). For the real images set, we manually identified the
correct matches between frames. For all tested approaches,
we use the Nearest Neighbor Distance Ratio matching strat-
egy (see [17]), with distance ratio equal to 0.5. Fig. 5 presents
matching results for image pairs of the standard dataset.
One or both the image images of the pairs are blurred
with synthetic motion-blur functions with different directions
and extent variable between 10 an 40 pixels. The matching
accuracy is the distance in pixels between the ground truth

2http://sourceforge.net/projects/opencvlibrary/
3http://www.cs.ubc.ca/˜lowe/keypoints/
4http://www.vision.ee.ethz.ch/˜surf/
5http://www.robots.ox.ac.uk/˜vgg/research/affine/



match and the obtained match. As can be seen, our approach
outperforms SIFT and SURF-128 in both the number of
correct matches and the localization accuracy. This is very
important especially in visual odometry tasks, where the
accuracy in matching affect significantly results in motion
estimation. Results for some real images are presented in
Fig. 6: Here, the x-axis represents the image pairs used in
matching process. As the results demonstrate, also with real
images our approach outperforms the others with respect to
the higher number of correct matches.
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(d)

Fig. 5. Correct matches for the standard dataset images. (a) Image pair
1 and 3 of the graf series. (b) Image pair 1 and 6 of the boat series. (c)
Image pair 1 and 6 of the trees series. (d) Image pair 1 and 6 of the leuven
series. Accuracy is the distance in pixels between the ground truth match
and the obtained match.
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Fig. 6. Correct matches for the real image sets. In the x-axis, the
corresponding image pairs are denoted. The y-axis indicates the number
of correct matches. Our approach finds much more feature correspondences
compared to SIFT and SURF.

B. Testing visual odometry

We tested our visual odometry framework with trajectories
walked by humanoid robots. The accuracy is measured by
checking the error between the start and the endpoints of the
recovered trajectory (Fig. 7). The path of Fig. 7 (a) is a closed
loop in which the starting point and the end point are the
same point in the environment. The robot walked a loop of
about 4-5 m in diameter in the cluttered environment of our
laboratory. In the path of Fig. 7 (b) the robot walked down
a corridor for 5 m, it turned around, and it walked back to
almost the same position. Unfortunately, it was not possible
to record the ground-truth of the robot, but the robot path
was closely surveilled and in particular the start and the end
points. Despite the fact that the paths of Fig. 7 are calculated
up to a scale, one can see that the proposed visual odometry
can reliably estimate the motion of the robot, even it is not
so accurate when the robot is turning. This is the reason
why the start and end points do not overlap in Fig. 7 (a)
and the mutual distance is a bit too large in Fig. 7 (b). In
fact, the reconstructed paths are open-up because the robot
rotation was underestimated. Unfortunately, we cannot report
a comparison with SIFT and SURF approaches on this visual
odometry experiment, because both approaches did not pick
enough features in the image sequence to reliable reconstruct
the path. Indeed, the unmodified environments in which we
performed the experiments where quite dim and most of the
surfaces did not have bright patterns. Moreover, as reported
in Fig. 6, the motion blur affecting the images in the walking
sequence lowered even more the number of feature detected
by SURF and SIFT approaches.

VI. CONCLUSIONS

In this paper, we presented a novel framework for visual
odometry with a single camera robust even to non-uniform
motion blur. We developed an improved feature detector
based on SIFT that can find good correspondences even
in heavily blurred images, such as the ones grabbed by
robots performing brisk movements. The proposed method
outperforms the SIFT and the SURF approach in detecting
and matching corresponding features between two images in
which one image or both of them are corrupted with motion
blur. We evaluated our method on images taken from stan-
dard datasets and on images grabbed by walking humanoid
robots. As a final validation, we reported experiments for
successful visual odometry estimation for small humanoid
robots walking a 10 m, respectively a 20 m path. Due to
space constraints, we could not report experiments on images
without motion blur in which our approach can find the same
(and more) correct matches than SIFT and SURF.

Future work includes the integration of the presented
visual odometry strategy as a priori motion prediction es-
timation into a visual SLAM approach. This is well suited
humanoid robots, where as correction step more global and
topological visual information can be taken into account.
Moreover, the feature matching and tracking phase can
certainly be improved by mounting an inertial measurement



(a)

(b)

Fig. 7. Estimation of the robot motion using the proposed visual odometry
framework for two closed trajectories. The red crosses are the start points
of the trajectories.

unit on the humanoid robot that can provide a first guess on
the motion of the camera.
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